
CS65: Introduction to
Computer Science

Classes and Objects

1

Md Alimoor Reza

Assistant Professor of Computer Science

2CS65: Introduction to Computer Science

Python Data Types

• Primitive data types:
• integer, floating point, boolean, etc

• Complex data types:
• Sequence (String, List, Tuple)

• Dictionary

• Custom data type:
• Class

3CS65: Introduction to Computer Science

Class: Custom Data Type

• Class is a Custom data type:
• We can create our own new types with a class definition

• Class definition is a 'blueprint' of what should be included in a

value of this type

• Same operations can be done on this custom data type:
• Can create a variable of this new type

• Change the value of the variable of this new type

• Create List or Tuple with variables of this new type

4CS65: Introduction to Computer Science

Topics

• What is a ‘Class’?

• What is an ‘Object’?

• Difference/connection between Class and Object

• Class components

• Initializer/Constructor

• Attributes

• Methods

5CS65: Introduction to Computer Science

Object Oriented Programming (OOP)

• Focus so far (up to previous lecture) has been on basic algorithmic
programming structures

• Now, we will turn our focus on how data is stored and manipulated
– Object Oriented Programming

– We will still be developing algorithms

• It’s a different way of thinking about writing code

6CS65: Introduction to Computer Science

Object Oriented Programming (OOP)

• Class is the blueprint or template for creating an object

• Object: a combination of data and associated procedures
created based on the blueprint of class

• Object Oriented Programming (OOP) is centered on
creating Objects

7CS65: Introduction to Computer Science

Object Oriented Programming (OOP)

 Cookie-cutter is a Class

 Cookies are objects

Cookies are being curved out

based on the cookie-cutter’s shape

8CS65: Introduction to Computer Science

Object Oriented Programming (OOP)
 From a blueprint of Cookie-cutter

Cookie1 , Cookie2, Cookie3,
Cookie4, Cookie5, Cookie6

are created

• Class is a blueprint or template that defines
what attribute and methods Objects can have

• Cookies are made with a Cookie-cutter —
Objects are made from a Class

• Class is a shape with which many individual
Objects can be created — in the same way
Cookie-cutter is a shape with which many
cookies can be created

9CS65: Introduction to Computer Science

Object Oriented Programming (OOP)
 From a blueprint of Dog

 Charlie and Max are created

• Class is a blueprint or template that defines
what attribute and methods Objects can have

• Charlie and Max are made from the template
of a Dog — Objects are made from a Class

• Class is a shape with which many individual
Objects can be created — in the same way Dog
is a shape with which Charlie, Max, etc can be
created

Charlie Max

Dog

10CS65: Introduction to Computer Science

Object Oriented Programming (OOP)
 From a blueprint of Car

 Fiat1 and Fiat2 are created

• Class is a blueprint or template that defines
what attribute and methods Objects can have

• Fiat1 and Fiat2 made with a Car — Objects
are made from a Class

• Class is a shape with which many individual
Objects can be created — in the same way Car
is a shape with which Fiat1 and Fiat2 can be
created

Fiat1 Fiat2

Car

11CS65: Introduction to Computer Science

Object Oriented Programming (OOP)

 From a blueprint of Car

 Mercedes, BMW and Audi are created

12CS65: Introduction to Computer Science

Object Oriented Programming (OOP)
 From a blueprint of House

 Sweet Home and Corporate Home are created

• Class is a blueprint or template that defines
what attribute and methods Objects can have

• Sweet Home and Corporate Home are made
with a House template — Objects are made
from a Class template

• Class is a shape with which many individual
Objects can be created — in the same way
House is a shape with which Sweet Home and
Corporate Home can be created

Sweet Home Corporate Home

House

13CS65: Introduction to Computer Science

Object Oriented Programming (OOP)
• Object Oriented Programming (OOP) is centered on creating Objects

– Object: a combination of data components and associated
procedures/functions

• Data components are called attributes or fields
• Procedures/functions are called methods

• A class is the blueprint of an object

– Defines attributes/fields and methods associated with an object

– Classes are useless without objects

• These concepts lead to easily developing code that can be reusable

14CS65: Introduction to Computer Science

Class and Object

• Class - a custom data type

• Object - an “instance” of a class

• Analogy:

• [15, 16, 17] is value of List type

• “Computer Science” is value of String type

• 100.2345 is value of Float type

• Mercedes is an instance of Car Class type

• Charlie is an instance of Dog Class type

15CS65: Introduction to Computer Science

Class

• Class: code that specifies the attributes and methods of a
particular type of object

– Similar to a blueprint of a house or a cookie cutter

• Instance: an object (a variable) created from a class

– Similar to a specific house built according to the blueprint

or a specific cookie

– There can be many instances of one class

• Objects are interchangeably called instances

16CS65: Introduction to Computer Science

Class Definition

• Class definition: set of statements that define a class’s methods
and data attributes

– Format: begin with class ClassName:
• Use class keyword

• Class names often start with uppercase letter

– Method definition like any other python function definition

• self parameter: required in every method in the class –

references the specific object that the method is working on

17CS65: Introduction to Computer Science

Class definition (initializer method)

• Initializer method: automatically executed when an instance of
the class is created. It is also known as constructor

– Initializes object’s attributes and assigns self parameter to the
object that was just created

– format: def __init__(self):

– usually the first method in a class definition

18CS65: Introduction to Computer Science

• __str__ method:

• automatically executed when an instance of the class is printed

• __str__ method should return a string

• when the object is printed, the contents of the __str__ method

will be output

Class definition (__str__ method)

19CS65: Introduction to Computer Science

Example: Dog Class
• Initializer (also known as ‘constructor’) method name is __init__
• Heads up: double underscores on both sides (__init__)
• Must have at least one first formal parameter self
• May have more parameters beside self
• Primary task is to define attributes of the class

class Dog:

def __init__(self, par_name, par_color, par_breed):

self.name = par_name

self.color = par_color

self.breed = par_breed

def __str__(self):

str_var = "Dog (" + self.name + ", " + self.color + ",
" + self.breed + ")"

return str_var

20CS65: Introduction to Computer Science

• Object: a combination of data components and associated procedures
– data components are called attributes or fields
– functions are called methods

• The keyword self tells Python that the variable following the period
(.) references a particular attribute of the defined class

– Example: in the Dog class, self.name, self.color, self.breed

Class definition

21CS65: Introduction to Computer Science

• To create a new ‘instance of a class’ (a.k.a knows as object) call the
initializer method

– Format: my_instance = ClassName(arg1, arg2)

• To call any of the methods with the created instance, use dot notation

– Format: my_instance.method()

– Because the self parameter references the specific instance of the

class, the method will affect that instance only

• Reference to self is passed automatically

Object Instantiation

22CS65: Introduction to Computer Science

Example: Dog Class
• Class definition

class Dog:

def __init__(self, par_name, par_color, par_breed):

…

…

…

• Create an instance charlie_obj (an object) from the Dog class template

charlie_obj = Dog(“Charlie”, “yellow”, “golden retriever”)

• This calls the __init__ definition of the class Dog

• Note that self parameter seems to have been supplied some other way

23CS65: Introduction to Computer Science

Example: Dog Class
• Class definition

class Dog:

def __init__(self, par_name, par_color, par_breed):

self.name = par_name

self.color = par_color

self.breed = par_breed

def __str__(self):

str_var = "Dog (" + self.name + ", " + self.color + ",
" + self.breed + ")"

return str_var

• Create an instance charlie_obj (an object) and max_obj (another
object) from the Dog class template

charlie_obj = Dog(“Charlie”, “yellow”, “golden retriever”)

max_obj = Dog(“Max”, “brown”, “golden retriever”)

24CS65: Introduction to Computer Science

Example: Dog Class
• Class definition

class Dog:

def __init__(self, par_name, par_color, par_breed):

self.name = par_name

self.color = par_color

self.breed = par_breed

• Create an instance charlie_obj (an object) from the Dog class template

charlie_obj = Dog(“Charlie”, “yellow”, “golden retriever”)

max_obj = Dog(“Max”, “brown”, “golden retriever”)

• Each object is an instance of the class, hence each variable that exists
inside the object is called instance variable:

• charlie_obj has its own name, its own color, and its own breed

• max_obj has its own name, its own color, and its own breed

25CS65: Introduction to Computer Science

Exercise: Create Person Class
• Class definition

class:

…

…

…

• Create an instance reza_obj (an object) from the Person class template

• Create an instance chris_obj (an object) from the Person class template

• Each object is an instance of the class, hence each variable that exists
inside the object is called instance variable:

• reza_obj has its own ?, its own ? and its own ?

• chris_obj has its own ?, its own ? and its own ?

26CS65: Introduction to Computer Science

Exercise: Create Car Class
• Class definition

class:

…

…

…

• Create an instance bmw_obj (an object) from the Car class template

• Create an instance mercedes_obj (an object) from the Car class template

• Create an instance audi_obj (an object) from the Car class template

27CS65: Introduction to Computer Science

Exercise: Create House Class
• Class definition

class:

…

…

…

• Create an instance sweet_home_obj (an object) from the House class

• Create an instance corporate_home_obj (an object) from the House class

28CS65: Introduction to Computer Science

Summary: Classes and Objects

• Step 1: Class definition (blueprint)

- Class definition tells Python how the new data type works.

• Step 2: Object instantiation (creation)

- An object must be instantiated (created) from the class definition,
to fill in instance variables, before it can be used. 

• Step 3: Object manipulation (use)

- Once object exists, we can read/write its data (access its attributes
or fields), and use its behaviors (call its methods).

