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HMM for sequence alignment:

profile HMM

Pair HMM

HMM for pairwise sequence alignment,
which incorporates affine gap scores.

“Hidden” States

¥ Match (M)
¥ Insertion in x (X)
¥ insertion in y (Y)
Observation Symbols
¥ Match (M): {(a,b)| a,bin Y }.
¥ Insertion in x (X): {(a,-)ain > }.
¥ Insertionin y (Y): {(-a)|ain Y }.

Pair HMMs

Alignment: a path = a hidden state
sequence
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Multiple sequence alignment
(Globin family)

Helix e
HBA_HUMAN LSPADK ERMFLSFPTTKTYFPHF
HBB_HUMAN KV L
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GLB1_GLYDI S-~~DPGVA. L

Consensus . t ... v..Hgkv.a a...1 d& .al.l H .
Helix

HBA_HUMAN LSHCLL £ DKFLASVSTVLTSKYR- -~~~
HBB_HUMAN  -~HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYOKVVAGVANALAHKYH- - - -~
MYG_PHYCA  -KIPIKYLEFTSEAITH RKDIAAKYKELGYQG
GLB3_CHITP -~ y -

GLBS_PETMA ABVT MSMICILLRSAY-----==
LGB2_LUPLU --VADAHFPVVKEATLKTL TAYDELAIVT -
GLB1_GLYDI KHIKAQYFEPLGASLL 1 GALISGLQS=-~-~
Consensus  v. £ 1. .. .... £ . aa. k. . 1 sky

Profile model (PSSM)

¥ A natural probabilistic model for a conserved
region would be to specify independent
probabilities e;(a) of observing nucleotide
(amino acid) a in position i

¥ The probability of a new sequence x according
to this model is

P(x|M)= He,(xf)




¥DNA / proteins Segments
of the same length L;

¥Dften represented as
Positional frequency
matrix; VRMSREEIGNYLGLTLETVSRLFSRFGREGLI

Profile / PSSM

LTMTRGDIGNYLGLTVETISRLLGRFQKSGML
LTMTRGDIGNYLGLTIETISRLLGRFQKSGMI
LTMTRGDIGNYLGLTVETISRLLGRFQKSEIL
LTMTRGDIGNYLGLTVETISRLLGRLQKMGIL
LAMSRNEIGNYLGLAVETVSRVFSRFQQNELI
LAMSRNEIGNYLGLAVETVSRVFTRFQQNGLI
LPMSRNEIGNYLGLAVETVSRVFTRFQQNGLL

LRMSREEIGSYLGLKLETVSRTLSKFHQEGLI
LPMCRRDIGDYLGLTLETVSRALSQLHTQGIL
LPMSRRDIADYLGLTVETVSRAVSQLHTDGVL
LPMSRQDIADYLGLTIETVSRTFTKLERHGAI
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Searching profiles: inference

¥ Give a sequence S of length L, compute the
likelihood ratio of being generated from this
profile vs. from(b?ckground model:
BRSIP)= T74x)
I
Bl Searching motifs in a sequence: sliding window
approach

Match states for profile HMMs

¥ Match states

DIEmission probabilities e,, (a)

Y e N o Y e 0 o O Y o Y

Components of profile HMMs

¥ Insert states e, ()
Bl Emission prob.
¥ Can be the background distribution g,.
Bl Transition prob.
I M; to I, I, to itself, I, to M,,,
Bl Log-score for a gap of length & (not including the
log-score from emission) |
Ogav(,l,

+logayy, , + (k! Dloga

Components of profile HMMs

¥ Delete states
B No emission prob.

Bl Cost of a deletion
¥M;toD,,,,D;toD, ,, D;toM,,
¥ Each D, to D,,, might be different for different i

Full structure of profile HMMs

This is the structure implemented in Hmmer, slightly different from the structure
described in the textbook: there is no transition allowed from D; to I; or from | to
Dj.;- As aresult, the recursive equation for Viterbi algorithm is different from the

one described in the book too.
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Deriving HMMs from multiple
alignments

¥ Key idea behind profile HMMs

BIModel representing the consensus for the
alignment of sequence from the same family

PINot the sequence of any particular member

HBA_HUMAN ..VGA--HAGEY...
HBB_HUMAN ..V----NVDEV...
MYG_PHYCA ..VEA--DVAGH...
GLB3_CHITP ..VKG----- D...
GLB5_PETMA ..VYS--TYETS...
LGB2_LUPLU ..FNA--NIPKH...
GLB1_GLYDI ...IAGADNGAGV...

Hhk okk

Deriving HMMs from multiple
alignments

¥ Basic profile HMM parameterization
B Aim: making the higher probability for sequences from
the family
¥ Parameters
Blthe transition and emission probabilities: trivial if many
of independent alignment sequences are given.
Ay e (a)= E(a) '
oA EQ.E/( (a")
Bllength of the model: heuristics or systematic way
(e.g., using the MAP algorithm)

Ay =

Deriving HMMs from multiple alignments

(a) Multiple alignment: (c) Observed emission/transition counts

XX...X
bat AG---C
rat AGAG-C
cat AG-AAG
gnat -GAAAC
goat AG---C

Matching 12...3 Emission
from |

(b) Profile-HMM architecture:

Transition

probabilite E
z 1004
DM -

A simple rule that works well
is that columns that are more
than half gap characters
should be modeled by inserts.

Sequence conservation: entropy of the
emission probability distributions

Main State Entropy Values

30
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230 250 270 290 30 330 350 370 390 410 430

High entropy indicates non-conserved positions (note: here negative entropy a plotted.

Matching a sequence to a profile
HMM (global alignment)

¥ Viterbi algorithm: pHMM ! (with L matching
states) and a query sequence X;X,..Xy

VIG=D ay v
VJM(i) - ew‘ (X,)- max Vf,.(i _1) aIHM, . }Jnlllallzauonﬂ:’ »
Vl’:(i -1y a, V' (0) =1 V/)W(O) =0 V' (i>0)=0;
VG -1 V/(0)=0;
=Dy, (7
Vi) =g (%) max{v“(_ ) Hh V(i) = 0:.
’ RS
VM (i)- a; Termination:
VP =max] e v =may (V)Y (N)VE (V)]
Vi) a, ps

fori=1,E,L, j=1,E,N

Note: this is slightly different from the textbook; no transition from D; to I; or from |;to D, ;.

Viterbi algorithm: trace back

PrintStateSeq(ptr™, ptr!, ptr®, ptr,,,, i, j)

N VD =ey, (1) VG- ay ,  TEOO0
g S return;
prt =11 VI e () VG- iR = W

3 M b . if ptr(L) = "% "
(S V@D =ey (x) ViG-Dap printStateSeq(ptr™, ptr!, ptr®, “M”, i-1, j-1)

B 1o UM elseif pr(L) = 4
i) = i Vi@ =e () ViG=1ay,,, printStateSeq(ptr™, pte!, ptr®, “I”, i-1, j-1)
' T i Vi =e (x) Vii-1ya,; else if pui(L) = "<= "
! n printStateSeq(ptr™, ptr!, ptr?, “D”, i-1, j-1)
o) NI VD =ep (x) VG ay o . print M;
prr; (i) = i . A else if ptr, = “1”
] =i VIO =y (x) V2 ap P = x "
printStateSeq(ptr™, ptr', ptr®, “M”, i-1, j)
M if V=V"(N else if ptr(L) = 1 "
i Vi ( ) printStateSeq(ptr™, ptr!, ptr°, “1”, i-1, j)
ptr, =1 if V=V/(N) print I,
. _yb else
D if V=V/(N) oML = X *

printStateSeq(ptr™, ptr!, ptr®, “M” i, j-1)
else if pri(L) = “e= "

printStateSeq(ptr™, ptr', ptr®, “D”, i, j-1)
print D

PrintStateSeq(ptr™, ptr!, ptr®, ptr,,,, N, L)




Matching a sequence to a
profile HMM (global alignment)

¥ Forward: pHMM ! (with L matching states)
and a query sequence X;X,..Xy

PG = ey, () [FG =17 @y ) +FLG =10y +FR =10 a5 ]

Fl()=e, (x,) [F,M(i—l)- ay +Fl(i-1y a,"’]

) N R fori=1,EL, j=1,E,N
FP@)=FL0) ay o +FL0) ap

Initialization: Termination:

F0)=1: F!(0)=0; F)(i>0)=0; F=F"(N)+F'(N)+F°(N)
F}(0)=0;

F(i)=0:

Note: this is slightly different from the textbook; no transition from D; to I; or from I;to D, ;.
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Example

Query: AGG (N=3)

from |

Transition
probabilite

:I»I 55.75
D-M-151
D-D -0 .50

Example: Viterbi algorithm

0123
W Initialization
Emission c -008
from M ? —8-0562 i i 0123
A -2 2.9.2 wgooo
2.29. o Vv oo
Emission c 3303 V 0000
from | G 3313 LY | —
T 2.20.2 . Vv 0
-M 81 . \o
Transiti o o
ransition -1 i
probabilite M 553, 2 & °
5575 R E—
DM-151 3 Vv o
D-D -0 .50 P

Query: X=AGG (N=3)

Example: Viterbi algorithm

0123
A 150
Emission c -008
from M G -052
T -000
A 2292
Emission c 3303
from 1 G 33.13
T 2202

Transition

probabilite 553
5575
DM -1 51
D-D -0 50

Query: X=AGG (N=3)

s<gde<glesgs<gl
) ool ogoorfo
o ofa

V,2(0) = max(V;" (0, Vi (0)atp, )
=max(0.2,0)=0.2

Example: Viterbi algorithm

- i i 0123
e : W 1000
Emission -00. o vV 00
from M P WV 0000
i e
VAR
Emission : W 2
from | W o
2 v oo
w0
' R —
Transition 0
probabilitie 3 V0
w0

:I-I 5575
D-M-151
D-D -0 .50

Query: X=AGG (N=3) V(1) =¢,, (x)- max(Vy" (0)ayu, Vi (), Vi (0)a,y, )

=1xmax(1x0.80x050x1)=0.8

Example: Viterbi algorithm

0123
A -150
Emission c -00.8
from M -05 .2
-00

G

T 0

A 2292

Emission c 3303
from1 G 3313
T 220.2

M-M 81 .4
M-D 2000

Transition M-1 0 0 .60
probabilitie! ‘M 5.5 .3.
I .55.75

M-1.51

D-D-0 .50

Query: X=AGG (N=3)

j i 012 3
Wi100 0
0 V000 0
VW 000 0
| —
4 Vi 000 0
w200 0
Wol4 0
2 Vi 0 0.006.0240
W 000 0
VW0 0.008  .0320
3 Vi 000 .0014
V000 0
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Example: Viterbi algorithm

-

S o|n
w

|

-
se<9s
F oo
o~ o
® &
o S o 9o oo
Q
R,
o
|
N
S}

Emission
from M

o orlo

000

Emission 200

from | 014

2 V' 00.0

W 000

Transition 0 0.0
probabiliti€ 3 VI 000 .0014

W O000 O

: 1 .55.75
DM-151
D-D-0.50 Traceback

Query: X=AGG (N=3)

Searching with profile HMMs

¥ Main usage of profile HMMs
BlDetecting potential sequences in a family
BlCore algorithm: matching a sequence to a
profile HMMs
¥ Viterbi algorithm or forward algorithm
BlComparing the resulting probability with
random model (R): log-odd score

P(xIR) =T,

where q, is the frequency of observing x;.

Matching a sequence to a
profile HMM (global alignment)

Viterbi algorithm

) logV!,(i =) +logay . Initialization:
M- M, M0 [
V; (I)F . + max: lch],,(z—l)+logalHM,. VIO -0 VEO) =i VE(20)="%

logV2,(i 1) +logap y 3

: e (x,) logV (i ~1)+logay ; »
V(i) =log— +max: . '
q, logVi(i-1)+loga, ;
N ' Termination:
VP () = ma log V,[;.(z)+log Ay p,s v :max[vL"(N)yL’(N),vL”(N)]
logVJ,,(i)+loga,,H,,l;

fori=1,E,L, j=1,E,N

Matching a sequence to a
profile HMM (global alignment)

Forward algorithm

e, (%
F() = log ‘q&

) " "
+loglay,  exp(FY,( " D)+a,  exp(FLL,(" D)+, exp(FR,G( " D)

e () o o
Fi) -log= = +loglay,, exp(F'd " 1)+a,, exp(FiG " D)

FP() =loglay, ., exp(FY, ) +3, , exp(Fl. ()]

Initialization: Termination:

F =loglexp(F (N)) +exp(F. (N)) +exp(F(N))]

Significance of HMM alignment

¥ The log-odd score of local Viterbi alignment (V) alignment
between a random sequence and a profile HMM follows a
Gumbel (type | EVD) distribution
P(V=zr)=1- ex;{—e’*“’“’]
¥ With ~200 Viterbi, the location parameter pu can be accurately
estimated;
¥ "~log(z), z is the base of the log-odd score, e.g., z=2 when the
sequence length approaches infinite
¥ The length effect can be corrected by A ~log2 +4
B! Where, N is the length, and h is the average relative entropy per match
state in the pHMM;
B! For typical Pfam models, N~140, h~1.8, "~log2+0.0057, a small
correction.

Eddy, PLoS Comp. Biol., 4:1, 2008

Variants for non-global alignments

¥ Local alignment (Smith-Waterman type)

BIEmission prob. in flanking states use background
values g,.
Bl Looping prob. close to 1, e.g. (1- i) for some small 7.

Joay
UNATANAN

A
et




Variants for non-global alignments

¥ Overlap (also called glocal or fit) alignment
Bl The loop probability of the first and /ast insert states is
much higher than the other insert states
B'When expecting to find either present as a whole or
absent (e.g., of a protein domain within a protein)
Bl Transition to first delete state allows missing first
residue
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Variants for non-global alignments

¥ Repeat alignments

Bl Transition from right flanking state back to random
model

Bl Can find multiple matching segments in query string

Optimal model construction:
different ways of marking columns

(a) Multiple alignment: (c) Observed emission/transition counts

XX...X
bat AG---C

rat A-AG-C Emission
cat AG-AA- fomM
gnat --AAAC

goat AG---C

Matching 12...3 Emission

from |

(b) Profile-HMM architecture:

Transition
probabilities

Optimal model construction

¥ MAP (match-insert assignment)

BIRecursive calculation of a number S,

+1S;: log prob. of the optimal model for alignment up
to and including column j, assuming j is marked.

*1S; is calculated from ; and summed log prob.
between i and ;.

*! 7, summed log prob. of all the state transitions
between marked i and ;.

T,= Yc,loga,
xy&{M,D,1}

~lc,, are obtained from partial state paths implied by
marking i and ;.

Optimal model construction

¥ Algorithm: MAP model construction
Bl Initialization:
18,=0,M,,, =0.
BRecurrence: forj = 1,..., L+1:
S; =max (S, +T, +M,+1,,, , +A)

0=i<j i+1.j-1
o, = argmax(S,, +T,+M,+1,, ;, + A)
O=i<j
Bl Traceback: from j = o;.,, while g;> 0:
¥ Mark column j as a match column
Jj€o;.

Weighting training sequences

¥ Input sequences are random?

¥ OAssumption: all exarpples are
independent samplesO might be incorrect

¥ Solutions

BlWeight sequences based on similarity: highly
similar pair of training sequences receive
lower weights
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Multiple sequence alignment (MSA)
by training profile HMM

¥ Sequence profiles can be represented as
probabilistic models like profile HMMs.
BIML methods for building (training) profile HMM are
based on multiple sequence alignment
Bl Profile HMMs can also be trained from initially
unaligned sequences using the Baum-Welch-like EM
algorithm

¥ Simultaneously aligning multiple sequences and building the
profile HMM from the multiple alignment

Multiple alignment with a known profile
HMM

¥ A step backward: to derive a multiple alignment
from a known profile HMM model
B e.g., to align many sequences from the same family based on
the HMM model built from the (seed) multiple alignment of a
small representative set of sequences in the family.
¥ It just requires calculating a Viterbi alignment for
each individual sequence
Bl Match a sequence to a profile HMM: Viterbi algorithm

B Residues aligned to the same match state in the profile HMM
should be aligned in the same columns;

B Given a preliminary alignment, HMM can align additional
sequences.

Multiple alignment with a known profile
HMM

¥ Comparing with other MSA program

BIProfile HMM does not align inserts whereas other
MSA algorithms align the whole sequences.

e Position 1 2 3 4 5 6 insert 7 8 9 10 11
F P H F - D LS H G S5 A Q
F E S F G D LSTPDAY M G N P K
F D R F K H LKTEAEM K A S E D
F T Q F A G KDLESI K G T A P
F P K F K G LTTADQL X X S A D
F S - F L K GTSEVFP Q9 N N P E
F G - F S G AS - D P G

Training profile HMM from unaligned
sequences

¥ Simultaneously aligning multiple sequences and
building the profile HMM from the multiple
alignment

Bl Initialization: choose the length of the profile HMM and initialize
parameters of the model

Bl MSA: align all sequences to the final model using the Viterbi
algorithm and build a multiple alignment as described in the
previous section.

Bl Training: estimate the model using the Baum-Welch algorithm
B Iterating until the model (and the MSA) converges

Profile HMM training from unaligned
sequences

¥ Initial Model

BIThe only decision that must be made in
choosing an initial structure for Baum-Welch
estimation is the length of the model M.

BIA commonly used rule is to set M be the
average length of the training sequence.

P'We need some randomness in initial
parameters to avoid local maxima.

Multiple alignment by profile HMM
training

¥ Avoiding Local maxima
BIBaum-Welch algorithm is guaranteed to find a
LOCAL maxima.

¥ Models are usually quite long and there are many
opportunities to get stuck in a wrong solution.

BlSolution
¥ Start many times from different initial models.

¥ Use some form of stochastic search algorithm, e.g.

simulated annealing.




Multiple alignment by profile HMM
training--Model surgery

¥ We can modify the model after (or during) training a
model by manually checking the alignment
produced from the model.
Bl Some of the match states are redundant

Bl Some insert states absorb too many sequences
¥ Model surgery

BlIf a match state is used by less than # of training
sequences, delete its module (match-insert-delete states)

B If more than # of training sequences use a certain insert
state, expand it into n new modules, where n is the
average length of insertions

Blad hoc, but works well
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Accelerated Profile HMM Searches

A Original profile: multiple hits, each hit allows insertion/deletions.

C Example of an MSV path in DP matrix

B MSV profile: multiple ungapped local alignment segments g

Figure 1. The MSV profile.
Eddy SR (2011)
: sc

Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): €1002195. doi:10.1371/journal. pcbi. 1002195
ompbiol.org/article/info:doi/10.1371fjournal. pchi 1002195
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Hmmer 3

MSV filter ~ 16-fold parallel, 8-bit int
linear O(M) memory
12000 Mcis
Bias filter
Viterbi filter ~ 8-fold parallel, 16-bit int
linear O(M) memory
1600 Mc/s
Forward 4-fold parallel, 32-bit float
linear O(M+L) memory
350 Mo/s
Backward

4-fold parallel, 32-bit float
linear O(M+L) memory
300 Mo/s
Domain definition
Forward/Backward,
posterior decoding
MEA alignment,
bias composition correction

Figure 4. The HMMERS acceleration pipeline.

Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): €1002195. doi:10.1371/journal pcbi. 1002195
http:/iveanw.loscompbiol.ora/articlefinfo:doi/10, 137 /journal.pcbi. 100219
.@' PLOS COMPUTATIONAL
~Z/ BIOLOGY




