CS65: Introduction to
Computer Science

Midterm Review
Quiz 3

Prake

UNIVERSITY

Md Alimoor Reza
Assistant Professor of Computer Science

Midterm Exam

* Grading policy:

e Programming Assignments (25%). Homework programming activities.
e Labs (20%). Completing programming activities during class.

o Quizzes (10%). true/false, fill in the blanks, etc.

o Midterm (15%). Paper based exam midway through the semester.)
e Final (20%). Paper based exam by the end of the semester.

e Final project (10%). Your proposed group project (2-3 members).

* Grading scale:

A (93%-100%) o A- (90%-92.9%) e B+ (87%-89.9%)
B (84%-86.9%) e B- (80%-83.9%) e C+ (77%-79.9%)
C (74%-76.9%) e C- (70%-73.9%) e D (60%-69.9%)

F (0%-59.9%)

CS65: Introduction to Computer Science

Topics
* Variables, expression

* Functions
* Scope for local and global variables

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Variables

* Vaniable 1s a named storage space in computer memory for
one Python value

- Either we can write a value into a variable
* Or we can read the value stored in that variable

time_sec = 60
temp_degree = 27

mile_to_kilometer = 1.609
price_in_dollars = 1500.89

* time_sec, temp_degree, miles_to_kilometer are variables

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Variable and assignment operator

* Need to use assignment operator (=) to store a value

* Location of assignment on the left

- Single value or some calculated value on the right

 variable name =

time_sec = 60
temp_degree = 27

mile_to_kilometer =
price_in_dollars =

first_name
last_name

1500.89

Numbers

Prake

UNIVERSITY

= "Md Alimoor"
""Reza"

Textual data

CS65: Introduction to Computer Science 5

Rules for Variable Naming

- Give meaningful variable name to make it easily readable

X = 1.609 Vs mile to_kilometer = 1.609

- Name should begin with a lowercase letter

* Use underscore to connect multiple words

milestokilometer = 1.609 ‘
MilesToKilometer = 1.609 Vs mile_to_kilometer = 1.609
milesToKilometer = 1.609

Drake :

Rules for Variable Naming

- Names can only contain letter, numbers, and underscores

 First character must be a letter or an underscore
* Then use letter/numbers/underscore

» Cannot be a Python keyword

and del from
as elif global
assert else if
break except import

class exec in
continue finally is
def for lambda

- Cannot contain spaces

not while
or with
pass yield
print

raise

return

try

* Variable names are case sensitive

- Uppercase and lowercase name will signify different

variable

Prake

CS65: Introduction to Computer Science
UNIVERSITY

Expression

- A fragment of Python code that calculates a new value
called an expression

* For example, you can convert miles into meters using the
following expression:

num_of_miles = 10
miles_to_kilometer = 1.609

num_of_meter = num_of_mileskmiles_to_kilometerx1000

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Functions

- Function is a sequence of statements that performs a specific task
— also called a subroutine

* Decompose a bigger task with the help of several smaller subtasks

Arrange an

Eurotrip

Travel to the
departing
airport

Depart the
destination
airport

Finish the air
travel

Buy a plane
ticket

You can write a python function
for individual subtask!

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Why should you use Functions?

* Decompose a bigger task with the help of several smaller subtasks

* Code becomes more modular and manageable
- Imagine, you have to write the same calculations over and
over again eg 100 times!

* Code for a subtask can be reusable

* Individual member in a team can write different functions

- Improves code readability

Prake

UNIVERSITY

CS65: Introduction to Computer Science 10

Functions

- Function is a sequence of statements that performs a specific task

* Define a function once
* formula or template to solve a task with a series of statements
* definition doesn’t do anything unless it is called

- Call function as many times as you like & receive return values
* supply a matching signature to invoke an already defined function

* Two types of tunctions:

* User-defined function
* you define then call it
* Built-in function
* it is already out there, just call.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 11

Super Important (User-defined function):

function defining vs function calling

» User-defined functions
- defining function: what statements it will execute
- calling function: invoke/execute the defined body

Prake

UNIVERSITY

CS65: Introduction to Computer Science

12

Define a Function with no Parameters

def name_of_the_function() : C This line is called function header D

statement 1
statement 2

statement 100
return expression

- name_of_the_function: a meaningful name denoting the task with a preceding def keyword

 statements: a sequence of python instructions to be executed followed by an optional return
keyword with expression(s)

+ without a return statement function implicitly returns None

 Notice: indention (eg, tab) is required to define a function and also notice at the end of the
condition expression there is a colon

Drake CS65: Introduction to Computer Science 13

UNIVERSITY

Define a Function with Parameters

def name_of _the_function(param;, paramo, ..., paramy) :

statement 1

statement 2
Parameters

statement 100
return expression

* Add a number of parameters as required for your task:
* Parameters are variables used to exchange values during function call
* Values are mapped to parameters each time the function is called

* Parameters are not available outside the function

Drake CS65: Introduction to Computer Science 14

UNIVERSITY

Prake

UNIVERSITY

User defined function example

def add _numbers(numl, num2):

numl + num2
sum

Watch out for these items!

lO sum =
return
Shell
>>>a=1
>>> b = 2

>>> res = add_numbers(a, b)
>>> print("sum of", a, " and", b, ":",res)

sumof 1 and 2 :

1

CS65: Introduction to Computer Science

Calling a Function

« name_of_the_function(argument;, argument,, ..., argumenty)
C Definingafunction) C Calling a function)
Shell
def add_numbers(numl, num2): >>> resl = add_numbers(1, 3)

sum = numl + num2 >>> resl
return sum >>> resl

add_numbers(100}K5)
add_numbers (50000)\ 123)

e P> s
k Parameters J k Arguments

« Function calling name should match function definition name

« Use values, expression, or variables to the parameters of the function
« arguments should match parameters: one-to-one mapping

« When you call the function the execution gets transferred to the statements inside the
function definition

Prake

UNIVERSITY

CS65: Introduction to Computer Science 16

Calling with values

WN =

oW

0 ~J

10
11
12
13
14
15
16

20

def

def

def

def

Defining a function

add_numbers (numl, num2):

sum = numl + num2

print("add function: called with numl=%d num2=%d and res=%d"%(numl,num2, numl+num2))
return sum

sub_numbers(numl, num2):

sub = numl - num2

print("subtract function: called with numl=%d num2=%d and res=%d'%(numl,num2, numl-num2))
return sub

mul_numbers(a,b):

return
div_numbers(a,b):

Calling a function
return

>>>

Shell

“”,/”ff

>>> sub = sub_numbers(10, 4)
subtract function: called with numl=10 num2=4 and res=6
>>> print("result of subtraction from %d to %d is %d'"%(10,4, sub))

result of subtraction from 10 to 4 is 6

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Calling with variables

def add_numbers(numl, num2):
sum = numl + num2
print("add function: called with numl=%d num2=%d and res=%d'"%(numl,num2, numl+num2))
return sum

def sub_numbers(numl, num2):
sub = numl - num2

print("subtract function: called with numl=%d num2=%d and res=%d"%(numl,num2, numl-num2))
return sub

;3 def mul_numbers(a,b):

i; return
22 def div_numbers(a,b): Calling the same function
i return with variables

Shell

>>»> a = 10

>>> b = 4
>>> sub = sub_numbers(a, b)

subtract function: called with numl=10 num2=4 and res=6

>>> print("result of subtraction from %d to %d is %d"%(a,b, sub))

result of subtraction from 10 to 4 is 6

Drake CS65: Introduction to Computer Science

UNIVERSITY

Calling a function multiple times

def add_numbers(numl, num2):
sum = numl + num2

1 print("add function: called with numl=%d num2=%d and res=%d'%(numl,num2, numl+num2))
return sum

el

i

def sub_numbers(numl, num2):

15 sub = numl - num2

16 print("subtract function: called with numl=%d num2=%d and res=%d"%(numl,num2, numl-num2))
7 return sub

Calling the function

Shell . .
multiple times

result of subtraction from 10 to 4 is 6

>>>

>>>
>>> subl = sub_numbers(10, 4)

subtract function: called with numl=10 n and res=6

>>> sub2 = sub_numbers(10, 5)
subtract function: called with numl=10 n S and res=5

>>> sub3 = sub_numbers(10, 6)

subtract function: called with numl=10 num2=6 and res=4

=222

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Built-1in function

* Built-in function in Python input(“....”)
- Step 1: displays the prompt to the user
- Step 2: waits for user to type in something
- Step 3: returns the typed content when user hits enter
- Step 4: this value is stored if assigned to a variable

rect_a = input("enter the length of rectangle side a: ")
print(rect_a)

Prake

UNIVERSITY

CS65: Introduction to Computer Science

20

Built-in function examples

* You do not need to define the function; just call it
* We have already used 3 built-in functions:

. pl‘il’lt() >>> print("hello world.™)
hello world.

>>> b = 12.56
. s >>> ¢ = int(b)
lnt() >>> print("converted integer number is ", c)

converted integer number is 12

Prake

UNIVERSITY

CS65: Introduction to Computer Science 21

Other built-1n functions

- If you want to use not so commonly available built-in
functions, those built-in functions need to be imported using
import keyword from a library

- library also called a module

* Import the module before using it usually at the top of your
python file

- Call function using module_name . function_name

import math

value_of_pi = math.pi

CS65: Introduction to Computer Science 22

Prake

UNIVERSITY

Module

- Formally, a module 1s a component containing Python functions,
variables or class

 Each python file (with *.py) is a module

- They need to be imported from a module using import
* Several ways of importing module components

https://docs.python.org/3/tutorial/modules.html

CS65: Introduction to Computer Science 23

Prake

UNIVERSITY

https://docs.python.org/3/tutorial/modules.html

Module import variations

Explicitly need to use math.pi or math.sin Directly access pi and sin but nothing else

import math - - from math import pill
| from math import sin

angie;in_degfeé é‘45>‘ | ylizatiol

angle_in_rad = value_of_pi*angle_in_degree/180.0 45

pi

value_of_pi*angle_in_degree/180.0

sin(angle_in_rad)

anéie;in_degfeé

calculatior value_of_pi
value_of_pi = math.pi angle_in_rad
var2 = math.sin(angle_in_rad) var2

print("sin(", angle_in_degree,") is ", var2) print("sin(", angle_in_degree,") is ", var2)

from math import * from math import pi;‘sin; cos

45

pi
value_of_pixangle_in_degree/180.0
sin(angle_in_rad)

angle_in_degree
value_of_pi
angle_in_rad
var2

45

pi
value_of_pixangle_in_degree/180.0
sin(angle_in_rad)

angle_in_degree
value_of_pi
angle_in_rad
var2

print("sin(", angle_in_degree,") is ", var2)

print("sin(", angle_in_degree,") is ", var2)

Directly access pi or sin

Directly access pi sin and cos (in a single
import line) but nothing else

https://docs.python.org/3/tutorial/modules.html

CS65: Introduction to Computer Science 24

Prake

UNIVERSITY

https://docs.python.org/3/tutorial/modules.html

Random number generation

* Steps for generating a random number are as follows:

* Step 1: Import the random module
* Step 2: Generate a random number (eg, an integer number) between
a range of values denoted by a lower_range and an upper_range
* For example, in order to generate a random integer between
lower_range of 1 and upper_range of 10, we need to do the
following:

import random

rand_number = random.randint(1, 10)
print(rand_number)

Prake

UNIVERSITY

CS65: Introduction to Computer Science 25

Local and global variables

* Local variables:

* Variables declared 1) inside function 2) function parameters
* Only visible to the defined function

» Global variables:
« Variables that are defined outside of user defined functions
- Can be accessed by any function after creation

- Global variable can be replaced/hidden by local variable if
declared with the same name

Prake

UNIVERSITY

CS65: Introduction to Computer Science 26

Scope: local and global variables

* Global variables:
 Variables that are defined outside of user defined functions
- Can be accessed by any function after creation
» Global variable can be replaced/hidden by local variable if
declared with the same name

numl = 1

def dummy_functionl():

numl = 2

print("Inside function dummy_functionl: numl is local variable ", numl)
print("Before callling dummy_functionl() value of numl = ", numl)

dummy_functionl()

print("After callling dummy_functionl() value of numl = ", numl)

Before callling dummy functionl() value of numl = 1
Inside function dummy functionl: numl is local variable 2
After callling dummy functionl() value of numl = 1

Drake CS65: Introduction to Computer Science 27

UNIVERSITY

Scope: local and global variables

- Global variables:
* Variables that are defined outside of user defined functions
» Can be accessed by any function
* Here values of global variables are copied to the parameters
during function call

' numl = 100 .
(num2 = 25) ’CGIobalvarlabIes)

def add_numbers(numl, num2):
var = numl + num2
return var

:dﬁswnMLMMwﬁmﬂ,mnh
3 result2 = varl - var2
return result2

6 def main():
resl = add_numbers(numl, num2)
res2 = subtract_numbers(numl, num2)
print("add_numbers() function: called with numl=",numl, ", num2=", num2, " and result is ", resl)
print("subtract_numbers() function: called with numl=",numl, ", num2=", num2, " and result is ", res2)

22 main()
Shell
>>>
add_numbers() function: called with numl= 100 , num2= 25 and result is 125

subtract_numbers() function: called with numl= 100 , num2= 25 and result is 75

Prake

UNIVERSITY

CS65: Introduction to Computer Science 28

Scope: local and global variables

* Scope resolution: Mechanism of searching for a name, e.g.,
variable or function

* Step 1: search the referenced name in the local scope. If not found, then
go to step 2

* Step 2: search the referenced name in the global scope. If not found,
then go to step 3

* Step 3: If searched name is not found in either step 1 or step 2, then
search in the built-in scope

- Step 4: If not found in the above steps, then interpreter generates an
Error message

Prake

UNIVERSITY

CS65: Introduction to Computer Science 29

Global variables

» Global variables are defined outside of user defined functions
or they can be introduced by the global statement

- As you have noticed by now, they can be source of confusion
- Name clashing
* Order of their definitions matter

- Use of global variables is not recommended, better to avoid or
at least minimize their usage

- If you need to use eg, some constants, then declare them using
capital letters

VALUE_OF_PI = 3.14
MILES_TO KILOMETERS = 1.619

Prake

UNIVERSITY

CS65: Introduction to Computer Science 30

Topics

- Boolean type and boolean expression
* Selection statements are useful for branching
inside your program
- if
* if-else
* if-elif-...-else

Prake

UNIVERSITY

CS65: Introduction to Computer Science

‘Bool’ Data Type

* Notion of something being true and being false —

represented with two ‘bool’ data types:
* True
- False

- Allows us to evaluate true or false questions — in real life,
we always encounter question with Yes or No answer

* Logical and comparison operators:
* Boolean expression with logical operator (and, or, not)
* Boolean expression with comparison operator (<, <=, >, ==, etc)

Prake

UNIVERSITY

CS65: Introduction to Computer Science 32

Boolean Expression

- Expressions that are evaluates to two ‘bool’ types
* Operations with logical operators — and/or/not

« and — given two boolean, are both True? answer is True
boolean expression; and boolean expressions

< or — given two booleans, at least one is True? answer is True
boolean expression; or boolean expression,

« not — given a boolean expression, switch between True/False

not boolean expression

Prake

UNIVERSITY

CS65: Introduction to Computer Science 33

Logical Operators

X
False

False
True

True

y
False

True
False

True

xandy
False

False
False

True

* expression; and expression;

Prake

UNIVERSITY

X
False

False
True

True

y
False

True
False

True

Xory
False

True
True

True

X not X
False True
True False

not expression

expression; Or expression;

CS65: Introduction to Computer Science

34

Comparison Operators

- We can write expression that evaluates to boolean with
other comparison operators

* Compare two values or check something

Description Example Result
Less than 2<15 True
Greater than 2>15 False
Less than or equal 2<=15 True
Greater than or equal 2 >=15 False
Equality check 2==15 False
Inequality check 21=15 True

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Prake

UNIVERSITY

More Boolean Expressions

X Y X and Y
2<15 2 >=15 False
3<15 2 ==15 False
3<15 15==15 True
16 > 15 21=15 True

* expression; and expression;

CS65: Introduction to Computer Science

36

Selection Statements

* Program taking one path or branch of the code instead of taking another, based
on the boolean expression’s value

* This feature allows to ask true/false questions in the code. Depending on the
boolean answer (True or False), the program will execute a specific branch

\V4

True

Feel hungry

oday == Friday

False

A 4

Lunch at the
(Starbucks at OlmsteD (Hubbell dining)

Prake

UNIVERSITY

CS65: Introduction to Computer Science

v

‘ Eat lunch '

37

Prake

UNIVERSITY

‘1’ statement

if <condition expression> :
<block statements>
condition expression: a boolean expression

block statements: statements to be executed if result of the condition
expression is True

Notice: indention is required to define a block statements and also notice a
colon at the end of the condition expression

CS65: Introduction to Computer Science

38

‘if ... else’ Statement

num = int(input("Please enter a number. "))
if num == 5:
print("Yeah! I won a lottery ...")
else:
print("0h gosh! better luck next time ...")
print("Thank you!")

~SNoounbs WN =

Prake

UNIVERSITY

CS65: Introduction to Computer Science

True

/

“Wins
lottery”

False

3

“Thank you”

2

“Try again’

39

Multiple Selections

« We may need to branch in more than two

directions — multiple selection

Feel hungry

« (Can have nested if-statement

« Keyword elif (short for ‘else if”) introduces v v

a new Sthture (Starbucks at OlmsteD (Lunch at.tP]e)
Hubbell dining

« Blocks with multiple elif conditions

structures are referred to as mutually 7

exclusive structures.
Eat lunch

Prake

UNIVERSITY

CS65: Introduction to Computer Science 40

Multiple Selections

num = int(input("Please enter a number. "))
if num < 5:
print("Too cold ...")
elif num == 5: |
print("Perfect! Goldilocks condition ...") v

else: j)
print("Too hot ...") Too cold

print("Thank you!")

True False

Lo~ BEWNP

Shell

. T
>>> %Run test4.py rue /\ False
num==5
Please enter a number. 5
Perfect! Goldilocks condition ... v v
Thank you! “Goldilocks " ”
Condition” Too hot
>>> |

v

Y “Thank you”

CS65: Introduction to Computer Science

Prake

UNIVERSITY

41

Super Important: Multiple Selections

We can have multiple if blocks but they are not disconnected

We can have multiple nested if-elif-else blocks

Prake

UNIVERSITY

CS65: Introduction to Computer Science

42

Topics

* Sequence
* String
* List
* The while loop
* The for loop to solve a repetitive task
* Value for loop

* Index for loop
* Nested for loop

Prak

UNIVERSITY

CS65: Introduction to Computer Science

Sequence: Strings

* Sequence 1s an ordered group of elements (numbers, characters, etc)

- String 1s a sequence of characters
* “Drake University”
* “cs63:1ntroduction_to_computer_science!”

 Each position in a sequence 1s marked with an index or position
- Starts (from left) at position 0 and ends at position (length-1)
- Start indexing from the left to right

D r a k e U n i v e S i t y
0O 1 2 3 4 5 6 7 8 9 10 11 12 15
Drake ’

Summary: Indexing

(More common usage)

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Length of a Sequence

- How can you find the length of a string?
* Use built-in len() function

my_stringl = "hello@world"
my_string2 = "Hi there!"
my_string3 = ""

print("Length of \"hello@world\" is: ", len(my_stringl))
print("Length of \"Hi there!\" is: ", len(my_string2))
print("Length of \"\" is: ", len(my_string3))

Shell =

Python 3.7.9 (bundled)

>>> %cd /Users/reza/Class_and_Resea
slides/lecturel®

>>> %Run lecl@_demo.py

Length of "hello@world" is: 11
Length of "Hi there!" is: 9
Length of "" is: 0

Prake

UNIVERSITY

>>>
CS65: Introduction to Computer Science 46

Accessing items with index

* Use variable_name[index] access an item in a sequence

Prake

UNIVERSITY

15 #
16 # demo 2 accessing elements in a string
17 my_stringl = "Drake University"

18 my_string2 = "Hi there!"

19

20 vis = 1]

21 if (vis):

22 print("Character at index = @ is ", my_stringl[0])
23 print("Character at index = 1 is ", my_stringl1[1])
24 print(“Character at index = 2 is ", my_string1[2])
25 print("Character at index = 15 is ", my_stringl[15])
26

27
Shell =
>> %Run lec1@_demo.py

Character at index = 0 is D

Character at index = 1 is «r

Character at index = 2 is a

Character at index = 15 is vy

CS65: Introduction to Computer Science

47

Sequence: List

* Sequence 1s an ordered group of elements (numbers, characters, etc)

- String is a type of sequence whose members are characters
* “Drake University”
* “cs63:1ntroduction_to_computer_science!”
- List is another type of sequence whose members can be numbers,
strings, or even another list!
* [“Drake University”, “hello”, “world”]
*[1.2,3.4,5]
- List will be discussed in greater detail in a separate lecture

Prake

UNIVERSITY

CS65: Introduction to Computer Science 48

Random Number

- Random numbers are useful several programming tasks:

* Simulating a coin toss — random flipping of head or tail
* Simulating a dice roll — random roll of one of six sides
* Simulating a card shuffling from 52 cards

* Python provides library to generate random numbers
* Like math module or graphics module, you can import random
module to get access to random number generating functions

Prake

UNIVERSITY

CS65: Introduction to Computer Science 49

Syntax for while Loop

« while <condition expression> :

<block statements>

- condition expression: a boolean expression

 block statements: statements to be executed
if result of the condition expression is True

Condition
Expression

. . Code below
« Unlike if statement, the <block statements>
will repeatedly be executed until the
<condition expression> becomes False

Prake

UNIVERSITY

CS65: Introduction to Computer Science

block

50

The while Loop

- Section of code that repeats — designed to solve a repetitive task
- decrease the value of a variable by 1 until it becomes negative

num = 5

rue
Condition block
Expression statements

False

while num > 0:

print(num)
num = num - 1

Code below
the loop

>>>

=N W W,

>>>

Prake

UNIVERSITY

CS65: Introduction to Computer Science 51

The while Loop

- Infinite loop: section of code that repeats forever
* The condition expression should be designed carefully so that the loop
terminates after a certain number of iterations

num = 5

while num > 0:

rue
Condition
Expression

False

print(num)
num = num + 1

Code below
the loop

What will happen?

Prake

UNIVERSITY

CS65: Introduction to Computer Science

The while Loop

- The index variable can be updated (decreased) with a shorthand:

num = 5 num = 5
while num > 0: while num > 0:
print(num) print(num)
num = num - 1 num —= 1
>>> %Run ihile. >>>
5 5
4 4
3 3
2 2
1 1
. >>>

Prake

UNIVERSITY

CS65: Introduction to Computer Science 53

The while Loop

* The index variable can be updated (increased) with a shorthand:

num = 5 num = 5

while num > 0: while num > 0:

rint(num) _
?\um = num + 1 print(num)

num += 1

Prake

UNIVERSITY

CS65: Introduction to Computer Science 54

Syntax for value for loop

* for variable in [1, 2, ..., 5] :
statements

- Statements will be repeated sequentially from first to last item in
a sequence (here it will be repeated 5 times since there are 5
numbers in the List)

- Iteration 1: variable will be assigned 1
- Iteration 2: variable will be assigned 2

- Iteration 5: variable will be assigned 5

Prake

UNIVERSITY

CS65: Introduction to Computer Science 55

Summary: value for loop

for var in [1, 2, 3, 4, 5]:
new_var = varxl0
print("10 times", var, " is: ", new_var)

2>>

10 times 1 is: 10
10 times 2 is: 20
10 times 3 is: 30
10 times 4 is: 40
10 times 5 1is: 50

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Summary: value for loop visualization

for var in [12, 13, 14, 15, 16]:
print("current num is: ", var)

variable

12 13 14 15 16

12 «— 12 13 14 15 16
13 4+—— 13 14 15 16
14 < 14 15 16
15 < 15 16
16 < 16

C with a value)

Drake CS65: Introduction to Computer Science

UNIVERSITY

57

Summary: range() function

* The range() function simplifies the process of for loop writing
* Creates a sequence of numbers on the fly
* These numbers can be used to index the sequence

print("range() function version 1:")
for var in range(5):
print(var)

print("range() function version 2:")
for var in range(@, 5):
print(var)

print("range() function version 3:")
for var in range(0, 10, 2):
print(var)

CS65: Introduction to Computer Science

Prake

UNIVERSITY

Value for loop vs Index for loop

* So far we have seen the syntax of value for loop

a R

for varin [10, 20, 30, 40, 50] :
print(var)

_),

* There is another form called index for loop

my_list=[10,20,30,40,50] | (i)
length = len(my_list)
for 1in range(length) :

print(my_list[i])
9 _J

Prake

UNIVERSITY

CS65: Introduction to Computer Science 59

Try to finish the exercises shown in class

* Write a loop that will print **’ 5 times.

* Write a loop that will print **’ 10 times.

* Write a loop that will print “*” N times (prompt the user to enter this
number)

* Find the sum of all the numbers from 1 to max_num

*eg, 1 +2+3+4+5=15
* use for loop to do this

* Find the average of these numbers

Prake

UNIVERSITY

CS65: Introduction to Computer Science 60

Try to finish the exercises shown in class

* Finding a number (prompt the user to enter that number) in a given

list of number
my_list = [1, 3, 5, 7, 9, 11]

my_list = [1, 3, 5, 7, 9, 11]
cur_num = int(input("enter the number you are looking for in the list: "))
flag_found = False
for val in my_list:
if (val == cur_num):
flag_found = True

if (flag_found):
print("Found ", cur_num, "! Yay!")
else:
print("Could not find ", cur_num, " in the list :'(")

Prake

UNIVERSITY

CS65: Introduction to Computer Science 61

Try to finish the exercises shown in class

* Counting how many times a number (prompt the user to enter that
number) appears in a given list.

my_list=1(1, 1,1, 2, 3, 3, 3, 4, 4, 4, 5,5,5,5,5,5,7]

Y L S o e e e o S e N S s s s e en T |

cur_num = int(input("enter the number for which you want find the count: "))
count = 0

for val in my_list:

if (cur_num == val):
count = count + 1

if (count > 0):
print("Your number ", cur_num, " appears ", count, " times in the list.")

else:
print("Could not find your number ", cur_num, " in the list.")

Prake

UNIVERSITY

CS65: Introduction to Computer Science 62

Try to finish the exercises shown in class

* Finding the location of given a number (prompt the user to enter
that number) in a given list.

my_list = [1, 3, 5, 7, 9, 11]

* Finding the maximum number in a given list.
* Finding the maximum number in a given list.

Prake

UNIVERSITY

CS65: Introduction to Computer Science 63

Nested for loops

* Putting one loop inside another
» The first loop is called the outer loop
 The second loop is called the inner loop

for 11n range(3):
for j in range(3):

(19

print(“i: ”, i, “j: 7,)

Prake

UNIVERSITY

CS65: Introduction to Computer Science

64

Visualization of nested for loop

for i in range(3):
print("Enters outer loop")
for j in range(3):
print("\tInner: i ->", i, " j -=>", j)

i —» 0 j —» 0
i —» 0 j —» 1
i —» 0 j —> 2
i —» 1 J —» 0
i —» 1 J —» 1
i — J —p 2
i — 2 j — 0
i —p 2 J — 1
i —» 2 J —» 2

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Thonny output: nested for loop

for i in range(3):
print("Enters outer loop")
for j in range(3):
print("\tInner: i ->", i, " j ->", j)

>>>

Enters outer loop
Inner: i => 0 j => 0
Inner: i => 0 j -> 1
Inner: i => 0 j => 2

Enters outer loop
Inner: i => 1 j => 0
Inner: i => 1 j =>1
Inner: i => 1 j => 2

Enters outer loop
Inner: i => 2 j => 0
Inner: i => 2 j => 1
Inner: i => 2 j => 2

Prake

UNIVERSITY

CS65: Introduction to Computer Science

Comments

- Comments are notes explaining the functionality of your
computer program (source code)

* Python comments are denoted with
- # for a single line

- triple quotes (either © or) for multiple lines

* Other languages eg, C++ has different syntax

Author's name: Md Alimoor Reza
Author's contact: md.reza@drake.edu
Date: (September 1st, 2021)
Collaborator:

Your partner's name

#print("Yay! this is my first python program in CS65!")"""

Prake

UNIVERSITY

CS65: Introduction to Computer Science 67

