CS65: Introduction to
Computer Science

Errors and Exceptions

Prake

UNIVERSITY

Md Alimoor Reza
Assistant Professor of Computer Science

Announcement

* Final Exam

Final Exam
Week 16 (Tue: 05/10) Tuesday 5/10/2022 (9:30 AM - 11:20 AM)
Collier-Scripps Hall, C-S 0301

* Quiz 6 (Last one)
* Thursday 04/28/22
* Topics: Classes/Objects

- Final Project Presentations
* Tuesday: 05/03/22

* Thursday: 05/05/22
- Who wants to volunteer for Tuesday’s presentation?

Prake

UNIVERSITY

CS65: Introduction to Computer Science 2

Topics

- Exception: action taken outside of the normal flow of control
because of errors or unacceptable conditions

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Exceptions

* Errors that crash your program
* Incorrect syntax
- value issues
* division with zero

- Avoiding these errors requires us to explicitly handle them

* Try-except block: Try some code, if an exception occurs
then run except block instead of crashing

» Reference: https://docs.python.org/3 4/tutorial/errors.html

Prake

UNIVERSITY

CS65: Introduction to Computer Science

https://docs.python.org/3.4/tutorial/errors.html

Exceptions

* Errors that crash your program

- Try-except block: Try some code, 1f an exception occurs then run
except block instead of crashing

- Two options:
- Continue executing the codes beyond the try-except block
* Run a loop around it to allow the user to correct it

Prake

UNIVERSITY

CS65: Introduction to Computer Science 5

Try-Except Block

(" N

try:

<< code that might create an exception. In that case the execution of this code
stops and jumps to the except block >>

except:

\\‘¥<< when an exception occurs, this code is executed >> 44/}

else:

<< code that runs when exception does not occur >>
finally:

<< code that always run regardless of the occurrence of an exception or not >>

Prake

UNIVERSITY

CS65: Introduction to Computer Science 6

Example: Without Try-Except Block

def main():
num = input("Enter a number: ")
num = float(num)

print("The square of the number user entered is: ", numxnum)

return None

main()

Enter a string instead of a number and see what happens

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Example: Try-Except-Else Block

def main():

try:
input(“Enter a number: ")

float(num)

except:

print("User failed to enter a number ... ")

else:
print("The square of the number is: ", numknum)

return None

main()

Enter a string instead of a number and see what happens

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Example: Try-Except-Else-Finally Block

1
2
© def main():
4
5
6 try:
7 num = float(input("Enter a number: ")) +
8 print("Use entered a number ... ")
9
10 except:
11
12 print("Use failed to enter a number ...") +
13
14 else:
15
16 print("The square of the number user entered is: ", numknum)
17
18 finally:
19
20 print("Adding 10 to the square of the number: ", numknum + 10) +
21
22
25 main()

User enters a string instead of a number

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Example: Try-Except-Else-Finally Block

1

2

© def main():

4

5 # example

6 try:

7 num = float(input("Enter a number: "))

8 print("Use entered a number ... ")

9

10 except:

11
12 print("Use failed to enter a number ...")
13

14 else:

15

16 print("The square of the number user entered is: ', numxnum)
17

18 finally:

19
20 print("Adding 10 to the square of the number: ", numknum + 10) +
21
22
23 main()

Enter a number: 10

Use entered a number ...

The square of the number user entered is: 100.0
Adding 10 to the square of the number: 110.0

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Multiple Exceptions

- Different types of exceptions in Python

IOError I/O operation fails, e.g. trying to open a non-existent file *
IndexError tried to index into a structure with a not-present index.
KeyError tried to access non-existent key in a dictionary.

NameError identifier for a name couldn't be found in scope.

SyntaxError syntax error encountered.

TypeError type error encountered, e.g. argument to built-in is of wrong type.
ValueError built-in function/operation received value of right type, but wrong

value (e.g., got a str, but it didn't represent a number)

ZeroDivisionError tried to divide by zero.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 11

Multiple Exceptions

- Different types of exceptions hierarchy in Python

BaseException

+-~- KeyboardInterrupt

+-- Exception
+-- ArithmeticError
| +-- ZeroDivisionError
+-- EnvironmentError
| +-- IOError
+-- EOFError
+-~- LookupError

+-- IndexError

+-- KeyError

NameError
SyntaxError
SystemError
TypeError
ValueError

Drake CS65: Introduction to Computer Science
UNIVERSITY

Multiple Exceptions

* Option 1:
« Catch them 1n a single ‘Except block' using them as tuples

» Option 2:
- Catch them separately in different types of ‘Except block’

Prake

UNIVERSITY

CS65: Introduction to Computer Science 13

Multiple Exceptions

- Option 1:
« Catch them in a single ‘Except block' using them as tuples

def main():

try:
num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b", 3:'c'}

print("value at {} is {}".format(key, new_dict[key]))
except (ValueError, KeyError) as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Multiple Exceptions

def main():
multiple exceptions

try:
num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b"', 3:'c'}

print("Value at {} is {}".format(key, new_dict[key]))
except (ValueError, KeyError) as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Enter a number: 50
value at 2 is b

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Multiple Exceptions

def main():
multiple exceptions

try:
num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b', 3:'c'}

print("Value at {} is {}".format(key, new_dict[key]))
except (ValueError, KeyError) as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Enter a number: 10
Recovering from exception: <class 'KeyError'>, 10

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Multiple Exceptions

def main():
multiple exceptions

try:
num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b", 3:'c'}

print("value at {} is {}".format(key, new_dict([key]))
except (ValueError, KeyError) as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Enter a number: 0
Traceback (most recent call last):
File "/Users/reza/Class and Research/drake teaching/(
main()
File "/Users/reza/Class_and Research/drake teaching/(
key = 100//num
ZeroDivisionError: integer division or modulo by zero

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Multiple Exceptions

def main():
multiple exceptions

try:
num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b', 3:'c'}

print("value at {} is {}".format(key, new_dict([key]))
except (ValueError, KeyError) as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Enter a number: 0
Traceback (most recent call last):
File "/Users/reza/Class_and Research/drake teaching/d
main()
File "/Users/reza/Class_and Research/drake teaching/(
key = 100//num
ZeroDivisionError: integer division or modulo by zero

CS65: Introduction to Computer Science

Added ZeroDivisionError in the Except Block

def main():

+H

multiple exceptions

try:
num = int(input("Enter a number: "))

key = 100//num
new_dict = {1:'a', 2:'b"', 3:'c"'}
print("value at {} is {}".format(key, new_dict[key]))

except (ValueError, KeyError(:ZgzgéivisionEEEEEI)as e:

print("Recovering from exception: {}, {} ".format(type(e), e))

main()

Enter a number: 0

Recovering from exception: <class 'ZeroDivisionError'>, integer division or moduloc by zero

Prake

UNIVERSITY

CS65: Introduction to Computer Science 19

Multiple Exceptions

* Option 1:
« Catch them 1n a single ‘Except block' using them as tuples

» Option 2:
- Catch them separately in different types of ‘Except block’

Prake

UNIVERSITY

CS65: Introduction to Computer Science 20

Multiple Exceptions

def main_different_excepts():

try: |

num = int(input("Enter a number: "))

key = 100//num

new_dict = {1:'a', 2:'b', 3:'c"'}

print("Value at {} is {}".format(key, new_dict[key]))
except ValueError as e:

print("Value issue : {} ".format(e))
except KeyError as e:

print("Key issue : {} ".format(e))
except ZeroDivisionError as e:

print("Divide by zero: {} ".format(e))

except Exception as e:

print("Generic error: {} ".format(e))

main_different_excepts()

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Multiple Exceptions

def main_different_excepts():
multiple exceptions
try:
num = int(input("Enter a number: "))
key = 100//num
new_dict = {1:'a', 2:'b', 3:'c'}
print("Value at {} is {}".format(key, new_dict([key]))
except ValueError as e:
print("Value issue : {} ".format(e))
except KeyError as e:
print("Key issue : {} ".format(e))
except ZeroDivisionError as e:
print("Divide by zero: {} ".format(e))
except Exception as e:
print("Generic error: {} ".format(e))

main_different_excepts()

Outputs for various inputs

>>> %Run exception2.py

Enter a number: 0
Divide by zero: integer division or modulo by zero

>>> %Run exception2.py

Enter a number: x
Value issue : invalid literal for int() with base 10: 'x'

>>> %Run exception2.py

Enter a number: 10
Key issue : 10

CS65: Introduction to Computer Science

22

Multiple Exceptions

 The order of multiple except block 1s important:
- act like a branch statement with multiple elif branches

- a ‘catch all’ except block is usually placed at the end of the
sequence — much like a else block

def main_different_excepts():

try:
num = int(input("Enter a number: "))
key = 100//num
new_dict = {1:'a', 2:'b', 3:'c'}
print("Value at {} is {}".format(key, new_dict[key]))
except ValueError as e:
print("Value issue : {} ".format(e))
except KeyError as e:
| print("Key issue : {} ".format(e))

. except ZeroDivisionError as e:

irint("Divide by zero: {} ".format(e))

print("Some unaccounted error occured: {} ".format(e))

main_different_excepts()

i)l'ake CS65: Introduction to Computer Science 23

UNIVERSITY

Raise Exceptions

- Raise an exceptions to capture unwanted behavior by our program.

raise Exception (<<message>>)

* Message should be a string that describes the error

- Behaves the same as any other exception

Prake

UNIVERSITY

CS65: Introduction to Computer Science 24

Multiple Exceptions

- Raised exceptions can be handled the same way as any other python
exception

def main_different_excepts():

try:
int(input("Enter a positive number: "))
int(input("Enter another positive number: "))

numl
num2

if numl <= @ or num2 <= 0:
raise Exception("Entered number must be positive.")

print("Multiplication: ", numl*num2)
print("Division: ", numl/num2)

except (ValueError, KeyError, ZeroDivisionError) as e:
print("ValueError, KeyError, ZeroDivisionError: {} ".format(e))
except Exception as e:
print("Newly raised error: {} ".format(str(e)))

main_different_excepts()

Prake

UNIVERSITY

CS65: Introduction to Computer Science 25

Prake

UNIVERSITY

Multiple Exceptions

def main_different_excepts():

multiple exceptions

try:
numl
num2

int(input("Enter a positive number: "))
int(input("Enter another positive number: "))

if numl <= 0 or num2 <= 0:

raise Exception("Entered number must be positive.')

print("Multiplication: ", numlknum2)
print("Division: ", numl/num2)

except (ValueError, KeyError, ZeroDivisionError) as e:
print("ValueError, KeyError, ZeroDivisionError: {} ".format(e))
except Exception as e:
print("Newly raised error: {} ".format(str(e)))

main_different_excepts()

Outputs for various inputs

Enter a positive number: 4
Enter another positive number: 5
Multiplication: {} 20

Division: {} 0.8

Pb>> %Run exception3.py

Enter a positive number: -1
Enter another positive number: 5
Newly raised error: Entered number must be positive.

CS65: Introduction to Computer Science

26

