CS65: Introduction to Computer Science

Continuation of graphics library
Writing more user-defined functions

Md Alimoor Reza
Assistant Professor of Computer Science

Recap

- Graphics library
- Installation in Thonny
- Drawing window and a circle using graphics library
- Quiz 1
- Quick discussion!
- Expect similar questions for future quizzes/midterm/final
- Don't panic, your lowest quiz score will be dropped
- out of 6 quizzes

Recap: Graphics library

- A simple library (containing other python codes) that makes it easy to experiment with graphics components
- Graphics library: https://mcsp.wartburg.edu/zelle/python/graphics/graphics/index.html
- Graphics library provides different graphical objects
- Point, Line, Circle
- Oval, Rectangle, Polygon
- Text, Image
- You can manipulate properties of these shapes/objects
- change color and sizes

Recap: graphics window

- GraphWin(. . .): creates the canvas or panel where everything will be drawn
- Coordinate system
- x : top-left $->$ top-right
- y : top-left $->$ bottom-left

- You can set the dimensions of the window by mentioning the width and height (in pixel units)
- x-axis $-->$ width
- y-axis $--->$ height

Topics

- Drawing shapes inside the window
- Circle
- Rectangle
- Line, Text, and combinations of these shapes
- Changing coordinate system
- Mouse interaction inside graphics window

Graphical objects from graphics library

- Graphics library provides different shapes (graphical objects):
- Point, Line, Circle
- Oval, Rectangle, Polygon
- Text, Image
- You can manipulate properties of these shapes/objects
- change color and sizes
- You can also move them around inside the window

Drawing inside the window

- You can draw inside the window
- Drawing a circle inside
- how many variables do we need for a circle?

Drawing inside the window

- Step 1: Construct a circle
- Step 1.1: construct a point $->$ the center of the circle
- Step 1.2: fix the radius
- Step 1.3: put them together
- Step 2: Draw the newly constructed circle inside the window

```
from graphics import *
def create_simple_window_v1():
    window = GraphWin("New window", 400, 400)
    point = Point(100, 100) # step 1.1
    radius = 100 # step 1.2
    circle = Circle(point, radius) # step 1.3
    circle.draw(window) # step 2
    return window
w1 = create_simple_window_v1()
```


Coding demo

Exercise 1

- Write a function that draws a circle based on
- user specified center (2D point)
- user specified radius
- Optional: the size of the window can also be specified by the user
- What changes do you need to make?

```
from graphics import *
def create_simple_window_v1():
    window = GraphWin("New window", 400, 400)
    point = Point (100, 100) # step 1.1
    radius = 100 # step 1.2
    circle = Circle(point, radius) # step 1.3
    circle.draw(window) # step 2
    return window
w1 = create_simple_window_v1()
```


Drawing rectangle

- Step 1: Construct a rectangle
- Step 1.1: construct a point $->$ one corner
- Step 1.2: construct a point $->$ opposite corner
- Step 1.3: put them together
- Step 2: Draw the newly constructed rectangle inside the window

```
from graphics import *
def create_simple_window_w_rect()
    window = GraphWin("Window: Rectangle", 400, 400)
    point1 = Point (50,50)
    point2 = Point(250, 350)
    rect = Rectangle(point1, point2)
    rect.setFill("blue")
    rect.draw(window)
    return window
w1 = create_simple_window_w_rect()
```


Exercise 2

- Write a function that draws a Rectangle based on
- user specified left most corner (2D point)
- user specified right most corner (2D point)
- What changes do you need to make?
https://mcsp.wartburg.edu/zelle/python/graphics/graphics/node8.html

Coding demo

from graphics import *	Window: Rectangle
```def create_simple_window_w_rect(): window = GraphWin("Window: Rectangle", 400, 400) point1 = Point (50,50) point2 = Point(250, 350) rect = Rectangle(point1, point2) rect.setFill("blue") rect.draw(window) return window w1 = create_simple_window_w_rect()```	
3.7 .9 (bundled)   cd /Users/reza/Class_and_Research/drake_teaching/CS65   Run lec6_rect.py   Run lec6_rect.py	

## Draw multiple shapes

- Drawing circle, rectangle, and a line connecting them
- Demo

```
from graphics import *
def create_random_shapes():
 win = GraphWin("Multiple shapes: ", 400, 400)
 # create circle
 cir_center = Point(100, 100)
 cir_radius = 100
 my_cir = Circle(cir_center, cir_radius)
 # create rectangle
 rect_point_a = Point(200, 200)
 rect_point_b = Point(300, 300)
 my_rect = Rectangle(rect_point_a, rect_point_b)
 my_rect.setFill("blue")
 # line connecting circle and rectangle
 my_line = Line(cir_center, rect_point_a)
 # draw all the components
 my_cir.draw(win)
 my_rect.draw(win)
 my_line.draw(win)
 return win
new_window = create_random_shapes()
```


## Draw multiple shapes

- Drawing Text inside the window
- Demo



## Exercise 3

- Write a function that draws a Triangle based on
- challenge 1: find out what how many variables do you need to draw it?
- challenge 2: then receive that many user inputs
- Hints: read the specification below and try to figure out what might be a useful graphical object for this task
https://mcsp.wartburg.edu/zelle/python/graphics/graphics/graphref.html



## Changing coordinate system

- Default coordinate system:
- x: top-left $->$ top-right
- y : top-left $->$ bottom-left

- Transforming into traditional coordinate system
- x: bottom-left $->$ bottom-right
- y : bottom-left $\longrightarrow>$ bottom-up



## Changing coordinate system



New window
$y$-axis

## Changing coordinate system

from graphics import *
def create_transformed_window_v1(x, y, radius):
window $=$ GraphWin("transformed coordinate: circle", 400, 400) window. setCoords(-100, -100, 400, 400)
circle_center $=\operatorname{Point}(x, y)$
circle_radius $=$ radius
tr_circle = Circle(circle_center, circle_radius)
tr_circle.setFill("red")
tr_circle.draw(window)

## return window

my_win = create_transformed_window_v1(0, 0, 100)
from graphics import *
def create_transformed_window_v1( $x, y$, radius):
window $=$ GraphWin("transformed coordinate: circle", 400, 400)
window.setCoords ( $-100,-100,400,400$ )
circle_center $=\operatorname{Point}(x, y)$
circle_radius $=$ radius
tr_circle = Circle(circle_center, circle_radius)
tr_circle.setFill("red")
tr_circle.draw(window)
return window
my_win = create_transformed_window_v1(0, 0, 200)


x-axis

The red circle has been clipped

## Changing coordinate system

from graphics import *
def create_transformed_window_v1( $x, y$, radius) :
window $=$ GraphWin("transformed coordinate: circle", 400, 400) window. setCoords(-100, $-100,400,400)$
circle_center $=\operatorname{Point}(x, y)$ circle_radius $=$ radius
tr_circle = Circle(circle_center, circle_radius) tr_circle.setFill("red")
tr_circle.draw(window)
return window
my_win = create_transformed_window_v1(0, 0, 300)

## New window

## from graphics import *

def create_transformed_window_v1( $x, y$, radius):
window $=$ GraphWin("transformed coordinate: circle", 400, 400) window. setCoords $(-100,-100,400,400)$
circle_center $=$ Point $(x, y)$
circle_radius = radius
tr_circle = Circle(circle_center, circle_radius)
tr_circle.setFill("red")
tr_circle.draw(window)
return window
my_win = create_transformed_window_v1(0, 0, 400)


## Interaction with the user using Mouse

- GraphWin() has a function that allows us to identify the location of your mouse-click
- 2D coordinate
- represented by Point object

```
from graphics import *
window = GraphWin(''Mouse interaction", 400, 400)
mouse_point1 = window.getMouse()
mouse_point2 = window.getMouse()
print(mouse_point1)
print(mouse_point2)
```


## Summary

- Takeaway from this lecture
- Basics shapes are already defined, you just need to draw them according in specific ways
- Circle, Rectangle, Triangle
- Change of coordinates to draw in a different way
- Mouse interaction with the user
- To do:
- Read: https://mcsp.wartburg.edu/zelle/python/graphics/graphics/index.html
- Announcements:
- Assignment 1 will be out soon! It will be due in 2 weeks.

