
CS65: Introduction to
Computer Science

Midterm Review
Quiz 3

1

Md Alimoor Reza
Assistant Professor of Computer Science

Midterm Exam

2CS65: Introduction to Computer Science

• Grading policy:

• Grading scale:

3CS65: Introduction to Computer Science

• Variables, expression
• Functions
• Scope for local and global variables

Topics

• Boolean type and boolean expression
• Selection statements are useful for branching

inside your program
• if
• if-else
• if-elif-…-else

• Sequence
• String
• List

• The while loop
• The for loop to solve a repetitive task

• Value for loop
• Index for loop
• Nested for loop

Variables

4CS65: Introduction to Computer Science

• Variable is a named storage space in computer memory for
one Python value

• Either we can write a value into a variable
• Or we can read the value stored in that variable

• time_sec, temp_degree, miles_to_kilometer are variables

Variable and assignment operator

5CS65: Introduction to Computer Science

• Need to use assignment operator (=) to store a value

• Location of assignment on the left

• Single value or some calculated value on the right

• variable_name = value

Numbers Textual data

Rules for Variable Naming

6CS65: Introduction to Computer Science

• Give meaningful variable name to make it easily readable

 Vs

• Name should begin with a lowercase letter

• Use underscore to connect multiple words

• Vs

Rules for Variable Naming

7CS65: Introduction to Computer Science

• Names can only contain letter, numbers, and underscores

• First character must be a letter or an underscore
• Then use letter/numbers/underscore

• Cannot be a Python keyword

• Cannot contain spaces

• Variable names are case sensitive
• Uppercase and lowercase name will signify different

variable

Expression

8CS65: Introduction to Computer Science

• A fragment of Python code that calculates a new value
called an expression

• For example, you can convert miles into meters using the
following expression:

Functions

9

• Function is a sequence of statements that performs a specific task
— also called a subroutine

• Decompose a bigger task with the help of several smaller subtasks

CS65: Introduction to Computer Science

Arrange an
Eurotrip

Buy a plane
ticket

Travel to the
departing

airport

Finish the air
travel

Depart the
destination

airport

You can write a python function
for individual subtask!

Why should you use Functions?

10

• Decompose a bigger task with the help of several smaller subtasks

• Code becomes more modular and manageable
• Imagine, you have to write the same calculations over and

over again eg 100 times!

• Code for a subtask can be reusable

• Individual member in a team can write different functions

• Improves code readability

CS65: Introduction to Computer Science

Functions

11CS65: Introduction to Computer Science

• Function is a sequence of statements that performs a specific task

• Define a function once
• formula or template to solve a task with a series of statements
• definition doesn’t do anything unless it is called

• Call function as many times as you like & receive return values
• supply a matching signature to invoke an already defined function

• Two types of functions:
• User-defined function

• you define then call it
• Built-in function

• it is already out there, just call.

12CS65: Introduction to Computer Science

• User-defined functions
• defining function: what statements it will execute
• calling function: invoke/execute the defined body

Super Important (User-defined function):
function defining vs function calling

Define a Function with no Parameters

13CS65: Introduction to Computer Science

• def name_of_the_function() :

statement 1
statement 2
…
statement 100
return expression

• name_of_the_function: a meaningful name denoting the task with a preceding def keyword

• statements: a sequence of python instructions to be executed followed by an optional return
keyword with expression(s)

• without a return statement function implicitly returns None

• Notice: indention (eg, tab) is required to define a function and also notice at the end of the
condition expression there is a colon

 This line is called function header

Define a Function with Parameters

14CS65: Introduction to Computer Science

• def name_of_the_function(param1, param2, …, param4) :

statement 1
statement 2
…
statement 100
return expression

• Add a number of parameters as required for your task:

• Parameters are variables used to exchange values during function call

• Values are mapped to parameters each time the function is called

• Parameters are not available outside the function

 Parameters

User defined function example

15CS65: Introduction to Computer Science

 Watch out for these items!

Calling a Function

16CS65: Introduction to Computer Science

• name_of_the_function(argument1, argument2, …, argument4)

• Function calling name should match function definition name

• Use values, expression, or variables to the parameters of the function

• arguments should match parameters: one-to-one mapping

• When you call the function the execution gets transferred to the statements inside the
function definition

 Parameters Arguments

 Defining a function Calling a function

Calling with values

17CS65: Introduction to Computer Science

 Defining a function

 Calling a function

Calling with variables

18CS65: Introduction to Computer Science

Calling the same function
with variables

Calling a function multiple times

19CS65: Introduction to Computer Science

Calling the function
multiple times

Built-in function

20CS65: Introduction to Computer Science

• Built-in function in Python input(“….”)
• Step 1: displays the prompt to the user
• Step 2: waits for user to type in something
• Step 3: returns the typed content when user hits enter
• Step 4: this value is stored if assigned to a variable

Built-in function examples

21CS65: Introduction to Computer Science

• You do not need to define the function; just call it
• We have already used 3 built-in functions:

• print()

• int()

Other built-in functions

22CS65: Introduction to Computer Science

• If you want to use not so commonly available built-in
functions, those built-in functions need to be imported using
import keyword from a library

• library also called a module

• Import the module before using it usually at the top of your
python file

• Call function using module_name . function_name

Module

23CS65: Introduction to Computer Science

• Formally, a module is a component containing Python functions,
variables or class

• Each python file (with *.py) is a module

• They need to be imported from a module using import
• Several ways of importing module components

https://docs.python.org/3/tutorial/modules.html

https://docs.python.org/3/tutorial/modules.html

Module import variations

24CS65: Introduction to Computer Science

https://docs.python.org/3/tutorial/modules.html

Explicitly need to use math.pi or math.sin

 Directly access pi or sin

 Directly access pi and sin but nothing else

Directly access pi sin and cos (in a single
import line) but nothing else

https://docs.python.org/3/tutorial/modules.html

25CS65: Introduction to Computer Science

Random number generation

• Steps for generating a random number are as follows:

• Step 1: Import the random module
• Step 2: Generate a random number (eg, an integer number) between

a range of values denoted by a lower_range and an upper_range
• For example, in order to generate a random integer between

lower_range of 1 and upper_range of 10, we need to do the
following:

Local and global variables

26CS65: Introduction to Computer Science

• Local variables:
• Variables declared 1) inside function 2) function parameters
• Only visible to the defined function

• Global variables:
• Variables that are defined outside of user defined functions
• Can be accessed by any function after creation
• Global variable can be replaced/hidden by local variable if

declared with the same name

Scope: local and global variables

27CS65: Introduction to Computer Science

• Global variables:
• Variables that are defined outside of user defined functions
• Can be accessed by any function after creation
• Global variable can be replaced/hidden by local variable if

declared with the same name

Scope: local and global variables

28CS65: Introduction to Computer Science

• Global variables:
• Variables that are defined outside of user defined functions
• Can be accessed by any function
• Here values of global variables are copied to the parameters

during function call

 Global variables

29CS65: Introduction to Computer Science

• Scope resolution: Mechanism of searching for a name, e.g.,
variable or function

• Step 1: search the referenced name in the local scope. If not found, then
go to step 2

• Step 2: search the referenced name in the global scope. If not found,
then go to step 3

• Step 3: If searched name is not found in either step 1 or step 2, then
search in the built-in scope

• Step 4: If not found in the above steps, then interpreter generates an
Error message

Scope: local and global variables

Global variables

30CS65: Introduction to Computer Science

• Global variables are defined outside of user defined functions
or they can be introduced by the global statement

• As you have noticed by now, they can be source of confusion
• Name clashing
• Order of their definitions matter

• Use of global variables is not recommended, better to avoid or
at least minimize their usage

• If you need to use eg, some constants, then declare them using
capital letters

31CS65: Introduction to Computer Science

• Variables, expression
• Functions
• Scope for local and global variables

Topics

• Boolean type and boolean expression
• Selection statements are useful for branching

inside your program
• if
• if-else
• if-elif-…-else

• Sequence
• String
• List

• The while loop
• The for loop to solve a repetitive task

• Value for loop
• Index for loop
• Nested for loop

32CS65: Introduction to Computer Science

• Notion of something being true and being false —
represented with two ‘bool’ data types:
• True
• False

• Allows us to evaluate true or false questions — in real life,
we always encounter question with Yes or No answer

• Logical and comparison operators:
• Boolean expression with logical operator (and, or, not)
• Boolean expression with comparison operator (<, <=, >, ==, etc)

‘Bool’ Data Type

33CS65: Introduction to Computer Science

• Expressions that are evaluates to two ‘bool’ types

• Operations with logical operators — and/or/not

• and – given two boolean, are both True? answer is True
 boolean expression1 and boolean expression2

• or – given two booleans, at least one is True? answer is True
 boolean expression1 or boolean expression2

• not – given a boolean expression, switch between True/False
 not boolean expression

Boolean Expression

34CS65: Introduction to Computer Science

• expression1 and expression2 expression1 or expression2

x y
False False
False True
True False
True True

not expression

x and y
False
False
False
True

x y
False False
False True
True False
True True

x or y
False
True
True
True

x
False
True

not x
True
False

Logical Operators

35CS65: Introduction to Computer Science

• We can write expression that evaluates to boolean with
other comparison operators

• Compare two values or check something

Description Example
Less than 2 < 15
Greater than 2 > 15
Less than or equal 2 <= 15
Greater than or equal 2 >=15
Equality check 2 == 15
Inequality check 2 != 15

Result
True
False
True
False
False
True

Comparison Operators

36CS65: Introduction to Computer Science

• expression1 and expression2

X Y
2 < 15 2 >=15
3 < 15 2 ==15
3 < 15 15 == 15

16 > 15 2 != 15

X and Y
False
False
True
True

More Boolean Expressions

37CS65: Introduction to Computer Science

• Program taking one path or branch of the code instead of taking another, based
on the boolean expression’s value

• This feature allows to ask true/false questions in the code. Depending on the
boolean answer (True or False), the program will execute a specific branch

Feel hungry

Today == Friday

Lunch at the
Hubbell dining

Starbucks at Olmsted

Eat lunch

True False

Selection Statements

38CS65: Introduction to Computer Science

• if <condition expression> :

<block statements>

• condition expression: a boolean expression

• block statements: statements to be executed if result of the condition
expression is True

• Notice: indention is required to define a block statements and also notice a
colon at the end of the condition expression

‘if’ statement

39CS65: Introduction to Computer Science

User input

num==5

“Wins
lottery”

“Try again”

“Thank you”

True False

‘if … else’ Statement

40CS65: Introduction to Computer Science

• We may need to branch in more than two
directions — multiple selection

• Can have nested if-statement

• Keyword elif (short for ‘else if’) introduces
a new structure

• Blocks with multiple elif conditions
structures are referred to as mutually
exclusive structures.

Feel hungry

Today == Friday

Lunch at the
Hubbell dining

Starbucks at Olmsted

Eat lunch

True False

Multiple Selections

41CS65: Introduction to Computer Science

User input

num < 5

“Too cold”

“Thank you”

True False

num==5

“Goldilocks
Condition”

True False

“Too hot”

Multiple Selections

42CS65: Introduction to Computer Science

• We can have multiple if blocks but they are not disconnected

• We can have multiple nested if-elif-else blocks

Super Important: Multiple Selections

43CS65: Introduction to Computer Science

• Variables, expression
• Functions
• Scope for local and global variables

Topics

• Boolean type and boolean expression
• Selection statements are useful for branching

inside your program
• if
• if-else
• if-elif-…-else

• Sequence
• String
• List

• The while loop
• The for loop to solve a repetitive task

• Value for loop
• Index for loop
• Nested for loop

44CS65: Introduction to Computer Science

• Sequence is an ordered group of elements (numbers, characters, etc)

• String is a sequence of characters
• “Drake University”
• “cs65:introduction_to_computer_science!”

• Each position in a sequence is marked with an index or position
• Starts (from left) at position 0 and ends at position (length-1)
• Start indexing from the left to right

Sequence: Strings

D r a k e U n i v e r s i t y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

45CS65: Introduction to Computer Science

Summary: Indexing

H i t h e r e !

0 1 2 3 4 5 6 7 8

-9 -8 -7 -6 -5 -4 -3 -2 -1

 More common usage

46CS65: Introduction to Computer Science

• How can you find the length of a string?
• Use built-in len() function

Length of a Sequence

47CS65: Introduction to Computer Science

• Use variable_name[index] access an item in a sequence

Accessing items with index

48CS65: Introduction to Computer Science

• Sequence is an ordered group of elements (numbers, characters, etc)

• String is a type of sequence whose members are characters
• “Drake University”
• “cs65:introduction_to_computer_science!”

• List is another type of sequence whose members can be numbers,
strings, or even another list!
• [“Drake University”, “hello”, “world”]
• [1, 2, 3, 4, 5]
• List will be discussed in greater detail in a separate lecture

Sequence: List

49CS65: Introduction to Computer Science

Random Number

• Random numbers are useful several programming tasks:

• Simulating a coin toss — random flipping of head or tail
• Simulating a dice roll — random roll of one of six sides
• Simulating a card shuffling from 52 cards

• Python provides library to generate random numbers
• Like math module or graphics module, you can import random

module to get access to random number generating functions

50CS65: Introduction to Computer Science

Syntax for while Loop

• while <condition expression> :

<block statements>

• condition expression: a boolean expression

• block statements: statements to be executed
if result of the condition expression is True

• Unlike if statement, the <block statements>
will repeatedly be executed until the
<condition expression> becomes False

Condition
Expression

block
statements

Code below
the loop

True

False

51CS65: Introduction to Computer Science

The while Loop

• Section of code that repeats — designed to solve a repetitive task
• decrease the value of a variable by 1 until it becomes negative

52CS65: Introduction to Computer Science

The while Loop

• Infinite loop: section of code that repeats forever
• The condition expression should be designed carefully so that the loop

terminates after a certain number of iterations

What will happen?

53CS65: Introduction to Computer Science

The while Loop

• The index variable can be updated (decreased) with a shorthand:

54CS65: Introduction to Computer Science

The while Loop

• The index variable can be updated (increased) with a shorthand:

55CS65: Introduction to Computer Science

• for variable in [1, 2, …, 5] :
statements

• Statements will be repeated sequentially from first to last item in
a sequence (here it will be repeated 5 times since there are 5
numbers in the List)

• Iteration 1: variable will be assigned 1
• Iteration 2: variable will be assigned 2
• …
• Iteration 5: variable will be assigned 5

Syntax for value for loop

56CS65: Introduction to Computer Science

Summary: value for loop

57CS65: Introduction to Computer Science

Summary: value for loop visualization

12 13 14 15 16
variable

12 12 13 14 15 16

13 13 14 15 16

14 14 15 16

15 15 16

16 16

Empty Full

Empty with a value

58CS65: Introduction to Computer Science

Summary: range() function

• The range() function simplifies the process of for loop writing
• Creates a sequence of numbers on the fly
• These numbers can be used to index the sequence

59CS65: Introduction to Computer Science

• So far we have seen the syntax of value for loop

for var in [10, 20, 30, 40, 50] :
print(var)

• There is another form called index for loop

my_list = [10, 20, 30, 40, 50]
length = len(my_list)
for i in range(length) :

print(my_list[i])

Value for loop vs Index for loop

common practice is to name the
index variables with i, j, or k

60CS65: Introduction to Computer Science

Try to finish the exercises shown in class

• Write a loop that will print ‘*’ 5 times.
• Write a loop that will print ‘*’ 10 times.
• Write a loop that will print ‘*’ N times (prompt the user to enter this

number)
• Find the sum of all the numbers from 1 to max_num

• eg, 1 + 2 + 3 + 4 + 5 = 15
• use for loop to do this

• Find the average of these numbers

61CS65: Introduction to Computer Science

Try to finish the exercises shown in class

• Finding a number (prompt the user to enter that number) in a given
list of number

62CS65: Introduction to Computer Science

Try to finish the exercises shown in class
• Counting how many times a number (prompt the user to enter that

number) appears in a given list.

63CS65: Introduction to Computer Science

Try to finish the exercises shown in class
• Finding the location of given a number (prompt the user to enter

that number) in a given list.

• Finding the maximum number in a given list.
• Finding the maximum number in a given list.

64CS65: Introduction to Computer Science

 Nested for loops

• Putting one loop inside another
• The first loop is called the outer loop
• The second loop is called the inner loop

for i in range(3):
for j in range(3):

print(“i: ”, i, “j: ”, j)

65CS65: Introduction to Computer Science

 Visualization of nested for loop

i 0 j 0
i 0 j 1
i 0 j 2

i 1 j 0
i 1 j 1
i 1 j 2

i 2 j 0
i 2 j 1
i 2 j 2

66CS65: Introduction to Computer Science

Thonny output: nested for loop

Comments

67CS65: Introduction to Computer Science

• Comments are notes explaining the functionality of your
computer program (source code)

• Python comments are denoted with
• # for a single line
• triple quotes (either ‘ or “) for multiple lines

• Other languages eg, C++ has different syntax

