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Abstract

We study the satisfiability of ordering constraint satisfaction problems (CSPs) above average. We
show that for every k, the satisfiability above average of ordering CSPs of arity at most k is fixed-
parameter tractable. We generalize this result to more general classes of CSPs, including CSPs with
predicates defined by linear equations.
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1 Introduction

In this paper, we study satisfiability of ordering constraint satisfaction problems (CSPs) above the average
value. An ordering k-CSP is defined by a set of variables V = {x1, . . . , xn} and a set of constraints Π.
Each constraint π ∈ Π is a disjunction of clauses of the form xτ1 < xτ2 < · · · < xτr for some distinct
variables xτ1 , . . . , xτr from a k-element subset Vπ ⊂ V . A linear ordering α of variables x1, . . . , xn satisfies
a constraint π if one of the clauses in the disjunction agrees with the linear ordering α. The goal is to find an
assignment α that maximizes the number of satisfied constraints.

A classical example of an ordering CSP is the Maximum Acyclic Subgraph problem, in which constraints
are of the form “xi < xj” (the problem has arity 2). Another well-known example is the Betweenness
problem, in which constraints are of the form “(xi < xj < xk) or (xk < xj < xi)” (the problem has arity
3). Both problems are NP -hard and cannot be solved exactly in polynomial–time unless P = NP [20, 25].

There is a trivial approximation algorithm for ordering CSPs as well as other constraint satisfaction
problems: output a random linear ordering of variables x1, . . . , xn (chosen uniformly among all n! linear
orderings). Say, if each constraint is just a clause on k variables, this algorithm satisfies each clause with
probability 1/k! and thus satisfies a 1/k! fraction of all constraints in expectation. In 1997, Håstad [19]
showed that for some regular (i.e., non-ordering) constraint satisfaction problems the best approximation
algorithm is the random assignment algorithm. His work raised the following question: for which CSPs are
there non-trivial approximation algorithms and for which CSPs is the best approximation algorithm the ran-
dom assignment? This question has been extensively studied in the literature. Today, there are many known
classes of constraint satisfaction problems that do not admit non-trivial approximations assuming the Unique
Games or P 6= NP conjectures (see e.g [19, 3, 13, 5]). There are also many constraint satisfaction problems
for which we know non-trivial approximation algorithms. Surprisingly, the situation is very different for
ordering CSPs: Guruswami, Håstad, Manokaran, Raghavendra, and Charikar [12] showed that all ordering
k-CSPs do not admit non-trivial approximation assuming the Unique Games Conjecture.

A similar question has been actively studied from the fixed-parameter tractability perspective1 [1, 7, 8,
17, 21, 22, 26]: Given an instance of a CSP, can we decide whether OPT ≥ AV G+ t for a fixed parameter
t? Here, OPT is the value of the optimal solution for the instance, and AV G is the expected value on a
random assignment. In 2011, Alon, Gutin, Kim, Szeider, and Yeo [1] gave the affirmative answer to this
question for all (regular) k-CSPs with a constant size alphabet. In [17, 15, 16], Gutin et al. extended this
result to 2-arity and 3-arity ordering CSPs. However, the general case of k-arity ordering CSPs has remained
open. Below we state the problem formally.

Definition 1.1 (Satisfiability of Ordering CSP Above Average). Consider an instance I of arity k and a
parameter t. Let OPT = OPT (I) be the number of the constraints satisfied by the optimal solution, and
AV G = AV G(I) be the number of constraints satisfied in expectation by a random solution. We need to
decide whether OPT ≥ AV G+ t.

Definition 1.2. A problem with a parameter t is fixed-parameter tractable if there exists an algorithm for the
problem with running time g(t)poly(n), where g(t) is an arbitrary function of t, poly is a fixed polynomial
(independent of t), and n is the size of the input.

In this paper, we prove that satisfiability above average of any ordering CSP of any arity k is fixed-
parameter tractable.

Theorem 1.3. There exists a deterministic algorithm that given an instance I of an ordering k-CSP on n
variables and a parameter t, decides whether OPT (I) ≥ AV G(I) + t in time g(t)polyk(n), where g is a
function of t, polyk is a polynomial of n (g and polyk depend on k). If OPT (I) ≥ AV G(I) + t, then the
algorithm also outputs an assignment satisfying at least AV G(I) + t constraints.

1We refer the reader to an excellent survey of results in this area by Gutin and Yeo [18].
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Furthermore, we prove that the problem has a kernel of size Ok(t2).

Techniques. Let us examine approaches used previously for ordering CSPs. The algorithms of Gutin et
al. [17, 15, 16] work by applying a carefully chosen set of reduction rules to ordering CSPs of arity 2 and
3. These rules heavily depend on the structure of 2 and 3 CSPs. Unfortunately, the structure of ordering
CSPs of higher arities is substantially more complex. Here is a quote from [15]: “it appears technically
very difficult to extend results obtained for arities r = 2 and 3 to r > 3.” In this paper, we do not use such
reductions.

The papers [6, 14, 23] use an alternative approach to get an advantage over the random assignment for
special families of ordering CSPs. They first reduce the ordering k-CSP to a regular k-CSP with a constant
size alphabet, and then work with the obtained regular k-CSP. However, this reduction, generally, does not
preserve the value of the CSP. So if for the original ordering CSP instance I we haveOPT (I) ≥ AV G(I)+
t, then for the new instance I ′ we may haveOPT (I ′)� AV G(I)+t (we note thatAV G(I ′) = AV G(I)).
In this paper, we do not use this reduction either.

Instead, we treat all ordering CSPs as CSPs with the continuous domain: Our goal is to arrange all
variables on the interval [−1, 1] so as maximize the number of satisfied constraints. The arrangement of
variables uniquely determines their order. Moreover, if we independently assign random values from [−1, 1]
to variables xi, then the induced ordering on xi’s will be uniformly distributed among all n! possible order-
ings. Thus, our reduction preserves the values of OPT and AV G. However, we can no longer apply Fourier
analytic tools used previously in [1, 14, 23]. We cannot use the (standard) Fourier analysis on [−1, 1]n, since
we have no control over the Fourier coefficients of the functions we need to analyze. Instead, we work with
the Efron—Stein decomposition [10] (see Sections 2 and 3.3). We show that all terms in the Efron—Stein
decomposition have a special form. We use this fact to prove that an ordering k-CSP that depends on many
variables must have a large variance. Specifically, we show that if a k-CSP instance depends on Ckt2 vari-
ables, then the standard deviation of its value from the mean (on a random assignment) is greater than ckt (for
some Ck and ck � 1). As is, this claim does not imply that OPT ≥ AV G+ t since for some assignments
the value may be substantially less than AV G − t. To finish the proof of the main result, we prove a new
hypercontractive inequality, which is an analog of the Bonami Lemma [4]. This inequality is one of the main
technical contributions of our paper.

Theorem 1.4 (Bonami Lemma for Efron—Stein Decomposition). Consider f ∈ L2(Ωn, µn). Let f =∑
S fS be the Efron—Stein decomposition of f . Denote the degree of the decomposition by d. Assume that

for every S1, S2, S3, S4,

E [fS1fS2fS3fS4 ] ≤ C
(
E
[
f2
S1

]
E
[
f2
S2

]
E
[
f2
S3

]
E
[
f2
S4

])1/2
. (1)

Then
‖f‖44 ≡ E

[
f(X1, . . . , Xn)4

]
≤ 81dC‖f‖42 ≡ 81dCE

[
f(X1, . . . , Xn)2

]2
. (2)

We note that hypercontractive inequalities have been extensively studied under various settings (see e.g.,
[27, 9, 29, 24]). However, all of them depend on the mass of the smallest atom in the probability space. In our
case, the smallest atom is polynomially small in n, which is why we cannot apply known hypercontractive
inequalities. This is also the reason why we need an extra condition (1) on the function f . Condition (1) is a
“local” condition in the sense that all expectations in (1) are over at most 4d variables for every S1, . . . , S4.
Consequently, as we will see below, it is very easy to verify that it holds in many cases (in contrast to (2),
which is very difficult to verify directly). Note also that condition (1) is necessary — if it is not satisfied,
then the ratio ‖f‖4/‖f‖2 can be arbitrarily large even for d = 1.

Extensions. Once we assume that the domain of every variable is the interval [−1, 1], we might be tempted
to write more complex constraints than before such as “the average of x1, x2 and x3 is at most x4”, or
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“x1 lies to the left of the midpoint between x2 and x3”, or “x1 is closer to x2 than to x3”. Each of these
constraints can be written as a system of linear inequalities or a disjunction of clauses, each of which is given
by a system of linear inequalities. For instance, “x1 lies to the left of the midpoint between x2 and x3” can
be written as 2x1 − x2 − x3 < 0. In Appendix E, we extend our results to CSPs in which every constraint
is a disjunction of clauses, each of which is a “small” linear program (LP). Namely, each constraint should
have arity at most k, only variables that a constraint depends on should appear in the LPs that define it, and
all LP coefficients must be integers in the range {−b, . . . , b} (for a fixed b). We call this new class of CSPs
(k, b)-LP CSPs.

Definition 1.5. A (k, b)-LP CSP is defined by a set of variables V = {x1, . . . , xn} taking values in the inter-
val [−1, 1] and a set of constraints Π. Each constraint π ∈ Π is a disjunction of clauses of the form Ax < c,
where A is a matrix with integer coefficients in the range [−b, b]; c is a vector with integer coefficients in
the range [−b, b]; the indices of non-zero columns of the matrix A lie in the set Vπ of size k (the set Vπ is
the same for all clauses in π). The goal is to assign distinct real values to variables xi so to maximize the
number of satisfied constraints.

In fact, we extend our results to a much more general class of valued CSPs – all CSPs whose predicates
lie in a lattice of functions with some natural properties (see Appendices D and E for details); but we believe
that the subclass of (k, b)-LP CSPs is the most natural example of CSPs in the class. Observe that every
ordering k-CSP is a (k, 1)-LP CSP since we can write each clause x1 < x2 < · · · < xk as the system of
linear equations xi− xi+1 < 0 for i ∈ {1, . . . , k− 1}. Similarly, every k-CSP on a finite domain {1, . . . , d}
is equivalent to a (k, d)-LP CSP. The reduction works as follows: We break the interval [−1, 1] into d equal
subintervals ((2j − d − 2)/d, (2j − d)/d) and map every value j to the j-th interval. Then, we replace
every condition xi = j with the equation xi ∈ ((2j − d − 2)/d, (2j − d)/d) which can be written as
−dxi < −(2j − d− 2) and dxi < (2j − d).

Overview. In the next section we give an informal overview of the proof. We formally define the problem and
describe the Efron—Stein decomposition in Section 3. Then, in Section 4, we prove several claims about the
Efron—Stein decomposition of ordering CSPs. We derive the main results (Theorem 1.3 and Theorem 3.3)
in Section 5. Finally, we prove the Bonami Lemma for the Efron—Stein decomposition in Section 6. We
generalize our results to all CSPs with a lattice structure in Appendix D and show that (k, b)-LP CSPs (as
well as more general “piecewise polynomial” CSPs) have a lattice structure in Appendix E.

2 Proof Overview

Our high-level approach is similar to that developed by Alon et al. [1] and Gutin et al. [17, 16, 15]. As
in [17, 16, 15], we design an algorithm that given an instance I of an ordering CSP does the following:

• It either finds a kernel (another instance of the ordering CSP)K onO(t2) variables such thatOPT (I) =
OPT (K) and AV G(I) = AV G(K). Then we can decide whether OPT ≥ AV G + t by trying out
all possible permutations of variables that K depends on in time exp(O(t2 log t)).

• Or it certifies that OPT (I) ≥ AV G(I) + t.

To this end, we show that either I depends on at most O(t2) variables or the variance of valI(α) is Ω(t2)
(where α is chosen uniformly at random). In the former case, the restriction of I to the variables it depends
on is the desired kernel of size O(t2). In the latter case, OPT ≥ AV G+ t. Though our approach resembles
that of [17, 16, 15] at the high level, we employ very different techniques to prove our results.

We extensively use Fourier analysis and, specifically, the Efron—Stein decomposition. Fourier analysis
is a very powerful tool, which works especially well with product spaces. The space of feasible solutions of
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an ordering CSP is not, however, a product space — it is a discrete space that consists of n! linear orderings
of variables x1, . . . , xn. To overcome this problem, we define “continuous solutions” for an ordering CSP
(see Section 3.2). A solution is an assignment of real values in [−1, 1] to variables x1, . . . , xn; that is, it
is a point in the product space [−1, 1]n. Each continuous solution defines a combinatorial solution α in a
natural way: α orders variables x1, . . . , xn according to the values assigned to them (e.g., if we assign values
−0.5, −0.9 and 0.5 to x1, x2 and x3 then x2 < x1 < x3 according to α). Thus we get an optimization
problem over the product space [−1, 1]n. Denote by Φ : [−1, 1]n → R its objective function. We consider
the Efron—Stein decomposition of Φ: Φ =

∑
S:|S|≤k ΦS (see Section 3.3). Here, informally, ΦS is the

part of Φ that depends on variables xi with i ∈ S. All functions ΦS are uncorrelated: E [ΦS1ΦS2 ] = 0 for
S1 6= S2. We show that each ΦS is either identically equal to 0 or has variance greater than some positive
number, which depends only on k (see Section 4, Lemma 4.4). We now consider two cases.

I. In the first case, there are at most Θk(t
2) terms ΦS not equal to 0. Using that ΦS depends only on

variables xi with i ∈
⋃

ΦS 6=0 S and that there are at most Θk(t
2) sets S such that ΦS 6= 0, we get that Φ

depends on at most Ok(t2) variables and we are done.
II. In the second case, there are at least ckt2 terms ΦS not equal to 0. Since the variance of each term

ΦS is Θk(1) and all terms ΦS are uncorrelated, the variance of Φ is at least Θk(t
2) (see Theorem 4.5).

Therefore, Φ deviates from AV G = E [Φ] by at least
√

Var Φ = Θ(t). We then show that Φ− EΦ satisfies
the conditions of Theorem 1.4 (see Lemma A.1) and the degree of the decomposition is at most k. Thus,
the ratio ‖Φ − EΦ‖4/‖Φ − EΦ‖2 is bounded by Ok(1). This implies that Pr(Φ − EΦ > t) > 0. Hence,
OPT ≥ AV G+ t.

3 Preliminaries

3.1 Ordering CSP

Consider a set of variables V = {x1, . . . , xn}. An ordering constraint π on a subset of variables xi1 , . . . , xik
is a set of linear orderings of xi1 , . . . , xik . A linear ordering α of V satisfies a constraint π on xi1 , . . . , xik if
the restriction of α to xi1 , . . . , xik is in π. We say that π depends on variables xi1 , . . . , xik .

Definition 3.1. An instance I of an ordering constraint satisfaction problem consists of a set of variables
V = {x1, . . . , xn} and a set of constraints Π; each constraint π ∈ P depends on some subset of variables. A
feasible solution to I is a linear ordering of variables x1, . . . , xn. The value val(α) = valI(α) of a solution
α is the number of constraints in Π that α satisfies. The goal of the problem is to find a solution of maximum
possible value.

We denote the value of the optimal solution by OPT : OPT = maxα val(α). The average value AV G
of an instance is the expected value of a solution chosen uniformly at random among n! feasible solutions:
AV G = Eα[val(α)]. We say that I has arity k if each constraint in I depends on at most k variables.

Definition 3.2. In the Satisfiability Above Average Problem, we are given an instance of an ordering CSP
of arity k and a parameter t. We need to decide if there is a solution α that satisfies at least AV G + t
constraints, or, in other words, if OPT ≥ AV G+ t.

In this paper, we show that this problem is fixed-parameter tractable. To this end, we design an algorithm
that either finds a kernel on O(t2) variables or certifies that OPT ≥ AV G+ t.

Theorem 3.3. There is an algorithm that given an instance of an ordering CSP problem of arity k and
a parameter t, either finds a kernel on at most κkt2 variables (where constant κk depends only on k) or
certifies that OPT ≥ AV G+ t. The algorithm runs in time Ok(m+ n) linear in the number of constraints
m and variables n (the coefficient in the O-notation depends on k).
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3.2 Ordering CSPs over [−1, 1]n

Consider an instance I of an ordering CSP on variables x1, . . . , xn. Let us say that a continuous feasible so-
lution to I is an assignment of distinct values x̂1, . . . , x̂n ∈ [−1, 1] to variables x1, . . . , xn. Each continuous
solution x̂1, . . . , x̂n defines an ordering α of variables xi: xa is less then xb with respect to α if and only if
x̂a < x̂b. We define the value of a continuous solution x̂1, . . . , x̂n as the value of the corresponding solution
(linear ordering) α. We will denote the value of solution x̂1, . . . , x̂n by Φ(x̂1, . . . , x̂n).

Note that if we sample a continuous solution x̂1, . . . , x̂n uniformly at random, by choosing values x̂i
independently and uniformly from [−1, 1], the corresponding solution αwill be uniformly distributed among
n! feasible solutions. Therefore,

OPT = max
x̂1,...,x̂n∈[−1,1]

Φ(x̂1, . . . , x̂n) and AV G = Ex̂1,...,x̂n∈[−1,1]Φ(x̂1, . . . , x̂n).

Note that all x̂i are distinct a.s. and thus a random point in [−1, 1]n is a feasible continuous solution a.s.

3.3 Efron—Stein Decomposition

The main technical tool in this paper is the Efron—Stein decomposition. We refer the reader to [11, Section
8.3] for a detailed description of the decomposition. Now, we just remind its definition and basic properties.

The Efron—Stein decomposition can be seen as a generalization of the Fourier expansion of Boolean
functions on the Hamming cube {±1}n. Consider the Fourier expansion of a function f : {±1} → R,

f(x1, . . . , xn) =
∑

S⊂{1,...,n}

f̂SχS(x1, . . . , xn),

where f̂S are Fourier coefficients of f . Informally, the Fourier expansion breaks f into pieces, f̂SχS(x1, . . . , xn),
each of which depends on its own set of variables: The term f̂SχS(x1, . . . , xn) depends on variables
{xi : i ∈ S} and no other variables.

The Efron—Stein decomposition is an analogue of the Fourier expansion for functions defined on ar-
bitrary product probability spaces. Consider a probability space (Ω, µ) and the product probability space
(Ωn, µn). Let f : Ωn → R be a function (random variable) on Ωn. Informally, the Efron—Stein decomposi-
tion of f is the decomposition of f into the sum of functions fS , f =

∑
S⊂{1,...,n} fS , in which fS : Ωn → R

depends on variables {xi : i ∈ S}.
We formally define the Efron—Stein decomposition as follows. Consider the space L2(Ωn, µn) of

functions on Ωn with bounded second moment. Note that L2(Ωn, µn) =
⊗n

i=1 L2(Ω, µ). That is, every
f ∈ L2(Ωn, µn) can be represented as f(x1, . . . , xn) =

∑
j f

j
1 (x1) · f j2 (x2) · · · f jn(xn), for some func-

tions f ji ∈ L2(Ω, µ). Let Λ0 ⊂ L2(Ω, µ) be the one-dimensional space of constant functions on Ω. Let
Λ⊥ ⊂ L2(Ω, µ) be the orthogonal complement to Λ0. That is, Λ⊥ is the space of functions f ∈ L2(Ω, µ)
with E [f ] = 0. We have, L2(Ω, µ) = Λ0 ⊕ Λ⊥ and

L2(Ωn, µn) =

n⊗
i=1

L2(Ω, µ) =

n⊗
i=1

(Λ0 ⊕ Λ⊥).

Expanding this decomposition, we get a representation of L2(Ωn, µn) as the direct sum of 2n spaces:

L2(Ωn, µn) =
⊕

S⊂{1,...,n}

VS ,

where VS is the closed linear span of the set of functions of the form
∏n
i=1 fi(xi) where fi ∈ Λ⊥ if i ∈ S,

and fi ∈ Λ0 if i /∈ S. Since functions in Λ0 are constants, VS equals the closed linear span of the set of
functions of the form

∏
i∈S fi(xi) where fi ∈ Λ⊥.
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Consider a function f ∈ L2(Ωn, µn). Let fS be the orthogonal projection of f onto VS . Since the
linear spaces VS are orthogonal, we have f =

∑
S⊆{1,...,n} fS We call this decomposition the Efron—Stein

decomposition of f . We define the degree of f as max{|S| : fS 6= 0}, the size of the largest subset S s.t. fS
is not identically equal to 0 (we let the degree of 0 to be 0).

Let (X1, . . . , Xn) be a random element of Ωn. That is, X1, . . . , Xn are n independent random elements
of Ω; each of them is distributed according to µ. We write f = f(X1, . . . , Xn). We will employ the
following properties of the Efron—Stein decomposition (see [11, Section 8.3]).

1. fS(x1, . . . , xn) depends only on variables xi with i ∈ S.

2. For every two sets S and T , S 6= T , we have E [fSfT ] = 0.

3. Let S1, . . . , Sr be subsets of {1, . . . , n}. Suppose that there is an index j that belongs to exactly one
set Si. Then E [

∏r
i=1 fSi ] = 0.

We will also use the following equivalent and more explicit definition of the Efron—Stein decomposition.
For every subset S of indices {1, . . . , n}, let

f⊆S = E [f(X1, . . . , Xn)| all Xi with i ∈ S] , (3)

fS =
∑
T⊆S

(−1)|S\T |f⊆T . (4)

4 Efron—Stein Decomposition of Ordering CSP Objective

In this section, we study the Efron—Stein decomposition of the function Φ(x1, . . . , xn). To this end, we
represent Φ(x1, . . . , xn) as a sum of “basic ordering predicates” and then analyze the Efron—Stein of a
basic ordering predicate.

4.1 Basic Ordering Predicate

Let τ = (τ1, . . . , τr) be a tuple of distinct indices from 1 to n. Define the basic ordering predicate φτ for τ ,

φτ (x1, . . . , xn) =

{
1, if xτ1 < xτ2 < · · · < xτr ,

0, otherwise.

Note that the indicator of each constraint π is a sum of ordering predicates:∑
τ : ordering xτ1<xτ2<···<xτr is in π

φτ (x1, . . . , xn),

where the sum is over permutations of variables that the constraint π depends on. Since Φ is the sum of
indicators of all predicates π in Π, Φ is also a sum of basic ordering predicates φτ (for some multiset T ):

Φ(x1, . . . , xn) =
∑
τ∈T

φτ (x1, . . . , xn).

4.2 Efron—Stein Decomposition of Ordering Predicates

Let Ω = [−1, 1] and µ be the uniform measure on Ω. We study the Efron—Stein decomposition of a basic
ordering predicate φτ .
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Theorem 4.1. Let τ be a tuple of distinct indices of size d ≤ k. Denote g = φτ . Consider the Efron—Stein
decomposition of g, g =

∑
gS , over [−1, 1]n with uniform measure. There exists a set of polynomials qS,τ ′

with integer coefficients of degree at most d such that

gS(x1, . . . , xn) =
∑
τ ′

φτ ′(x1, . . . , xn)
qS,τ ′(x1, . . . , xn)

2dd!
,

where the summation is over all permutations τ ′ of S. The polynomial qS,τ ′ depends only on variables in
{xi : i ∈ S}. It is equal to 0 if S is not a subset of {τ1, . . . , τd}.

Proof. We may assume without loss of generality that τ = {1, 2, . . . , d}. Since g depends only on variable
x1, . . . , xd, gS 6= 0 only if S ⊂ {1, . . . , d}. We may therefore assume that n = d for notational convenience.

Denote the elements of S by s1 < s2 < · · · < st. Define auxiliary variables X0 = −1 and Xd+1 = 1,
and let s0 = 0 and st+1 = d+1. LetOab be the indicator of the event thatXi < Xj for every a ≤ i < j ≤ b.
Then g = O1,d. Note that g = O1,d =

∏t
i=0Osi,si+1 . All events for Osi,si+1 (for i ∈ {0, . . . , t}) are

independent given variables Xs1 , . . . , Xst . Therefore,

g⊂S = E [g | Xs1 , . . . , Xst ] =

t∏
i=0

E
[
Osi,si+1 | Xs1 , . . . , Xst

]
. (5)

For each i, we have

E
[
Osi,si+1 | Xs1 , . . . , Xst

]
= E

[
Osi,si+1 | Xsi , Xsi+1

]
= Pr

(
Osi,si+1 = 1 | Xsi , Xsi+1

)
.

If Xsi ≥ Xsi+1 , then Pr
(
Osi,si+1 = 1 | Xsi , Xsi+1

)
= 0. Otherwise,

Pr
(
Osi,si+1 = 1 | Xsi , Xsi+1

)
=

(
Xsi+1 −Xsi

2

)si+1−si−1

· 1

(si+1 − si − 1)!
.

We computed the probability above as follows: Given Xsi ≤ Xsi+1 , the probability that Xj ∈ [Xsi , Xsi+1 ]

for all j ∈ {si, . . . , si+1} equals
(
(Xsi+1 − Xsi)/2

)si+1−si−1. Then, given that Xsi ≤ Xsi+1 and Xj ∈
[Xsi , Xsi+1 ] for all j ∈ {si, . . . , si+1}, the probability thatXsi+1 ≤ · · · ≤ Xsi+1−1 equals 1/(si+1−si−1)!
as all orderings of Xsi+1, . . . , Xsi+1−1 are equally likely. We get

E
[
Osi,si+1 | Xs1 , . . . , Xst

]
= I

{
Xsi < Xsi+1

} (
Xsi+1 −Xsi

)si+1−si−1

2si+1−si−1(si+1 − si − 1)!
.

Plugging this expression in (5), we obtain the following formula

g⊂S =

t∏
i=0

I
{
Xsi < Xsi+1

} (
Xsi+1 −Xsi

)si+1−si−1

2si+1−si−1(si+1 − si − 1)!

= I {Xs1 < Xs2 < . . .Xst}
∏t
i=0

(
Xsi+1 −Xsi

)si+1−si−1

2d−|S|
∏t
i=0(si+1 − si − 1)!

.

Observe that
∏t
i=0(si+1 − si − 1) divides (

∑t
i=0(si+1 − si − 1))! = (d− |S|)!. Thus

d!∏t
i=0(si+1 − si − 1)!

2|S|
t∏
i=0

(
Xsi+1 −Xsi

)si+1−si−1
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is a polynomial with integer coefficients of degree at most d− |S|. Denote this polynomial by pS . Then,

g⊂S = I {Xs1 < Xs2 < . . .Xst}
pS(X1, . . . , Xd)

2dd!
=
∑
τ ′

φτ ′(X1, . . . , Xd)
pS(X1, . . . , Xd)

2dd!
,

where the sum is over all permutations τ ′ of {1, . . . , d}. Using the identity fS =
∑

T⊆S(−1)|S\T |f⊆T , we
get a representation of S as

fS =
∑
τ ′

φτ ′(X1, . . . , Xd)
qS,τ (X1, . . . , Xd)

2dd!
,

where qS,τ ′ are some polynomials with integer coefficients.

Since Φ is a sum of some basic ordering predicates (see Section 4.1), we get the following corollary.

Corollary 4.2. Let I be an instance of an ordering CSP problem of arity at most k. Let Φ(x1, . . . , xn) be
the value of continuous solution (x1, . . . , xn). Then the Efron—Stein decomposition of Φ has degree at most
k. Moreover there exist polynomials qS,τ with integer coefficients of degree at most k such that

ΦS(x1, . . . , xn) =
∑
τ∈T ′

φτ (x1, . . . , xn)
qS,τ (x1, . . . , xn)

2kk!
,

where the summation is over some set T ′ of tuples of indices in S, and qS,τ depends only on {xi : i ∈ S}.

4.3 Variance of Ordering CSP Objective

In this section, we show that the variance Var [Φ] = Ω(ν) if Φ (non-trivially) depends on at least ν variables.

Claim 4.3. There exists a sequence of positive numbers αd such that for every polynomial f(x1, . . . , xd) of
degree at most d with integer coefficients we have E

[
φ1,...,df

2
]
≥ αd.

Proof. Consider the set Q of polynomials over x1, . . . , xd of degree at most d. Let Q1 be the set of polyno-
mials in Q, whose largest in absolute value coefficient is equal to 1 or −1.

Denote V (f) = E
[
φ1,...,df

2
]
. For every f ∈ Q1, we have V (f) > 0 since f is not identically equal

to 0 on {x1 ≤ x2 ≤ · · · ≤ xd}. Note that Q1 is a compact set and V (f) is a continuous function on it.
Therefore, V attains its minimum on Q1. Let αd = minf∈Q1 V (f) > 0.

Now let f be a polynomial with integer coefficients of degree at most d. Denote the absolute value of its
largest coefficient (in absolute value) by M . M is a positive integer and thus M ≥ 1. We have f/M ∈ Q1

and thus V (f) = M2 · V (f/M) ≥M2αd ≥ αd.

Lemma 4.4. The following claim holds for some positive parameters βk. Let I be an instance of arity at
most k. Let Φ =

∑
S ΦS be the Efron—Stein decomposition of Φ. Then for every set S either ΦS = 0 or

E
[
Φ2
S

]
≥ βk.

Proof. Let βd = αd/(2
kk!)2 > 0, where αd is as in Claim 4.3. Assume that ΦS 6= 0. By Corollary 4.2,

ΦS(x1, . . . , xd) =
∑
τ∈T ′

φτ (x1, . . . , xd)
qS,τ (x1, . . . , xn)

2kk!
.

Note that all functions φτ (x1, . . . , xd)qS,τ (x1, . . . , xn)/(2kk!) have disjoint support, and, therefore, are pair-
wise orthogonal. Choose one tuple τ ∈ T ′ such that qS,τ 6= 0. We have,

E
[
Φ2
S

]
≥ E

[
φτq

2
S,τ/(2

kk!)2
]

= E
[
φτq

2
S,τ

]
/(2kk!)2.

By Claim 4.3, E
[
φτq

2
S,τ

]
≥ αd and hence E

[
Φ2
S

]
≥ αd/(2kk!)2.
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We say that Φ depends on the variable xi if there exist two vectors x and x′ that differ only in the i-th
coordinate such that Φ(x) 6= Φ(x′).

Theorem 4.5. Let I be an instance of arity at most k. Suppose that Φ depends on at least ν variables. Then
Var [Φ] ≥ νβk/k.

Proof. Consider the Efron—Stein decomposition of Φ. Let V ′ =
⋃
S:ΦS 6=0 {xi : i ∈ S}. Note that Φ de-

pends on all variables in V ′ and no other variables. Thus, |V ′| ≥ ν. There are at least ν/k non-empty sets S
with ΦS 6= 0 since each such set S contributes at most k elements to V ′. For S 6= ∅, we have E [ΦS ] = 0
and hence Var [ΦS ] = E

[
Φ2
S

]
. By Lemma 4.4, Var [ΦS ] = E

[
Φ2
S

]
≥ βk if ΦS 6= 0 and S 6= ∅. We have,

Var [Φ] =
∑
S

Var [ΦS ] ≥ | {S 6= ∅ : ΦS 6= 0} |βk ≥ (ν/k)βk.

5 Proof of Main Theorems

In this section, we prove Theorems 3.3 and 1.3. We will need the following theorem.

Theorem 5.1 (Corollary 1 from Alon, Gutin, Kim, Szeider, and Yeo [1]). Let X be a real random variable.
Suppose that E [X] = 0, E

[
X2
]

= σ2, and E
[
X4
]
< bσ4 for some b > 0. Then Pr

(
X ≥ σ/(2

√
b)
)
> 0.

Proof of Theorem 3.3. Let V ′ be the set of variables that Φ depends on (see Section 4.3 for definitions). By
Theorem 4.5, Var [Φ] ≥ |V ′| ·βk/k for some absolute constant βk > 0. By Lemma A.1, the function Φ−EΦ
satisfies condition (1) of the Bonami Lemma for the Efron—Stein Decomposition (Theorem 1.4) with some
absolute constant Ck. Hence, ‖Φ − EΦ‖44 ≤ 81kCk‖Φ − EΦ‖42. Applying Theorem 5.1 to the random
variable Φ − EΦ with σ = (|V ′|βk/k)1/2 and b = 81kCk, we get that Pr

(
Φ ≥ EΦ + |V ′|1/2/κk

)
> 0,

where κ2
k = 4kCk81k/βk. Consequently,

OPT = max
x∈[−1,1]n

Φ(x) ≥ EΦ + |V ′|1/2/κk = AV G+ |V ′|1/2/κk.

We are now ready to state the algorithm. The algorithm computes the Efron—Stein decomposition in
time Ok(m+ n). Then, using the formula V ′ =

⋃
S:ΦS 6=0 {xi : i ∈ S} (see Theorem 4.5), it finds the set V ′

also in time Ok(m+ n). It considers two cases.

1. If |V ′| ≥ κkt2, then the algorithm returns OPT ≥ AV G+ t.

2. Otherwise, if |V ′| < κkt
2, the algorithm outputs the restriction of I to the variables in V ′. This is a

kernel for I, since Φ depends only on the variables in V ′.

To prove Theorem 1.3, we need to show how to find an assignment satisfying AV G + t constraints if
|V ′| ≥ κkt

2. This can be easily done using 4k-rankwise independent permutations. A random permutation
α̃ is m-rankwise independent if for every subset M ⊂ {1, . . . , n} of size m, the order of elements in
M induced by α̃ is uniformly distributed (the definition is due to Itoh, Takei, and Tarui [28]). Note that
any m-wise independent permutation α̃ is also an m-rankwise independent permutation. Using the result
of Alon and Lovett [2], we can obtain a 4k-wise independent permutation α̃ supported on a set of size
nO(k). In Lemma C.1 (in Appendix C), we show that for some permutation α∗ in the support of α̃, we have
valI(α

∗) ≥ AV G+ t. Hence, to find an assignment satisfying AV G+ t constraints, we need to search for
the best permutation in the support of α∗, which can be done in time nO(k).
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6 Bonami Lemma

In this section, we prove the Bonami Lemma for the Efron—Stein decomposition (Theorem 1.4) stated in
the introduction. Our starting point will be the standard Bonami Lemma for Bernoulli ±1 random variables.
Due to space limitations, we present most of the proofs in Section B.

Lemma 6.1 (see [4, 11]). Let f : {−1, 1}n → R be a polynomial of degree at most d. Let X1, . . . , Xn be
independent unbiased ±1-Bernoulli variables. Then

E
[
f(X1, . . . , Xn)4

]
≤ 9dE

[
f(X1, . . . , Xn)2

]2
.

We will consider the following probability distribution in this proof. Let Z be a random variable equal
to 3 with probability 1/4 and to −1 with probability 3/4. Denote by Z the probability distribution of Z. We
first prove a variant of the Bonami Lemma for random variables distributed according to Z .

Lemma 6.2. Let f : {−1, 3}n → R be a polynomial of degree at most d. Let Z1, . . . , Zn be independent
random variables distributed according to Z . Then

E
[
f(Z1, . . . , Zn)4

]
≤ 81dE

[
f(Z1, . . . , Zn)2

]2
.

Now let f ∈ L2(Ωn, µn) and f =
∑

S fS be its Efron—Stein decomposition. Define polynomialMf : Rn →
R by

Mf,S = (1/3)|S|/2E
[
f2
S

]1/2 for every S ⊆ {1, . . . , n},

Mf (Z1, . . . , Zn) =
∑

S⊆{1,...,n}

Mf,S

∏
i∈S

Zi.

We now get bounds for moments of f(X1, . . . , Xn) in terms of moments of Mf (Z1, . . . , Zn).

Claim 6.3. Let Zi be independent random variables distributed according to Z . We have,

E [Mf (Z1, . . . , Zn)] = |E [f(X1, . . . , Xn)] | and E
[
Mf (Z1, . . . , Zn)2

]
= E

[
f(X1, . . . , Xn)2

]
.

Claim 6.4. Let f andC be as in the condition of Theorem 1.4. Then E
[
f(X1, . . . , Xn)4

]
≤ CE

[
Mf (Z1, . . . , Zn)4

]
.

Proof. Write,
E
[
f4
]

=
∑

S1,S2,S3,S4
E [fS1fS2fS3fS4 ], and

E
[
M4
f

]
=
∑

S1,S2,S3,S4
Mf,S1Mf,S2Mf,S3Mf,S4E

[∏
i1∈S1

Zi1
∏
i2∈S2

Zi2
∏
i3∈S3

Zi3
∏
i4∈S4

Zi4
]
.

To prove the claim, we will show in Appendix B that for every four sets S1, S2, S3, S4, the following
inequality holds, and, therefore, E

[
f4
]
≤ C E

[
M4
f

]
:

E [fS1fS2fS3fS4 ] ≤ CMf,S1Mf,S2Mf,S3Mf,S4E

 ∏
i1∈S1

Zi1
∏
i2∈S2

Zi2
∏
i3∈S3

Zi3
∏
i4∈S4

Zi4

 . (6)

Proof of Theorem 1.4. By Lemma 6.2, we have

‖Mf (Z1, . . . , Zn)‖44 ≤ 81d‖Mf (Z1, . . . , Zn)‖42.

From Claims 6.3 and 6.4, we get

E
[
f(X1, . . . , Xn)4

]
≤ CE

[
Mf (Z1, . . . , Zn)4

]
≤ 81dCE

[
Mf (Z1, . . . , Zn)2

]2
= 81dCE

[
f(X1, . . . , Xn)2

]2
.
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A Bonami Lemma for ordering CSPs

We are going to apply Theorem 1.4 (the Bonami Lemma for the Efron—Stein decomposition) to the function
f = Φ−E [Φ], where Φ is the objective function of the ordering CSP problem. We now show that f satisfies
the condition of the theorem with some constant C that depends only on the arity of the CSP.

Lemma A.1. There exists a sequence of constants Ck such that the following holds. Let I be an instance of
an ordering CSP of arity at most k. Let f = Φ− E [Φ]. Then

E [fS1fS2fS3fS4 ] ≤ Ck
(
E
[
f2
S1

]
E
[
f2
S2

]
E
[
f2
S3

]
E
[
f2
S4

])1/2
.
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Proof. We assume that all sets S1, . . . , S4 are non-empty as otherwise both the left and right hand sides of
the inequality are equal to 0 (since f∅ = E [f ] = 0). Therefore, fSi = ΦSi for i ∈ {1, . . . , 4}.

Note that |S1 ∪ S2 ∪ S3 ∪ S4| ≤ 4k. So without loss of generality, we may assume that S1, S2, S3, S4 ⊂
{1, . . . , 4k}. Let Q be the set of all functions of x1, . . . , x4k of the form∑

φτ (x1, . . . , xk)qS,τ (x1, . . . , xk),

where qS,τ are some polynomials of degree at most k (not necessarily with integer coefficients). By Corol-
lary 4.2, fS1 , fS2 , fS3 , fS4 ∈ Q. Let Q1 = {h ∈ Q : ‖h‖2 = 1}. Note that Q1 is a compact set (since Q is a
finite dimensional space; and ‖ · ‖2 is a norm on it). Therefore, the continuous function W (g1, g2, g3, g4) =
E [g1g2g3g4] is bounded when g1, g2, g3, g4 ∈ Q1. Denote its maximum by Ck (note that Ck depends only
on k and not on I).

Let gi = fSi/‖fSi‖2. Note that gi ∈ Q1. We have,

E

[
4∏
i=1

fSi

]
= E

[
4∏
i=1

gi

]
·

4∏
i=1

‖fSi‖2 ≤ Ck ·
4∏
i=1

‖fSi‖2,

as required.

B Proofs from Section 6

Proof of Lemma 6.2. Consider 2nBernoulli random variables Y ′1 , . . . , Y
′
n, Y

′′
1 , . . . , Y

′′
n (uniformly distributed

in {−1, 1}). Note that random variables Z̃i ≡ Y ′i + Y ′′i + Y ′i Y
′′
i are distributed in the same way as random

variables Zi. Therefore,

E
[
f(Z1, . . . , Zn)4

]
= E

[
f(Z̃1, . . . , Z̃n)4

]
,

E
[
f(Z1, . . . , Zn)2

]2
= E

[
f(Z̃1, . . . , Z̃n)2

]2
.

Now f(Z̃1, . . . , Z̃n) is a polynomial of±1 variables Y ′1 , . . . , Y
′
n, Y

′′
1 , . . . , Y

′′
n of degree at most 2d. Applying

Lemma 6.1 to f(Z̃1, . . . , Z̃n), we get

E
[
f(Z̃1, . . . , Z̃n)4

]
≤ 92dE

[
f(Z̃1, . . . , Z̃n)2

]2
,

and, therefore,
E
[
f(Z1, . . . , Zn)4

]
≤ 81dE

[
f(Z1, . . . , Zn)2

]2
,

as required.

Proof of Claim 6.3. Note that E [Zi] = 0 and thus E [Mf (Z1, . . . , Zn)] = Mf,∅ = |f∅| = |E [f ] |.
Also,

E
[
Mf (Z1, . . . , Zn)2

]
=

∑
S⊆{1,...,n}

M2
f,S · E[

∏
i∈S

Z2
i ].

Since E
[
Z2
i

]
= 3, we have E

[∏
i∈S Z

2
i

]
= 3|S|, and therefore

E
[
Mf (Z1, . . . , Zn)2

]
=

∑
S⊆{1,...,n}

(
(1/3)|S|/2E

[
f2
S

]1/2)2
· 3|S| =

∑
S⊆{1,...,n}

E
[
f2
S

]
= E

[
f2
]
.

13



Proof of Inequality (6). We now prove inequality (6).

E [fS1fS2fS3fS4 ] ≤ CMf,S1Mf,S2Mf,S3Mf,S4E

∏
i∈S1

Zi
∏
i∈S2

Zi
∏
i∈S3

Zi
∏
i∈S4

Zi

 .
Note first that if some index j appears in exactly one of the sets S1, S2, S3, and S4 then the expressions on
the left and on the right are equal to 0 (by Property 3 of the Efron—Stein decomposition in Section 3.3), and
we are done. So we assume that every index j in S1∪S2∪S3∪S4 appears in at least 2 of the sets Si. Denote
the number of times j appears in sets Si by m(j).

By the condition of Theorem 1.4 and the definition of coefficients Mf,Si ,

E [fS1fS2fS3fS4 ] ≤ C
(
E
[
f2
S1

]
E
[
f2
S2

]
E
[
f2
S3

]
E
[
f2
S4

])1/2 (7)

= C · 3(|S1|+|S2|+|S3|+|S4|)/2Mf,S1Mf,S2Mf,S3Mf,S4 .

On the other hand,

E

 ∏
i1∈S1

Zi1
∏
i2∈S2

Zi2
∏
i3∈S3

Zi3
∏
i4∈S4

Zi4

 = E

[
4∏
r=1

∏
i∈Sr

Zi

]
=

∏
i∈

⋃
r Sr

E
[
Z
m(i)
i

]

=
4∏
r=1

∏
i∈Sr

(
E
[
Z
m(i)
i

] )1/m(i)
.

We compute E
[
Z
m(i)
i

]
for m(i) ∈ {2, 3, 4}. We get EZ2

i = 3, EZ3
i = 6 and EZ4

i = 21. Thus, (EZ2
i )1/2 =

√
3, (EZ3

i )1/3 = 3
√

6 >
√

3 and (EZ4
i )1/4 = 4

√
21 >

√
3, and, consequently,

E

[
4∏
r=1

∏
i∈Sr

Zi

]
≥

4∏
r=1

∏
i∈Sr

31/2 = 3(|S1|+|S2|+|S3|+|S4|)/2. (8)

Since all coefficients Mf,S are non-negative, we get from (7) and (8) that inequality (6) holds.

C Rankwise independent permutations

In this section, we prove the following lemma.

Lemma C.1. If α̃ is a random 4k rankwise independent permutation and |V ′| ≥ κkt
2, then for some α∗ in

the support of α̃, valI(α
∗) ≥ AV G+ t.

Proof. Let α be a permutation uniformly distributed among all n! permutations. The random variables
valI(α) and Φ are identically distributed. Hence,

Var[valI(α)] = Var[Φ], and ‖ valI(α)−AV G‖4 = ‖Φ−AV G‖4.

Observe, that

Var[valI(α
∗)] = Var[valI(α)], and ‖ valI(α)−AV G‖4 = ‖ valI(α

∗)−AV G‖4,

since for every four predicates π1, π2, π3, π4 ∈ Π, we have

E [π1(α∗)π2(α∗)] = E [π1(α)π2(α)] ;

E [π1(α∗)π2(α∗)π3(α∗)π4(α∗)] = E [π1(α)π2(α)π3(α)π4(α)] .

Hence, as in Theorem 3.3, Var[valI(α
∗)] ≥ |V ′|βk/k and ‖ valI(α

∗) − AV G‖44 ≤ 81kCk‖ valI(α
∗) −

AV G‖42. Consequently, by Theorem 5.1, Pr(valI(α
∗) ≥ AV G+ t) > 0. This concludes the proof.
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D General Framework

D.1 Filtered A-Lattice of Functions

In this section, we generalize the result of the paper to a more general class of constraint satisfaction prob-
lems having a lattice structure. In Appendix E, we show that LP CSPs and valued CSPs with “piece-wise
polynomial predicates” (see Appendix E for the defintion) have a lattice structure.

D.2 Discussion

We note that in our proofs we used only few properties of ordering CSPs. Specifically, in Theorem 4.1, we
showed that all functions in the Efron—Stein decomposition of the basic ordering predicate are in the set

Ford
d =

{∑
τ

φτ (x1, . . . , xk)
qS,τ (x1, . . . , xn)

2dd!

}
.

Since Ford
d is closed under addition (the sum of any two functions in Ford

d is in Ford
d ), we got that all

functions in the Efron—Stein decomposition of the ordering CSP objective Φ are also in Ford
d . Then in the

proof of Lemma 4.4, we showed that every non-zero function in Ford
d has variance at least βk (where βk

depends only on k), and this was sufficient to get the result of the paper. To summarize, we only used the
following properties of the set of functions Ford

d :

A. all functions in the Efron—Stein decomposition of each predicate are in Ford
d ,

B. Ford
d is closed under addition,

C. every non-zero function in Ford
d has variance at least β (for some fixed β > 0).

D.3 Filtered A-Lattice of Functions

We now formalize properties A, B, and C in the definitions of A-lattice of functions and filtered A-lattice of
functions. Recall first the definition of a lattice.

Definition D.1. Let V be a finite-dimensional space and L be a subset of V . We say that L is a lattice in V
if for some basis v1, . . . , vr of V , we have L = {

∑r
i=1 aivi : a1, . . . , ar ∈ Z}. We say that v1, . . . , vr is the

basis of the lattice L.

Now we define an A-lattice of functions.

Definition D.2. Let (Ω, µ) be a probability space. Consider a set F of bounded (real-valued) functions
f(x1, . . . , xk) on Ω; F ⊂ L∞(Ωk). We say that F is an A-lattice of functions of arity (at most) k on Ω if it
satisfies the following properties.

1. F is a lattice in a finite dimensional subspace of L∞(Ωk).

2. If we permute arguments of a function in F , we get a function in F . Specifically, if f ∈ F and π is a
permutation of {1, . . . , k} then g(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)) ∈ F .

For an A-lattice F , we write that a function f ∈R F if f is in F after possibly renaming the arguments
of f (in other words, f is in F as an abstract function from Ωk to R).2

2For example, let F be an A-lattice of functions of the form ax1 + bx2 where a, b ∈ Z. Then x3 + 5x7 ∈R F , since after
renaming x3 to x1 and x7 to x2 we get x3 + 5x2, which is of the form ax1 + bx2.
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Clearly, everyA-latticeF of functions satisfies property B. SinceF is discrete, it also satisfies property C
(we will prove that formally in Claim D.9). We also want to ensure that it satisfies an analog of property A.
To this end, we consider the averaging operator Ai, which takes the expectation of a function with respect to
variable xi and require that Ai maps every function in the lattice to a function in the lattice.

Definition D.3. For i ∈ {1, . . . , k}, let Ai be the averaging operator that maps a function f of arity k to a
function Aif of arity k − 1 defined as follows:

Aif(x1, . . . , xi−1, xi+1, . . . , xk) =

∫
Ω
f(x1, . . . , xk) dµ(xi)

= Ef(X1, . . . , Xk|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xk = xk).

Definition D.4. We say that a family of sets {Fα}α (indexed by integer α ≥ 1) is a filtered A-lattice of
functions of arity (at most) k if it satisfies the following properties.

1. Fα is an A-lattice of functions of arity k on Ω.

2. {Fα} is a filtration: Fα ⊂ Fα′ for α ≤ α′.

3. For every α there exists α′, which we denote by α′ = a(α), such that the operator Ai maps Fα to Fα′
(for every i ∈ {1, . . . , k}).

We remark that {Ford
d } is a filtered A-lattice. We are going to prove that our result for ordering CSPs

holds, in fact, for any constraint satisfaction problem with predicates from a filtered A-lattice.

D.4 General A-CSP(Fα, α)

Definition D.5. Consider a probability space (Ω, µ). Let Fα be a filtered A-lattice of functions and α0

is an integer. An instance I of General A-CSP(Fα, α0) consists of a set of variables x1, . . . , xn, taking
values in Ω, and a set of real-valued constraints of the form f(xi1 , . . . , xik) where f ∈R Fα. The objective
function Φ(x1, . . . , xn) is the sum of all the constraints. General A-CSP(Fα, α0) asks to find an assignment
to variables x1, . . . , xn that maximizes Φ(x1, . . . , xn).

We denote the optimal value of an instance I by OPT = ess supx1,...,xn∈Ω Φ(x1, . . . , xn) and the aver-
age by AV G = E [Φ(X1, . . . , Xn)], where X1, . . . , Xn are independent random elements of Ω distributed
according to the probability measure µ.

Remark D.1. Note that we follow the standard convention that two functions f, g ∈ L∞(Ωk) are equal if
f(x1, . . . , xk) 6= g(x1, . . . , xk) on a set of measure 0. That is, we identify functions that are equal almost
everywhere. Accordingly, we define OPT as the essential supremum of Φ: OPT is equal to the maximum
value of M such that

Pr (Φ ≥M − ε) > 0,

for every ε > 0.

We prove a counterpart of Theorem 3.3 for the General A-CSP problem.

Theorem D.6. There is an algorithm that given an instance of General A-CSP(Fα, k, α0) and a parameter
t, either finds a kernel on at most κt2 variables (where κ depends only on the filtered A-lattice {Fα} and
numbers k, α0) or certifies that OPT ≥ AV G + t. The algorithm runs in time O(m + n), linear in the
number of constraints m and variables n (the coefficient in the O-notation depends the filtered A-lattice
{Fα} and numbers k, α0).

We assume that computing the sum of two functions in Fα requires constant time and that computing
Aif requires constant time (the time may depend on α).
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We first prove analogues of Theorem 4.1 and Corollary 4.2 for General A-CSP.

Lemma D.7 (cf. Theorem 4.1). Consider a probability space (Ω, µ) and a filteredA-lattice {Fα}. For every
α, there exists α̃ so that the following holds. For every f ∈ Fα and every S ⊂ {1, . . . , k}, fS ∈ Fα̃.

Proof. Let α0 = α, α1 = a(α0) (where a is as in the definition of a filtered A-lattice), α2 = a(α1), and so
on; αi = a(αi−1). Let α̃ = maxi∈{0,...,k} αi. Consider a function f ∈ Fα and a set T ⊂ {1, . . . , k}. By (3),

f⊆T = E [f(X1, . . . , Xn)| all Xi with i ∈ T ] .

Denote the elements of {1, . . . , k} \ T by i1 < · · · < it (where t = k − |T |). Note that

f⊆T = Ai1Ai2 . . . Aitf ∈ Fαt ⊂ Fα̃,

by the definition of a filtered A-lattice. Now by (4),

fS =
∑
T⊆S

(−1)|S\T |f⊆T .

Since Fα̃ is a lattice and fS is a linear combination, with integer coefficients, of functions f⊆T (all of which
are in Fα̃), fS is in Fα̃.

Since the set of functions Fα̃ is closed under addition, we get that for every General A-CSP(Fα, α)
instance I with objective function Φ, all functions ΦS are also in Fα̃.

Corollary D.8 (cf. Corollary 4.2). Consider a probability space (Ω, µ) and a filtered A-lattice {Fα}. Let
I be an instance of General A-CSP(Fα, α0) and let Φ be its objective functions. Then for every subset
S ⊂ {1, . . . , n} of size at most k, ΦS ∈R Fα̃; for every subset S of size greater than k, ΦS = 0.

Furthermore, the Efron—Stein decomposition {ΦS} of Φ can be computed in time O(m).

D.5 Compactness Properties of Filtered A-Lattices

We now prove counterparts of Claim 4.3 and Lemma A.1 for General A-CSP.

Claim D.9 (cf. Claim 4.3). Consider a probability space (Ω, µ). Let F be anA-lattice of functions of arity k
on Ω. There exists a positive number β such that for every function f ∈ F , E

[
f2
]

= E
[
f(X1, . . . , Xk)

2
]
≥

β.

Proof. Let f1, . . . , fr be the basis of lattice F . Consider the linear span Q of functions f1, . . . , fr (the
set of all linear combinations with real coefficients). Vector space Q is finite dimensional. Let Q1 =
{
∑
aifi : maxi |ai| = 1}. Note that Q1 is a compact set. All functions in Q1 are non-zero (since f1, . . . , fr

are linearly independent), and, therefore, E
[
g2
]
> 0 for every g ∈ Q1. SinceQ1 is compact, ming∈Q1 E

[
g2
]

=
infg∈Q1 E

[
g2
]
> 0. Denote β = ming∈Q1 E

[
g2
]
.

Now consider a non-zero function f ∈ F . Write f =
∑r

i=1 aifi. Let M = maxi |ai|. Since f 6= 0 and
all coefficients ai are integer, M ≥ 1. Note that f/M ∈ Q1. We have,

E
[
f2
]

= M2 E
[
(f/M)2

]
≥ βM2 ≥ β,

as required.

Lemma D.10 (cf. Lemma A.1). Consider a probability space (Ω, µ). Let F be an A-lattice of functions of
arity k on Ω. There exists a constant C such that the following holds. Let f1, f2, f3, f4 be functions of arity
at most k; each of them depends on a subset of variables {x1, . . . , xn}. Assume that f1, f2, f3, f5 ∈R F (see
Definition D.2). Then

E [f1f2f3f4] ≤ C
(
E
[
f2

1

]
E
[
f2

2

]
E
[
f2

3

]
E
[
f2

4

])1/2
.
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Proof. Each function fi depends on at most k variables among x1, . . . , xn. So without loss of generality, we
may assume that they depend on a subset of x1, . . . , x4k. For every subset T of {x1, . . . , x4k} of size k, let
F (T ) be the set of functions f that depend only on variables in T such that f ∈R F . Let Q(T ) be the linear
span of F (T ). Since F is finite dimensional (by the definition of an A-lattice), all vector spaces Q(T ) are
also finite dimensional. Finally, let Q be the set of all functions of x1, . . . , x4k of the form

∑
T f

(T ), where
the summation is over all subsets of x1, . . . , x4k of size k, and f (T ) ∈ F (T ). Note that Q is also a finite
dimensional vector space of functions.

Now let Q1 = {h ∈ Q : ‖h‖2 = 1}. Note that Q1 is a compact set. Therefore, the continuous function
W (g1, g2, g3, g4) = E [g1g2g3g4] is bounded when g1, g2, g3, g4 ∈ Q1. Denote its maximum by C.

Let gi = fi/‖fi‖2. We have,

E

[
4∏
i=1

fi

]
= E

[
4∏
i=1

gi

]
·

4∏
i=1

‖fi‖2 ≤ C ·
4∏
i=1

‖fi‖2,

as required.

D.6 Variance of A-CSP Objective

We now prove a counterpart of Theorem 4.5 for General A-CSP(Fα, k, α).

Lemma D.11 (cf. Theorem 4.5). Consider a probability space (Ω, µ). Let {Fα} be a filtered A-lattice and
α0 be an integer. There exists a number β > 0, which depends only on {Fα} and α0 such that the following
holds. Let I be an instance of General A-CSP(Fα, α0) and σ be a parameter. Either I has a kernel on at
most (k/β)σ2 variables or Var [Φ] ≥ σ2. Moreover, there is an algorithm that either finds a kernel on at
most (k/β)σ2 variables or certifies that Var [Φ] ≥ σ2. The algorithm runs in time O(m+n), where n is the
number of variables and m is the number of constraints.

Proof. Let α̃ be as in Lemma D.7. Since Fα̃ is an A-lattice, by Claim D.9, there exists β > 0 such that
‖f‖22 ≥ β for every non-zero f ∈ Fα̃. Note that β does not depend on n and t.

Consider the Efron—Stein decomposition of Φ. Let V ′ =
⋃
S:ΦS 6=0 {xi : i ∈ S}. Function Φ depends

only on variables in V ′. Therefore, the restriction of I to variables in V ′ is a kernel for I. Let ν = |V ′|. If
ν < (k/β)σ2, then we are done. So let us assume that ν ≥ (k/β)σ2. There are at least ν/k non-empty sets
S with ΦS 6= 0 since each such set S contributes at most k variables to V ′. Note that E [ΦS ] = 0 for S 6= ∅
and hence Var [ΦS ] = E

[
Φ2
S

]
. Since ΦS ∈ Fα̃, Var [ΦS ] = E

[
Φ2
S

]
≥ β, if ΦS 6= 0 and S 6= ∅. We have,

Var [Φ] =
∑
S

Var [ΦS ] ≥ | {S 6= ∅ : ΦS 6= 0} |β ≥ (ν/k)β ≥ σ2,

as required.
Note that we can compute the Efron—Stein decomposition of Φ in time O(m+ n) and then find the set

V ′ in time O(m + n). If |V ′| < (k/β)σ2, we output the restriction of I to V ′ (which we compute in time
O(m+ n)). Otherwise, we output that Var [Φ] ≥ σ2.

D.7 Proof of Theorem D.6

We are ready to prove Theorem D.6.

Proof. Let β be as in Lemma D.11 and C be as in Lemma D.10. Let σ2 = 4 · 81kCt2. Denote f =
Φ− E [Φ] = Φ−AV G. Note that ess supx∈Ωn f(x1, . . . , xn) = MAX −AV G.

By Lemma D.11, either I has a kernel on at most (k/β)σ2 = (4·81k ·kC/β)t2 variables or Var [f ] ≥ σ2.
In the former case, we output the kernel, and we are done. In the latter case, we show thatOPT −AV G ≥ t.
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Assume that Var [f ] ≥ σ2. By Theorem 1.4 and Lemma D.10, ‖f‖44 ≤ 81kC‖f‖22. By Theorem 5.1,

Pr
(
f ≥ σ/(2 · 9k

√
C)
)
> 0, and hence MAX −AV G ≥ σ/(2 · 9k

√
C) ≥ t.

The algorithm only executes the algorithm from Lemma D.11, so its running time is O(m+ n).

E Piecewise Polynomial Predicates

In this section, we present an interesting example of a filtered A-lattice, the set of piecewise polynomial
functions. As a corollary, we get that the problem of maximizing the objective over average for a CSP with
piecewise polynomial functions is fixed-parameter tractable.

Definition E.1. Let us say that a subset P of [−1, 1]k is b-polyhedral if it is defined by a set of linear
inequities on x1, ..., xk, in which all coefficients are bounded by b in absolute value. In other words, P is
a b-polyhedral set if for some t there exist a k × t matrix A and vector c (with t coordinates) such that
P = {x : Ax < c} (here, the inequality Ax < c is understood coordinate-wise), and every entry of A and
coordinate of c is bounded by b in absolute value. We denote the indicator function of a polyhedral set P by
IP .

Definition E.2. We denote the set of polynomials f(x1, . . . , xk) with real coefficients of degree at most d by
R≤d[x1, . . . , xk]; we denote the set of polynomials f(x1, . . . , xk) with integer coefficients of degree at most
d by Z≤d[x1, . . . , xk].

Definition E.3. We say that a function f(x1, ..., xk) : [−1, 1]k → R is piecewise polynomial on polyhedral
sets or (d, b)-PPP if f is the sum of terms of the form g(x1, ..., xk)IP (x1, ..., xk), where g ∈ Z≤d[x1, . . . , xk]
and P is a b-polyhedral set.

We note that every (d, b)-PPP function can be written in the following “canonical form”. Consider all
hyperplanes in Rk of the form 〈a, x〉 = c, in which a, c ∈ {−b, . . . , b}k. They partition [−1, 1]d into polyhe-
drons. We call these polyhedrons elementary polyhedrons and denote the set of all elementary polyhedrons
by Pelem. Note that each b-polyhedral set is a union of elementary polyhedrons. Thus we can write every
(d, b)-PPP function f as follows:

f(x1, . . . , xk) =
∑

P∈Pelem

IP (x1, . . . , xk)gP (x1, . . . , xk), (9)

where gP ∈ Z≤d[x1, . . . , xk].

Theorem E.4. Let Ω = [−1, 1] and µ be the uniform measure on [−1, 1]. Let

Fα = {f : (α!f) is an (α, α)-PPP function of variables x1, . . . , xk} .

Then Fα is a filtered A-lattice of functions.

Proof. First, we prove that each set Fα is an A-lattice. It follows from (9) that Fα is a lattice with basis
IP (x1, . . . , xk)g(x1, . . . , xk)/α!, where P ∈ Pelem and g(x1, . . . , xk) is a monomial of degree at most α
(i.e., g is of the form xr11 . . . xrkk ). Since every monomial g is bounded on [−1, 1]k, every basis function is
bounded, and, therefore, all functions in Fα are bounded. The definition of Fα is symmetric with respect to
x1, . . . , xk, hence if we permute the arguments of any function f ∈ Fα, we get a function in Fα.

Now we show that Fα is a filtered A-lattice. The inclusion Fα ⊂ Fα′ for α ≤ α′ is immediate. It
remains to show that for every α there exists α′ such that Ai maps Fα to Fα′ . Let a =

(
2α
α

)
and α′ = aα+1

(we note that, in fact, we can choose a much smaller value of α′; however, we use this value to simplify the
exposition). Observe that all integer numbers between 1 and α divide a.
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It is sufficient to prove that Ai sends every basis function

f(x1, . . . , xk) = IP (x1, . . . , xk)g(x1, . . . , xk)/α!

toFα′ . Moreover, since the set of functionsFα is invariant under permutation of function arguments, we may
assume without loss of generality that i = k. Denote g = xr11 . . . xrkk , where r1 + . . . rk ≤ α. Consider the
set of linear inequalities L that define polyhedron P . All coefficients in each of the inequalities are bounded
by α in absolute value. Let L0 be those inequalities that do not depend on xk and L1 be those that do depend
on xk. We rewrite every inequality in L1 as follows. Consider an inequality in L1. Let λ be the coefficient
of xk in it. We multiply the inequality by a/λ ∈ Z, and if λ < 0, we change the comparison sign in the
inequality to the opposite. Finally, we move all terms in the inequality other than axk to the right hand side.
We get an equivalent inequality of the form either axk > l(1, x1, . . . , xk−1) or axk < u(1, x1, . . . , xk−1),
where l and u are linear functions with integer coefficients bounded by αa in absolute value. Denote the
inequalities of the form axk > l(1, x1, . . . , xk−1) by

axk > l1(1, x1, . . . , xk−1), axk > l2(1, x1, . . . , xk−1), . . . , axk > lp(1, x1, . . . , xk−1),

and the inequalities of the form axk < u(1, x1, . . . , xk−1) by

axk < u1(1, x1, . . . , xk−1), axk < u2(1, x1, . . . , xk−1), . . . , axk < uq(1, x1, . . . , xk−1).

LetM0 be the set of points x = (x1, . . . , xk) such that lj′(x1, . . . , xk) = lj′′(x1, . . . , xk) or uj′(x1, . . . , xk) =
uj′′(x1, . . . , xk) for some j′ 6= j′′. Note that M0 has measure 0.

Define pq polyhedrons Pj1j2 in Rk−1. For j1 ∈ {1, . . . , p} and j2 ∈ {1, . . . , q}, let Pj1j2 be the polyhe-
dron defined by the following inequalities:

1. all inequalities in L0,

2. inequality lj1(1, x1, . . . , xk−1) < uj2(1, x1, . . . , xk−1),

3. inequalities lj(1, x1, . . . , xk−1) < lj1(1, x1, . . . , xk−1) for every j 6= j1,

4. inequalities uj(1, x1, . . . , xk−1) > uj2(1, x1, . . . , xk−1) for every j 6= j2.

Inequalities in items 2–4 are equivalent to the following condition (except for points in M0):

max
j
lj(1, x1, . . . , xk−1) = lj1(1, x1, . . . , xk−1) < uj2(1, x1, . . . , xk−1) = min

j
uj(1, x1, . . . , xk−1). (10)

Note that if (x1, . . . , xk) ∈ P \M0 then (x1, . . . , xk−1) ∈ Pj1j2 for

j1 = arg max
j

lj(1, x1, . . . , xk−1) and j2 = arg min
j

uj(1, x1, . . . , xk−1).

Also note that polyhedrons Pj1j2 are disjoint. Now let

hj1j2(x1, . . . , xk−1) =
1

2α!ark+1(rk + 1)
(uj2(1, x1, . . . , xk−1)rk+1−lj1(1, x1, . . . , xk−1)rk+1)xr11 . . . x

rk−1

k−1 .

Let x′ = (x1, . . . , xk−1) be a point in [−1, 1]k−1. Consider two cases.
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Case 1. First, assume that x′ ∈ Pj1j2 for some j1 and j2. Then

Akf(x′) =
1

2α!

∫ 1

−1
IP (x1, . . . , xk)g(x1, . . . , xk)dxk.

The point (x1, . . . , xk) satisfies all inequalities in L0 since x′ ∈ Pj1j2 . Hence, IP (x1, . . . , xk) = 1 if and
only if it satisfies all inequalities in L1, which are equivalent to

max
j
lj(1, x1, . . . , xk−1) ≤ axk ≤ min

j
uj(1, x1, . . . , xk−1).

Combining this with (10), we get that IP (x1, . . . , xk−1) = 1 if and only if

xk ∈
[

1

a
lj1(1, x1, . . . , xk−1),

1

a
uj2(1, x1, . . . , xk−1)

]
.

Therefore,

Akf(x′) =
1

2α!

∫ uj2 (1,x1,...,xk−1)/a

lj1 (1,x1,...,xk−1)/a
xr11 . . . xrkk dxk

=
1

2α!ark+1(rk + 1)
(uj2(1, x1, . . . , xk−1)rk+1 − lj1(1, x1, . . . , xk−1)rk+1)xr11 . . . x

rk−1

k−1

= hj1j2(x′).

Case 2. Now assume that x′ /∈ Pj1j2 for every j1 and j2. Then there is no xk such that (x1, . . . , xk) ∈
P \M0. Therefore,

Akf(x′) =
1

2α!

∫ 1

−1
IP (x1, . . . , xk)g(x1, . . . , xk)dxk =

1

2α!

∫ 1

−1
0 · g(x1, . . . , xk)dxk = 0.

(The equality holds on a set of full measure; see Remark D.1.)
We conclude that

Akf(x′) =
∑
j1,j2

IPj1j2hj1j2(x′).

All coefficients in the inequalities that define Pj1j2 are bounded by 2αa in absolute value, and 2α!ark+1(rk+
1)h(x′) ∈ Z≤α+1. Therefore, 2α!ark+1(rk+1)Akf is an (α+1, 2αa)-PPP function. ThusAkf ∈ Fα′ .

From Theorems D.6 and E.4, we get the following corollary.

Corollary E.5. For every k, d and b, there is an algorithm that given an instance of a constraint satisfaction
problem on n variables x1, . . . , xn with m real-valued constraints, each of which is a (d, b)-PPP function of
arity k, and a parameter t, either finds a kernel on at most κt2 variables or certifies that OPT ≥ AV G+ t.
The algorithm runs in time O(m + n). (The coefficient κ and the coefficient in the O-notation depend only
on k, d, and b).

Proof. Let α = max(d, b). We apply Theorem D.6 to filtered A-lattice Fα from Theorem E.4 and get the
corollary.

Since every constraint in a (k, b)-LP CSP problem is a (0, b)-PPP function of arity k (see Definition 1.5),
we get the following corollary.
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Corollary E.6. For every k and b, there is an algorithm that given an instance of (k, b)-LP CSP either finds
a kernel on at most κt2 variables or certifies that OPT ≥ AV G+ t. The algorithm runs in time O(m+ n)
(The coefficient κ and the coefficient in the O-notation depend only on k and b).

Remark E.1. Note that for an instance of (k, b)-LP CSP, we have

OPT = max
x1,...,xn∈[−1,1]

Φ(x1, . . . , xn) = ess sup
x1,...,xn∈[−1,1]

Φ(x1, . . . , xn),

since all LP constraints are strict. If we were to use non-strict “less-than-or-equal-to” and “greater-than-
or-equal-to” LP constraints, we would have to define OPT as ess supx1,...,xn∈[−1,1] Φ(x1, . . . , xn), and
not as maxx1,...,xn∈[−1,1] Φ(x1, . . . , xn), since, in general, ess supx1,...,xn∈[−1,1] Φ(x1, . . . , xn) might not be
equal to maxx1,...,xn∈[−1,1] Φ(x1, . . . , xn). For example, consider an instance of (2, 1)-LP CSP with two
constraints x1 ≤ x2 and x2 ≤ x1; we have

OPT = ess sup
x1,...,xn∈[−1,1]

Φ(x1, . . . , xn) = 1,

but
max

x1,...,xn∈[−1,1]
Φ(x1, . . . , xn) = 2.

(The maximum is attained on a set of measure 0, where x1 = x2.)
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