CS65: Introduction to
Computer Science

Assignment 4
Final Exam Review

Quiz 6

Prake

UNIVERSITY

Md Alimoor Reza
Assistant Professor of Computer Science

Topics

- Assignment 4

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Dr

UNIVERSITY

Assignment 4

Grade Calculator

You should use Class, Objects, Files, & String formatting for this task. In this task, you will write two
Classes and a few other functions that can enable us to calculate students’ letter grades (‘A’, ‘B’, ‘C’, etc)
for a course.

Task 1: Read Student Records from an Input Text File

Students and their exam information should come from a text file. The specific text file named “stu-
dent _records.txt” is given to you for this assignment. It contains information for several students enrolled
in a course eg, “CS65”. Every consecutive six lines in the text file collectively denote a student record.
The sequence of six lines denote first name, last name, major, serial number, year of entrance, and 9 exam
names and their corresponding scores. For example, the figure below shows the 3 student records consisting
of first 18 lines in the text file. Information for the 1% student is as follows: first name: “George”, last
name: “Georgakis”, major: “ACT” (acronym for Accounting), serial number: 1000, year of entrance:

2018, and exam names and scores: “al, 60, a2, 55, a3, 60, 11, 60, 12, 60, 13, 70, ql, 80, g2, 90, q3, 100”.

George

student_scores.txt

ACT

1000

2018

al, 60, a2, 55, a3, 60, \1, 60, 12, 60, \3, 70, ql1, 80, g2, 9@, q3, 100
Chuhua

Wang

MATH

234

2019
al, 90, a2, 95, a3, 100, 11, 99, 12, 95, 13, 100, ql, 80, g2, 99, g3, 100
Jana

Assignment 4

Given this input text file of student records, you should write a function that reads the input file and prepare
the individual student information for further processing. You should do the following steps:

Séep 1: Open the text file using the appropriate function.
Step 2: Read all the lines using the appropriate function and save them in a variable all lines.

Step 3: Process six items from all_lines iteratively and save them in variables first-name, last-name,
std_major, std_serial, std_year, scores_str. These will be used to make a student record.

Step 4: Remove an extra newline character from the end of the string (if required).

Step 5: Make the student identification number using std_-major, std_serial, and std_year. You should
call a function make_student_id(major, serial_-num, year) to accomplish this goal, which you will
be implementing in Task 2.

Step 6: Create a dictionary out of string variable scores_str. The keys of the dictionary should be exam-
names and values should be exam-scores. You should call a function make_score_dictionary(scores._str)
to accomplish this goal. Task 3 asks you to implement this function.

Step 7: Create a Student object using variables first_name, last_name, student_id, scores_dict. In order
to do so, first, you need to create a Student class, which you will be doing in Task 4.

Step 8: An instance of another class, DrakeCourse, has been created at the beginning of this function. Call
add_student() method as follows. Finish the empty body of the DrakeCourse class as described in
Task 5. Finally, this function returns object drake_course. I have provided the basic structure
of the above steps to get you up to speed, as shown below. You need to fill in the rest.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 4

Assignment 4

def read_student_records(file_name):

drake_course = DrakeCourse("CS65", 3.00, [])

student_id

make_student_id(std_major, int(std_serial), std_year)

scores_dict = make_score_dictionary(scores_str)

student_obj = Student(first_name, last_name, student_id, scores_dict)

drake_course.add_student(student_obj)

return drake_course

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Assignment 4

Task 2: Make Student Identification Number:

Write a function make_student_id(major, serial_nwm, year) with three parameters: 1) major, 2) serial_number,
3) year. The major could be “CS” or “MATH” or “ENG”, “PSY”, “ACC” etc. The second parameter is

serial-number which is an integer number. Its value should be within 0 to 9999. The third parameter year
is a string representing the incoming year eg, “2021”. This function should make a student unique iden-
tification number of the format: major-serial number-year. For example, if the input arguments major
= “CS”, serial-num = 12, year = “2021”. This function should return the output of string data type
“CS-0012-2021”. You should use string formatting, either % or .format().

def make_student_id(major, serial_num, year):
std_id = ""

return std_id

Prake

UNIVERSITY

CS65: Introduction to Computer Science 6

Assignment 4

Task 3: Make Dictionary of Exam Scores:

Write a function make_score_dictionary(scores_str) with a single parameter scores_str, which is a string
data type. This string will contain a sequence of exam-name, exam-score pairs separated by commas. This
function should create a dictionary out of this string. The key of the dictionary should be exam-name eg,
‘al’ or ‘117, ‘ql’ etc. The value of the dictionary should be the corresponding score of the exam. For example,
if the input argument scores_str = “al, 9.5, a2, 10, a3, 10, 11, 9.5, 12, 9.5, 13, 10, ql, 8, g2, 9, g3, 10”; then
this function should return the output dictionary scores_-dict = ’al’: 9.5, " a2’: 10.0, > a3’: 10.0, " 11’: 9.5, °
12’: 9.5, 713": 10.0, " ql’: 8.0, " q2’: 9.0, " gq3’: 10.0. Hint: you might find some of the string methods
useful eg, .split(), .replace(), etc

def make_score_dictionary(scores_str):
scores_dict = {}

return scores_dict

Prake

UNIVERSITY

CS65: Introduction to Computer Science 7

Assignment 4

Task 4: Student Class

A Student class defines the template for storing specific information for a student. The attributes for
Student class shouldn’t be known outside an object or shouldn’t be directly modifiable by outsiders. Recall
that attributes whose identifiers begin with a double-underscore (__) are private. Dot-operator access won'’t
work from the external object. In a nutshell, you should make sure that access to the attributes is secure
for the Student class. Write the Python code for the Student class from the following specifications.

e Attributes: It should contain the following attributes:

1. first.name. The first name of a Student object.
2. last_name. The last name of a Student object.

3. student_id. You can assume that a student identification number is a string data type. It will
have a specific format which has been described in Task 2.

4. scores_dict. A dictionary of different exam scores. The keys will be exam names (al denoting
assignment 1, [1 denoting lab 1, etc) and values will be corresponding scores. For example,
scores_dict could store a dictionary {‘al’: 10, ‘11’: 10, ‘ql’: 9} for a Student object.

Use the necessary primitive/complex data types when you define the attributes.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 8

Assignment 4

Task 4: Student Class

A Student class defines the template for storing specific information for a student. The attributes for
Student class shouldn’t be known outside an object or shouldn’t be directly modifiable by outsiders. Recall
that attributes whose identifiers begin with a double-underscore (__) are private. Dot-operator access won’t
work from the external object. In a nutshell, you should make sure that access to the attributes is secure
for the Student class. Write the Python code for the Student class from the following specifications.

e Methods: It should contain the following methods:

1. _init_(): This method should initialize all the attributes for the Student class.

2. _str_(): This method should return a string representation of an object Student class. This
method automatically gets executed when an instance of the class gets printed.

get_first name(): This method should return a Student object’s first name.

get_last_year(): This method should return a Student object’s last name.

get_std_id(): This method should return a Student object’s student identification number.

ol A O

get_scores_dict(): This method should return a Student object’s exam scores as stored in a dic-
tionary.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 9

Assignment 4

Task 5: DrakeCourse Class

A DrakeCourse class defines the template for storing specific information for a course at Drake University.
Write the Python code for the DrakeCourse class from the following specifications.

e Attributes: It should contain the following attributes:

1. course-name. The name of the course object of string data type e.g., “CS65”, “CS67”, etc.
2. credit. The credit for the course object. The data type should be float point, e.g., 3.00 or 1.00.

3. student_list. An attribute of list data type. The elements of this list are objects of the Student
class. This is an example of the Object-Oriented Programming concept called encapsulation,
where one class (i.e., DrakeCourse class) template can contain instances of another class (i.e.,
Student class) as attributes.

Use the necessary primitive/complex data types when you define the attributes.
e Methods: It should contain the following methods:

1. _init_(): This method should initialize all the attributes for the DrakeCourse class.
2. add student(): This method should add a new Student object into the list attribute student list.

3. show student_details(): This method should print the Student objects from the list attribute
student_list.

4. calculate grade(): The most important method of the entire assignment. This method should
print each Student object’s letter grade based on their exam scores. The grading rubric has been
given to you inside the code. Your task is to compute the final grade from the weighted average,
find the letter grade, and present the outputs using appropriate string formatting. You should
use string formatting, either % or .format(). If done correctly, the output should be as
follows:

Drake CS65: Introduction to Computer Science

UNIVERSITY

Assignment 4
Final output

first-name o last-name T std-id e letter-gr;;l;“" wighte;l:;core

"""" George | Georgakis | Acr-1000-2018 | o | 69.33
"""" Chuhua | wang | mATH-0234-2019 | A 93.50

----- Jana N Kosecka e mm-oooa-zozs-" A+ T 95.;;—
"""" shujon | nNaha | 1s-oo1d-208 | ¢ | 78.00
"""" pavid | crandall | cs-o089-2020 | A+ | 96.80
----- Fiona N Ryan) CS-OS?B-ZOZS-“ B o 85.00
"""" sara | schroer | esv-s991-2017 | B | es.e1
""" Alimor | meza | cs-o012-2008 | o | es.00
- Robot) Sawyer) Cs-0145-2021 F o 47.00

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Assignment 4

The basic structure of the method is shown below:

def calculate_grade(self, exam_weights, output_file=None):

for std in self.student_list:

letter_grade = ""

if weighted_score > 95:
letter_grade = "A+"

elif weighted_score >= 99 and weighted_score < 95:
letter_grade = "A"

elif weighted_score >= 80 and weighted_score < 90:
letter_grade = "B"

elif weighted_score >= 70 and weighted_score < 80:
letter_grade = "C"

elif weighted_score >= 60 and weighted_score < 70:
letter_grade = "D"

else:
letter_grade = "F"

return None

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Assignment 4

Task 6: Calculate the Grade

The main function handles the prepossessing of the texts after reading them from the input file. It has been
given to you so that you can understand how control of flow works. Pay attention to the function calls and
method calls that are happening inside the main function. The most important method call is in the last
line drake_course.calculate_grade(exam weights, output_file = output_file). Since it is a method of the
DrakeCourse class, you should fill in the missing parts inside that class.

def main():

is_write_file = False
exam_weights = {'assignment':0.4, 'lab':0.3, 'quiz':0.3}

drake_course = read_student_records(''student_scores.txt")

drake_course.show_student_details()

output_file = None
if (is_write_file == True):
output_file = open("student_grade.txt", 'w')

drake_course.calculate_grade(exam_weights, output_file=output_file)

Prake

UNIVERSITY

CS65: Introduction to Computer Science 13

Topics

* Final Exam Review

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Topics

 Final exam 1s 20% of your total grade

Grading and requirements:
e Programming Assignments (25%). Homework programming activities.
e Labs (20%). Completing programming activities during class.
Quizzes (10%). true/false, fill in the blanks, etc.
Midterm \/l.’)%} Paner hased exam midway throngh the semester
Final (20%). Paper based exam by the end of the semester.
Final project (10%). Your proposed group project (2-3 members).

* Format will be very similar to the midterm exam
= True/False
= Fill in the gaps
= Finding outputs of given Python programs
= Writing a Python program of a given problem
= 3-4 problems (unlike midterm which had only one problem solving challenge)

Prake

UNIVERSITY

CS65: Introduction to Computer Science 15

Topics

* Variables, expression
* Functions
* Scope for local and global variables

* Boolean type and boolean expression

- Selection statements are useful for branching inside your program
- If
= [f-else
= If-elif-...else

* The while loop

» The for loop to solve a repetitive task
= Value for loop
= Index for loop
= Nested for loop

Prake

UNIVERSITY

CS65: Introduction to Computer Science 16

Topics

* String methods
* String formatting: with % operator or with format()

* List manipulation
= Adding
= Updating
= Removing

* Tuple

* Dictionary manipulation
= Adding
= Updating
= Removing
- [terating through dictionary elements

* Dictionary methods

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Topics

* File I/O operations

= Different modes: reading, writing, appending
= Different methods: read(), readline(), readlines(), write()
= Different ways of opening a file

* Class and Objects
* Difference between the two
* Class attributes and methods
* Object manipulation
* Accessing attributes
* Accessing methods
* Secure access VS Insecure access

- Exceptions

Prake

UNIVERSITY

CS65: Introduction to Computer Science 18

