CS65: Introduction to Computer Science

January 25, 2022

Syllabus
Logistics
Introduction to Algorithms

Road Map

- Brief introduction
- Course logistics
- Topics
 - Algorithms
 - Programming
 - Computer program
 - How to program
 - Pseudocode
 - Writing program in a specific language eg Python
 - Integrated Development Environment (IDE)

Welcome to CS 65

Introductions

- Md Alimoor Reza
 - Assistant Professor of Computer Science, Dept. of Mathematics and Computer Science, Drake University
 - Office: 314 Collier-Scripps
 - Email: md.reza@drake.edu
 - **Phone:** 515-271-1972
 - **Office hours:** T/W/R: 12:30-1:30pm CDT

additionally by appointment

Introductions

- Prior teaching experience
 - Indiana University Bloomington
 - Computer Vision (Spring'21)
 - Artificial Intelligence (Fall'18)
 - George Mason University
 - Introduction to Computing, Object Oriented Programming, Data Mining
 - Drake University
 - Introduction to Computer Science (Fall'21)
- Research
 - Passionate about Artificial Intelligence (A.I.) for Robots
 - Studying various types of images and finding mea concepts from them

Semantic Segmentation

Introductions

- Additional help
 - CS tutors are provided (free for CS 65)
 - Individual appointments:
 - Starfish->Services->Tutoring Center
- Now your turn, briefly introduce yourselves!
 - Your name
 - Major
 - Hobby/interest
 - Why you are interested in this course?

- This is an introductory course. Four years of high school mathematics or MATH 20. Logical thinking and basic familiarity with computer and its applications are helpful
- Most of the course content lectures, assignments, labs, etc will be hosted at https://drake.blackboard.com. Coursework for will include
 - attending the class (in-person)
 - individual and collaborative programming assignments
 - · lab assignments,
 - quizzes
 - a final project
 - a midterm and a final exam
- Read the syllabus @ Blackboard:
 - https://homes.luddy.indiana.edu/mdreza/cs65_sp22/cs65_syllabus.pdf

• Grading policy:

- Programming Assignments (25%). Homework programming activities.
- Labs (15%). Implementations of specific concepts (relatively easier than homework assignments).
- Quizzes (10%). true/false, fill in the blanks, etc.
- Midterm (20%). Paper based exam midway through the semester.
- Final (20%). Paper based exam by the end of the semester.
- Final project (10%). Your proposed group project (2-3 members).

Grading scale:

- A (93%-100%) A- (90%-92.9%) B+ (87%-89.9%)

- B (84%-86.9%) B- (80%-83.9%) C+ (77%-79.9%)

- C (74%-76.9%) C- (70%-73.9%) D (60%-69.9%)
- F (0%-59.9%)

- Textbook
 - Think Python 2nd Edition by Allen B. Downey
 - free copy available online at https://greenteapress.com/wp/think-python-2e
 - Weekly readings are provided

Course Schedule (tentative)

CS 65: Introduction to Computer Science Spring 2022 Instructor: Md Alimoor Reza

Assistant Professor of Computer Science Department of Mathematics and Computer Science Drake University

Class room: Collier-Scripps # 301
Meeting time: Tues (11:00am-12:15pm) and Thurs (11:00am-12:15pm)
Office hours: Tues + Wed + Thurs (12:30pm-1:30pm) or by appointment

Schedule

A tentative schedule below (subject to change as we progress).

Date	Topic	Reading	Items due
week 1 (Tue: 01/25)	Introduction to Computer Science Lecture 1 slide Lab 1 (release)		
week 1 (Thu: 01/27)	Variables, expression, and statements Lecture 2 slide	Reading: Chapter 1, Chapter 2	
week 2 (Tue: 02/01)	Functions (part 1) Lecture 3 slide	Reading: Chapter 3	Lab 1 (due by 02/01)
week 2 (Thu: 02/03)	Functions (part 2) Lecture 4 slide Lab 2 (release)	Reading: Chapter 3	
week 3 (Tue: 02/08)	Interface design (part 1) Lecture 5 slide	Reading: Graphics	Quiz 1
week 3 (Thu: 02/10)	Interface design (part 2) Lecture 6 slide Lab 3 (release)	Reading: Graphics	Lab 2 (due by 02/10)
week 4 (Tue: 02/15)	Boolean expression Assignment 1 (release)	Reading: Chapter 5	
week 4 (Thu: 02/17)	Conditionals Lecture 7 slide	Reading: Chapter 5	Lab 3 (due by 02/17)

- Read the syllabus @ Blackboard:
 - https://homes.luddy.indiana.edu/mdreza/cs65_sp22/cs65_syllabus.pdf
- Important highlights:
 - Grading requirement and grading scale (tentative)
 - Attendance policy
 - Deadline policy
 - Technology requirement
 - Academic integrity
 - Mask policy

11

Road Map

- Brief introduction
- Course logistics
- Topics
 - Algorithms
 - Programming
 - Computer program
 - How to program
 - Pseudocode
 - Writing program in a specific language eg Python
 - Integrated Development Environment (IDE)

Introduction to Computer Science

- Focus of this course would be the study of computer <u>algorithms</u>
- Algorithm
 - A crucial component in problem solving
 - step-by-step instructions to be executed by the machine
 - here is a toy example

Reference: BBC Learning

Introduction to Computer Science

- Algorithm:
 - step-by-step instructions to be executed by the machine
 - more realistic algorithm in robotics (from my research)

Me with Baxter

Baxter robot with a goal of fetching an specific object ie, Pringles from the shelf

Introduction to Computer Science

- Algorithm:
 - step-by-step instructions to be executed by the machine
 - your turn! let's do a group activity for 5 minutes
 - Describe the process of making a trip from USA to Europe?
 - Person next to you is your partner
 - Write down the steps

What is programming?

- Computers/computing devices are everywhere
 - desktop, laptop, smartphone, robot, microwave, etc

- Computers/computing devices are <u>tools that can be programmed</u> to perform many functions:
 - implement algorithms to solve problems
 - calculate numbers
 - watch videos
 - write notes
 - design models etc

What are computer programs?

- A program is a sequence of instructions that specifies how to perform a computation
 - can be written by a specific programming language
- <u>Programming languages</u> are formal language to express computations
 - Python
 - Java
 - C/C++

- Programming languages have strict rules, known as <u>syntax</u> that must be followed
 - Specific keywords need to be used to perform some action
 - Specific structure to be followed
 - Naming convention

How to write a program?

- Programs must be designed before they are written
- Program development cycle
 - Design a program (eg, in pseudocode)
 - Write the code (in a programming language like python)
 - Correct the syntax errors
 - Test the program
 - Correct the logic errors

Pseudocode

- Pseudocode is an informal language that has no syntax
 - the examples we have seen before (brushing tooth, robot grasping, making Euro trip) can be written in pseudocode

example pseudocode

- Not meant to be compiled or executed
- Used to create model program
 - less worry about the syntax, more focus on the logic/design
 - Can be translated into actual code in any programming language eg, **Python**

Exercise

- Describe the process of making a trip from USA to Europe?
 - Person next to you is your partner (in zoom breakout room)
 - Now write down your previous solution in pseudocode

Python

• Python is a programming language

- Purpose is to convert
 - what a programmer writes —> machine executable instructions
- Programmer writes python source code following specific syntax
- There is an interpreter (another program which executes computer code)

```
n = 5
string = "Hello!"
print(string * n)
```


Python code

Machine readable instructions

Python Keywords

- Programming languages have keywords/reserved words
 - Words that have specified meaning as part of the syntax of the language
- Python's keywords

and	del	from	not	while
as	elif	global	or	with
assert	else	if	pass	yield
break	except	import	print	
class	exec	in	raise	
continue	finally	is	return	
def	for	lambda	try	

Integrated Development Environment

- Integrated Development Environment (IDE) is tool or software system that programmers use to create, run, and test new programs
 - text editor
 - writing python code
 - compiler/interpreter
 - for translating the code into machine understandable instructions
 - executable environment
 - for showing the result of the program
- We will be using the Python programming language along with an IDE for creating Python programs
- Thonny as an IDE
 - very user friendly tool
 - freely available online

Integrated Development Environment

• Demo by Reza in his computer

Lab Activity

Go to Blackboard and download the Lab1 under 'Week 1'

• Follow the steps as provided in the Lab1 guide to setup Thonny in your computer

Lab Activity

• Additionally— all the materials will be available (as links) in the schedule

CS 65: Introduction to Computer Science Spring 2022 Instructor: Md Alimoor Reza

Assistant Professor of Computer Science Department of Mathematics and Computer Science Drake University

Class room: Collier-Scripps # 301
Meeting time: Tues (11:00am-12:15pm) and Thurs (11:00am-12:15pm)
Office hours: Tues + Wed + Thurs (12:30pm-1:30pm) or by appointment

Schedule

A tentative schedule below (subject to change as we progress).

Date	Topic	Reading	Items due
week 1 (Tue: 01/25)	Introduction to Computer Science Lecture 1 slide Lab 1 (release)		

Summary

- Main takeaway from this lecture:
 - We will be studying algorithms
 - You will be implementing various algorithms using Python programming language in Thonny (IDE)
- To do: Follow the instructions in Lab1 Thonny installation
- To do: Finish the provided reading Chapter 1

Schedule

Below is the preliminary schedule. This is subject to change as we progress.

Date	Торіс	Reading	Items due
week 1 (Tue: 08/31)	Introduction to Computer Science Lecture slide Lab 1 (released)		
week 1 (Thu: 09/02)	Getting started with Python	Reading: Chapter 1	