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• Topics 
• Why is computer vision so primitive? 
• What makes vision hard?  
• How does human vision work? 
• Recent progress 
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What is computer vision?
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Goal: from images to meaning



Goal: from images to meaning
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Can computers see as well as humans?

• Yes and no, but mostly no (so far).  

• Current vision technology is useful in select 
applications, with: 
– Specific, constrained environments, and/or 
– High tolerance for errors
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The most successful and ubiquitous 
application of computer vision … ? 
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Optical character recognition (OCR)

Postal address recognition

License plate readers 
Source: S. Seitz

Automatic check processing

Document digitization
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Industrial inspection 
(aka Machine Vision)



Face detection

Source: S. Seitz
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Facebook’s face detection
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Facebook’s face detection

CS195: Computer Vision



Facebook’s face detection
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Reference: https://www.theverge.com/2021/11/2/22759613/meta-facebook-face-recognition-automatic-tagging-feature-shutdown

https://www.theverge.com/2021/11/2/22759613/meta-facebook-face-recognition-automatic-tagging-feature-shutdown


iPhoto’s face detection



iPhoto’s face detection



Login without a password...

Dong Ngo / Cnet.com



Vision-based interaction

Source: S. Seitz

Kinect
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Sports

Sportvision first down line 
Nice explanation on www.howstuffworks.com Source: S. Seitz
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http://www.howstuffworks.com/first-down-line.htm


Why is computer vision so primitive?
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Why is computer vision so primitive?

• Vision is deceptively hard 
• In 1966, Marvin Minsky at MIT asked an 

undergrad, Gerald Jay Sussman, to “spend the 
summer linking a camera to a computer and 
getting the computer to describe what it saw.” 
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Compare to NLP & speech recognition

• Speech recognition: 
– Well-defined atomic unit 

(phonemes, words) 
– Well-defined grammar 
– 1d sequence 
– Well-defined structure of 

documents (letters, 
words, sentences) 

 

• Computer Vision: 
– Atomic unit: ?? (pixels? 

objects? “regions”?) 
– Grammar: ?? 
– 2d image or 3D scene 
– Structure of images: ??
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Why is computer vision difficult?
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Why is computer vision difficult?

Viewpoint variation

Illumination changes Scale changes
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Why is computer vision difficult?

Intra-class variation

Background clutter

Motion (Source: S. Lazebnik)

Occlusion
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Role of high-level reasoning

Fei-Fei, Fergus & Torralba 
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Source: “80 million tiny images” by Torralba, et al.
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Role of high-level reasoning



Julian Beever

Perception is inherently ambiguous
– Many scenes could have created a given 2D image 

– People figure out the "most likely" one based on 
experience, intuition, convention, … ? 
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Image source: F. Durand

Perception is inherently ambiguous
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How does human vision work?
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How do people (and animals) see?

• We don’t really know.

[Fulton04]
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How does human vision work?



How does human vision work?



Zollner illusion

• Are these lines parallel?



Zollner illusion
• After removing the hatches on these lines, 

they look parallel

https://www.illusionsindex.org/ir/zoellner-illusion

https://www.illusionsindex.org/ir/zoellner-illusion


The Thatcher effect

[Thompson 1980]























Conclusion: why is computer vision so 
difficult?

Bad news: 
– Computers lack higher-level prior knowledge 
– Perception is inherently ambiguous 
– We don’t know how the human brain works 
– Haven’t found mathematical models that represent 

human vision well  
– The models we do have require intensive (usually 

intractable) computation 

Good news: 
– So much progress is being made!  Especially in 

applications where perfect performance isn't needed.
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Recent progress
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Computer vision

• We don’t understand the visual system well 
enough to model it, let alone replicate it 

• For now, most successful computer vision 
systems are not inspired by biology 
– Instead use techniques and mathematical models 

that work well in practice, e.g. probabilistic models, 
machine learning, robust optimization, … 

• A large amount of progress in the last ~10 years
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Object recognition
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ImageNet Challenge 2012

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k 
classes 

• Images gathered from Internet 

• Human labels via Amazon Turk  

• Challenge: 1.2 million training images, 
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012

Slide credit: Rob Fergus
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf




ImageNet Challenge 2012
• Similar framework to LeCun’98 but: 

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
• More data (106 vs. 103 images) 
• GPU implementation (50x speedup over CPU) 

• Trained on two GPUs for a week 
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012
To
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Slide credit: Rob Fergus

• A huge drop in error-rate with deep neural 
network-based model



Instance segmentation

He, Gkioxari, Dolar, Girschick, “Mask R-CNN,” CVPR 2017.
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Automatic image captioning by deep nets (success)



Automatic image captioning by deep nets (failure)



Automatic image captioning by deep nets (failure)



Adversarial learning – Szegedy 2013
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Image restoration
• Image ‘de-fencing’ [Liu08]

[Liu08]
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Image restoration

[Liu08]
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Image restoration

[Liu08]



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007
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Hays and Efros, SIGGRAPH 2007
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Hays and Efros, SIGGRAPH 2007



75[Hays07]
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Failures

Hays and Efros, SIGGRAPH 2007



Failures
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Failures

Hays and Efros, SIGGRAPH 2007



Failures

Hays and Efros, SIGGRAPH 2007



De-blurring

http://tv.adobe.com/watch/max-2011-sneak-peeks/max-2011-sneak-peek-image-deblurring/



De-blurring

http://tv.adobe.com/watch/max-2011-sneak-peeks/max-2011-sneak-peek-image-deblurring/



Automatic 3-D reconstruction
• From Internet photo collections [Snavely06]

“Statue of Liberty”

3D model

Flickr photos

“Half Dome, Yosemite” “Colosseum, Rome”




