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HMM for sequence alignment: 
profile HMM 

Pair HMM 

HMM for pairwise sequence alignment, 
which incorporates affine gap scores. 

“Hidden” States 
¥! Match (M) 

¥! Insertion in x (X) 

¥! insertion in y (Y) 

Observation Symbols 
¥! Match (M): {(a,b)| a,b in ∑ }. 
¥! Insertion in x (X): {(a,-)| a in ∑ }. 
¥! Insertion in y (Y): {(-,a)| a in ∑ }. 

Pair HMMs 
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Alignment: a path  a hidden state 
sequence 

A T - G T T A T 
A T C G T - A C 
 
M M Y M M X M M 

Multiple sequence alignment 
(Globin family) 

Profile model (PSSM) 

¥! A natural probabilistic model for a conserved 
region would be to specify independent 
probabilities ei(a) of observing nucleotide 
(amino acid) a in position i  

¥! The probability of a new sequence x according 
to this model is 

€ 

P(x |M) = ei(xi)
i=1

L

∏
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Profile / PSSM 
LTMTRGDIGNYLGLTVETISRLLGRFQKSGML 
LTMTRGDIGNYLGLTIETISRLLGRFQKSGMI 
LTMTRGDIGNYLGLTVETISRLLGRFQKSEIL 
LTMTRGDIGNYLGLTVETISRLLGRLQKMGIL 
LAMSRNEIGNYLGLAVETVSRVFSRFQQNELI 
LAMSRNEIGNYLGLAVETVSRVFTRFQQNGLI 
LPMSRNEIGNYLGLAVETVSRVFTRFQQNGLL 
VRMSREEIGNYLGLTLETVSRLFSRFGREGLI 
LRMSREEIGSYLGLKLETVSRTLSKFHQEGLI 
LPMCRRDIGDYLGLTLETVSRALSQLHTQGIL 
LPMSRRDIADYLGLTVETVSRAVSQLHTDGVL 
LPMSRQDIADYLGLTIETVSRTFTKLERHGAI 

¥!DNA / proteins Segments 
of the same length L; 

¥!Often represented as 
Positional frequency 
matrix; 

Searching profiles: inference 

¥! Give a sequence S of length L, compute the 
likelihood ratio of being generated from this 
profile vs. from background model: 
Ð!R(S|P)= 

Ð!Searching motifs in a sequence: sliding window 
approach 

€ 

ei xi( )
qxii=1

L

∏

Match states for profile HMMs 

¥! Match states 
Ð!Emission probabilities )(ae

iM

beg M1 M2 ML end Mj 

Components of profile HMMs 
¥! Insert states 

Ð!Emission prob. 
¥! Can be the background distribution qa. 

Ð!Transition prob. 
•! Mi to Ii, Ii to itself, Ii to Mi+1 

Ð!Log-score for a gap of length k (not including the 
log-score from emission) 

)(I ae
i

jjjjjj
akaa II1MIIM log)1(loglog !++ +

beg M1 M2 ML end 

I2 I1 IL I0 

Mj 

Ij 

Components of profile HMMs 

¥! Delete states 
Ð!No emission prob. 

Ð!Cost of a deletion 
¥! Mi to Di+1, Di to Di+1, Di to Mi+1 

¥! Each Di to Di+1 might be different for different i  

beg M1 M2 ML end 

D2 DL D1 

Mj 

Dj 

Full structure of profile HMMs 

This is the structure implemented in Hmmer, slightly different from the structure 
described in the textbook: there is no transition allowed from Dj to Ij or from Ij to 
Dj+1. As a result, the recursive equation for Viterbi algorithm is different from the 
one described in the book too.  

beg M1 M2 ML end 

I2 I1 IL I0 

D2 DL D1 

Mj 

Ij 

Dj 
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Deriving HMMs from multiple 
alignments 

¥! Key idea behind profile HMMs 
Ð!Model representing the consensus for the 

alignment of sequence from the same family 

Ð!Not the sequence of any particular member 

HBA_HUMAN   ...VGA--HAGEY... 
HBB_HUMAN   ...V----NVDEV... 
MYG_PHYCA   ...VEA--DVAGH... 
GLB3_CHITP  ...VKG------D... 
GLB5_PETMA  ...VYS--TYETS... 
LGB2_LUPLU  ...FNA--NIPKH... 
GLB1_GLYDI  ...IAGADNGAGV... 
               ***  ***** 

Deriving HMMs from multiple 
alignments 

¥! Basic profile HMM parameterization 
Ð!Aim: making the higher probability for sequences from 

the family 

¥! Parameters 
Ð!the transition and emission probabilities: trivial if many 

of independent alignment sequences are given. 

Ð! length of the model: heuristics or systematic way 
(e.g., using the MAP algorithm) 

∑∑
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Deriving HMMs from multiple alignments 

beg M1 M2 M3 end 

I2 I1 I3 I0 

D2 D3 D1 

            x x . . . x 
bat         A G - - - C 
rat         A G A G - C 
cat         A G - A A G 
gnat        - G A A A C 
goat        A G - - - C 
Matching    1 2 . . . 3 

(a) Multiple alignment: 

(b) Profile-HMM architecture: 

0 1 2 3 4 

      0  1  2  3 
A     -  4  0  0 
C     -  0  0  4 
G     -  0  5  1 
T     -  0  0  0 
A     0  0  6  0 
C     0  0  0  0 
G     0  0  1  0 
T     0  0  0  0 
M-M   4  4  2  4 
M-D   1  0  0  0 
M-I   0  0  3  0 
I-M   0  0  2  0 
I-I   0  0  4  0 
D-M   -  1  0  0 
D-D   -  0  0  0 

(c) Observed emission/transition counts 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

A simple rule that works well 
is that columns that are more 
than half gap characters 
should be modeled by inserts. 

Sequence conservation: entropy of the 
emission probability distributions 

High entropy indicates non-conserved positions (note: here negative entropy a plotted. 

Matching a sequence to a profile 
HMM (global alignment) 

¥! Viterbi algorithm: pHMM ! (with L matching 
states) and a query sequence x1x2..xN  

€ 

Vj
M(i) = eM j

(xi )⋅ max
Vj −1
M (i −1)⋅ aM j −1M j

,
Vj −1
I (i −1)⋅ aI j −1M j

,
Vj −1
D (i −1)⋅ aD j −1M j

;

$ 

% 
& 

' 
& 

Vj
I(i) = eI j

(xi )⋅ max
Vj
M(i −1)⋅ aM j I j

,

Vj
I(i −1)⋅ aI j I j

;

$ 
% 
& 

' & 

Vj
D(i) =max

Vj −1
M (i)⋅ aM j −1D j

,

Vj −1
D (i)⋅ aD j −1D j

;

$ 
% 
& 

' & 

Note: this is slightly different from the textbook; no transition from Dj to Ij or from Ij to Dj+1.   

€ 

V0
M 0( ) =1; V j>0

M 0( ) = 0; V0
M i > 0( ) = 0;

V j
I 0( ) = 0;

V0
D i( ) = 0;.

Initialization:  

€ 

V =max VL
M N( ),VL

I N( ),VL
D N( )[ ]

Termination:  

for i=1,É,L, j=1,É,N   

Viterbi algorithm: trace back 

€ 

ptrj
M(i) =

if V j
M(i) = eM j

(xi)⋅ V j−1
M (i −1)⋅ aM j−1M j

if V j
M(i) = eM j

(xi)⋅ V j−1
I (i −1)⋅ aI j−1M j

if V j
M(i) = eM j

(xi)⋅ V j−1
D (i −1)⋅ aD j−1M j

$ 

% 
& & 

' 
& 
& 

ptrj
I(i) =

if V j
I(i) = eI j (xi)⋅V j

M(i −1)⋅ aM j I j
,

if V j
I(i) = eI j (xi)⋅ V j

I(i −1)⋅ aI j I j ;

$ 
% 
& 

' & 

ptrj
D(i) =

if V j
D(i) = eD j

(xi)⋅ V j−1
M (i)⋅ aM j−1D j

,

if V j
D(i) =eD j

(xi)⋅ V j−1
D (i)⋅ aD j−1D j

;

$ 
% 
& 

' & 

€ 

ptrter =

M if V =VL
M N( )

I if V =VL
I N( )

D if V =VL
D N( )

" 

# 
$ 

% 
$ 

PrintStateSeq(ptrM, ptrI, ptrD, ptrter, i, j) 
     if i=0 or j=0 
            return; 
     if ptrter = “M” 
          if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “M”, i-1, j-1) 
          else if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “I”, i-1, j-1) 
          else if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “D”, i-1, j-1) 
          print Mj 

       else if ptrter = “I” 
          if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “M”, i-1, j) 
          else if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “I”, i-1, j) 
          print Ij 
     else 
          if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “M”, i, j-1) 
          else if ptrM(L) = “      ” 
                 printStateSeq(ptrM, ptrI, ptrD, “D”, i, j-1) 
          print Dj  
 

PrintStateSeq(ptrM, ptrI, ptrD, ptrter, N, L)  
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¥! Forward: pHMM ! (with L matching states) 
and a query sequence x1x2..xN  

€ 

Fj
M(i) = eM j

(xi)⋅ Fj−1
M (i −1)⋅ aM j−1M j

+Fj−1
I (i −1)⋅ aI j−1M j

+Fj−1
D (i −1)⋅ aD j−1M j[ ]

Fj
I(i) = eI j (xi)⋅ Fj

M(i −1)⋅ aM j I j
+Fj

I(i −1)⋅ aI j I j[ ]
Fj
D(i) = Fj−1

M (i)⋅ aM j−1D j
+Fj−1

D (i)⋅ aD j−1D j

Note: this is slightly different from the textbook; no transition from Dj to Ij or from Ij to Dj+1.   

Initialization:  

€ 

F = FL
M N( ) + FL

I N( ) + FL
D N( )

Termination:  

for i=1,É,L, j=1,É,N   

Matching a sequence to a 
profile HMM (global alignment) 

€ 

F0
M 0( ) =1; Fj>0

M 0( ) = 0; F0
M i > 0( ) = 0;

Fj
I 0( ) = 0;

F0
D i( ) = 0;

Example 

beg M1 M2 M3 end 

I2 I1 I3 I0 

D2 D3 D1 

0 1 2 3 4 

L=3 

     0  1  2  3 
A    -  1 .5  0 
C    -  0  0 .8 
G    -  0 .5 .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

Query: AGG (N=3) 

Example: Viterbi algorithm 
     0  1  2  3 
A    -  1 .5  0 
C    -  0  0  .8 
G    -  0 .5  .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

i     0  1  2  3 
VM   1  0  0  0 
VI    0 
VD   0  0  0  0    
VM   0 
VI    0 
VD    
VM   0 
VI    0 
VD 
VM   0 
VI    0 
VD 

0 

Query: X=AGG (N=3) 

j 

1 

2 

3 

Initialization 

Example: Viterbi algorithm 
     0  1  2  3 
A    -  1 .5  0 
C    -  0  0  .8 
G    -  0 .5  .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

i     0  1  2  3 
VM   1  0  0  0 
VI    0 
VD   0  0  0  0    
VM   0 
VI    0 
VD  .2 
VM   0 
VI    0 
VD 
VM   0 
VI    0 
VD 

0 

Query: X=AGG (N=3) 

j 

1 

2 

3 

€ 

V1
D 0( ) =max V0

M 0( )aM 0D1
,V0

D 0( )aD0D1( )
=max 0.2,0( ) = 0.2

Example: Viterbi algorithm 
     0  1  2  3 
A    -  1 .5  0 
C    -  0  0  .8 
G    -  0 .5  .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

Query: X=AGG (N=3) 

i     0  1  2  3 
VM   1  0  0  0 
VI    0  0 
VD   0  0  0  0 
VM   0 .8 
VI    0 
VD  .2 
VM   0 
VI    0 
VD   0 
VM   0 
VI    0 
VD   0 

0 

j 

1 

2 

3 

€ 

V1
M 1( ) = eM 1

x1( )⋅ max V0M 0( )aM 0M 1
,V0

I 0( )aI 0M 1
,V0

D 0( )aD0M 1( )
=1×max 1× 0.8,0 × 0.5,0 ×1( ) = 0.8

Example: Viterbi algorithm 
     0  1  2  3 
A    -  1 .5  0 
C    -  0  0  .8 
G    -  0 .5  .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

Query: X=AGG (N=3) 

i     0  1  2      3 
VM   1  0  0    0 
VI    0  0  0    0 
VD   0  0  0    0 
VM   0 .8  0    0 
VI    0  0  0    0 
VD  .2  0  0    0 
VM   0 .1 .4    0 
VI    0  0 .006 .0240 
VD   0  0  0    0 
VM   0  0 .008 .0320 
VI    0  0  0   .0014 
VD   0  0  0    0 

0 

j 

1 

2 

3 

V3
M 3( ) =?
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Example: Viterbi algorithm 
     0  1  2  3 
A    -  1 .5  0 
C    -  0  0  .8 
G    -  0 .5  .2 
T    -  0  0  0 
A    .2 .2 .9 .2 
C    .3 .3 0  .3 
G    .3 .3 .1 .3 
T    .2 .2 0  .2 
M-M  .8 1  .4 1 
M-D  .2 0  0  0 
M-I  0  0  .6 0 
I-M  .5 .5 .3 .5 
I-I  .5 .5 .7 .5 
D-M  -  1  .5 1 
D-D  -  0  .5 0 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

Query: X=AGG (N=3) 

i     0  1  2      3 
VM   1  0  0    0 
VI    0  0  0    0 
VD   0  0  0    0 
VM   0 .8  0    0 
VI    0  0  0    0 
VD  .2  0  0    0 
VM   0 .1 .4    0 
VI    0  0 .006 .0240 
VD   0  0  0    0 
VM   0  0 .008 .0320 
VI    0  0  0   .0014 
VD   0  0  0    0 

0 

j 

1 

2 

3 

Traceback 

Searching with profile HMMs 

¥! Main usage of profile HMMs 
Ð!Detecting potential sequences in a family 
Ð!Core algorithm: matching a sequence to a 

profile HMMs 
¥!Viterbi algorithm or forward algorithm 

Ð!Comparing the resulting probability with 
random model (R): log-odd score 

∏=
i

xi
qRxP )|(

where qx is the frequency of observing xi.   

€ 

V j
M(i) = log

eM j
(xi)
qxi

+max
logV j−1

M (i −1) + logaM j−1M j
,

logV j−1
I (i −1) + logaI j−1M j

,
logV j−1

D (i −1) + logaD j−1M j
;

# 

$ 
% 

& 
% 

V j
I(i) = log

eI j (xi)
qxi

+max
logV j

M(i −1) + logaM j I j
,

logV j
I(i −1) + logaI j I j ;

# 
$ 
% 

& % 

V j
D(i) =max

logV j−1
M (i) + logaM j−1D j

,

logV j−1
D (i) + logaD j−1D j

;

# 
$ 
% 

& % 

!  

V0
M 0( ) = 0; Vj >0

M 0( ) = "# ; V0
M i > 0( ) = "# ;

Vj
I 0( ) = "# ;

V0
D i( ) = "# ;.

Initialization:  

€ 

V =max VL
M N( ),VL

I N( ),VL
D N( )[ ]

Termination:  

for i=1,É,L, j=1,É,N   

Viterbi algorithm    

Matching a sequence to a 
profile HMM (global alignment) 

Forward algorithm    

Initialization:  

€ 

F = log exp FL
M N( )( ) +exp FL

I N( )( ) +exp FL
D N( )( )[ ]

Termination:  
!  

Fj
M(i) = log

eM j
(xi )

qxi

+ log[aM j "1M j
exp(Fj "1

M (i " 1))+ aI j "1M j
exp(Fj "1

I (i " 1)) + aD j "1M j
exp(Fj "1

D (i " 1))];

Fj
I(i) = log

eI j
(xi )

qxi

+ log[aM j I j
exp(Fj

M(i " 1))+ aI j I j
exp(Fj

I(i " 1))];

Fj
D(i) = log[aM j "1D j

exp(Fj "1
M (i))+ aI j "1D j

exp(Fj "1
I (i))];

Matching a sequence to a 
profile HMM (global alignment) 

€ 

V0
M 0( ) = 0; V j>0

M 0( ) = −∞; V0
M i > 0( ) = −∞;

V0
I 0( ) = −∞;

V0
D i( ) = −∞.

Significance of HMM alignment 
¥! The log-odd score of local Viterbi alignment (V) alignment 

between a random sequence and a profile HMM follows a 
Gumbel (type I EVD) distribution 

¥! With ~200 Viterbi, the location parameter µ can be accurately 
estimated; 

¥! "~log(z), z is the base of the log-odd score, e.g., z=2 when the 
sequence length approaches infinite 

¥! The length effect can be corrected by  
Ð! Where, N is the length, and h is the average relative entropy per match 

state in the pHMM; 
Ð! For typical Pfam models, N~140, h~1.8, "~log2+0.0057, a small 

correction. 

  Eddy, PLoS Comp. Biol., 4:1, 2008 

€ 

P V ≥ t( ) =1−exp −e−λ t−µ( )[ ]

€ 

λ ~ log2 + 1.44
hN

Variants for non-global alignments 

¥! Local alignment (Smith-Waterman type) 
Ð!Emission prob. in flanking states use background 

values qx. 
Ð!Looping prob. close to 1, e.g. (1- η) for some small η. 

Mj 

Ij 

Dj 

Q Q 

beg end 

1- η 1- η 
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Variants for non-global alignments 

¥! Overlap (also called glocal or fit) alignment  
Ð!The loop probability of the first and last insert states is 

much higher than the other insert states 
Ð!When expecting to find either present as a whole or 

absent (e.g., of a protein domain within a protein) 

Ð!Transition to first delete state allows missing first 
residue 

Mj 

Ij Q 

Dj 

Q 

beg end 

Variants for non-global alignments 

¥! Repeat alignments 
Ð!Transition from right flanking state back to random 

model 
Ð!Can find multiple matching segments in query string 

Mj 

Ij 

Dj 

Q beg end 

Optimal model construction:  
different ways of marking columns 

            x x . . . x 
bat         A G - - - C 
rat         A - A G - C 
cat         A G - A A - 
gnat        - - A A A C 
goat        A G - - - C 
Matching    1 2 . . . 3 

(a) Multiple alignment: 

(b) Profile-HMM architecture: 

      0  1  2  3 
A     -  4  0  0 
C     -  0  0  4 
G     -  0  3  0 
T     -  0  0  0 
A     0  0  6  0 
C     0  0  0  0 
G     0  0  1  0 
T     0  0  0  0 
M-M   4  3  2  4 
M-D   1  1  0  0 
M-I   0  0  1  0 
I-M   0  0  2  0 
I-D   0  0  1  0 
I-I   0  0  4  0 
D-M   -  0  0  1 
D-D   -  1  0  0 
D-I   -  0  2  0 

(c) Observed emission/transition counts 

Emission 
from M 

Emission 
from I 

Transition 
probabilities 

beg M1 M2 M3 end 

I2 I1 I3 I0 

D2 D3 D1 

0 1 2 3 4 

Optimal model construction 

¥! MAP (match-insert assignment) 
Ð!Recursive calculation of a number Sj 

•!Sj: log prob. of the optimal model for alignment up 
to and including column j, assuming j is marked. 

•!Sj is calculated from Si and summed log prob. 
between i and j. 

•!Tij: summed log prob. of all the state transitions 
between marked i and j. 

–!cxy are obtained from partial state paths implied by 
marking i and j. 

€ 

Tij = cxy logaxy
x,y∈ M,D,I{ }
∑

Optimal model construction 

¥! Algorithm: MAP model construction 
Ð!Initialization: 

•! S0 = 0, ML+1 = 0. 

Ð!Recurrence: for j = 1,..., L+1: 

Ð!Traceback: from j = σL+1, while σj > 0: 
¥! Mark column j as a match column 

•! j  σj. 

Sj =max
0≤i< j

Si +Tij +M j + Ii+1, j−1 +λ( )
σ j = argmax

0≤i< j
Si +Tij +M j + Ii+1, j−1 +λ( )

Weighting training sequences 

¥! Input sequences are random? 
¥! ÒAssumption: all examples are 

independent samplesÓ might be incorrect 
¥! Solutions 

Ð!Weight sequences based on similarity: highly 
similar pair of training sequences receive 
lower weights 
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Multiple sequence alignment (MSA) 
by training profile HMM 

¥! Sequence profiles can be represented as 
probabilistic models like profile HMMs. 
Ð!ML methods for building (training) profile HMM are 

based on multiple sequence alignment 

Ð!Profile HMMs can also be trained from initially 
unaligned sequences using the Baum-Welch-like EM 
algorithm 

¥! Simultaneously aligning multiple sequences and building the 
profile HMM from the multiple alignment 

Multiple alignment with a known profile 
HMM 

¥! A step backward: to derive a multiple alignment 
from a known profile HMM model 
Ð! e.g., to align many sequences from the same family based on 

the HMM model built from the (seed) multiple alignment of a 
small representative set of sequences in the family. 

¥! It just requires calculating a Viterbi alignment for 
each individual sequence 
Ð! Match a sequence to a profile HMM: Viterbi algorithm 
Ð! Residues aligned to the same match state in the profile HMM 

should be aligned in the same columns; 
Ð! Given a preliminary alignment, HMM can align additional 

sequences. 

Multiple alignment with a known profile 
HMM 

¥! Comparing with other MSA program 
Ð!Profile HMM does not align inserts whereas other 

MSA algorithms align the whole sequences. 

Training profile HMM from unaligned 
sequences 

¥! Simultaneously aligning multiple sequences and 
building the profile HMM from the multiple 
alignment 
Ð! Initialization: choose the length of the profile HMM and initialize 

parameters of the model 
Ð! MSA: align all sequences to the final model using the Viterbi 

algorithm and build a multiple alignment as described in the 
previous section. 

Ð! Training: estimate the model using the Baum-Welch algorithm 

Ð! Iterating until the model (and the MSA) converges 

Profile HMM training from unaligned 
sequences 

¥! Initial Model 
Ð!The only decision that must be made in 

choosing an initial structure for Baum-Welch 
estimation is the length of the model M.  

Ð!A commonly used rule is to set M be the 
average length of the training sequence. 

Ð!We need some randomness in initial 
parameters to avoid local maxima. 

Multiple alignment by profile HMM 
training 

¥! Avoiding Local maxima 
Ð!Baum-Welch algorithm is guaranteed to find a 

LOCAL maxima. 
¥!Models are usually quite long and there are many 

opportunities to get stuck in a wrong solution. 

Ð!Solution 
¥!Start many times from different initial models. 
¥!Use some form of stochastic search algorithm, e.g. 

simulated annealing. 
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Multiple alignment by profile HMM 
training--Model surgery 

¥! We can modify the model after (or during) training a 
model by manually checking the alignment 
produced from the model. 
Ð!Some of the match states are redundant 
Ð!Some insert states absorb too many sequences 

¥! Model surgery 
Ð!If a match state is used by less than # of training 

sequences, delete its module (match-insert-delete states) 
Ð! If more than # of training sequences use a certain insert 

state, expand it into n new modules, where n is the 
average length of insertions 

Ð!ad hoc, but works well 

Hmmer 3 

Figure 4. The HMMER3 acceleration pipeline. 

Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): e1002195. doi:10.1371/journal.pcbi.1002195 
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002195 

Accelerated Profile HMM Searches 

Figure 1. The MSV profile. 
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