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Definitions

Probabilistic models
A model means a system that simulates the object under
consideration

A probabilistic model is one that produces different
outcomes with different probabilities (BSA)

Why probabilistic models

The biological system being analyzed is
stochastic

Or noisy

Or completely deterministic, but because a
number of hidden variables effecting its behavior
are unknown, the observed data might be best
explained with a probabilistic model

Probability

Experiment: a procedure involving chance that
leads to different results

Outcome: the result of a single trial of an
experiment

Event: one or more outcomes of an experiment

Probability: the measure of how likely an event
is
Between 0 (will not occur) and 1 (will occur)

Example: a fair 6-sided dice

QOutcome: The possible outcomes of this
experiment are 1, 2, 3,4, 5and 6

Events: 1; 6; even

Probability: outcomes are equally likely to occur

P(A) = The Number Of Ways Event A Can Occur / The Total
Number Of Possible Outcomes
P(1)=P(6)=1/6; P(even)=3/6=1/2;

Random variable

Random variables are functions that assign a
unique number to each possible outcome of an
experiment
An example
Experiment: tossing a coin
Outcome space: {heads, tails}
1 if heads

X= 0 tails

More exactly, X is a discrete random variable
P(X=1)=1/2, P(X=0)=1/2

1/2/13



Probability distribution

Probability distribution: the assignment of a
probability P(x) to each outcome x.

A fair dice: outcomes are equally likely to occur
" the probability distribution over the all six
outcomes P(x)=1/6, x=1,2,3,4,5 or 6.

A loaded dice: outcomes are unequally likely to
occur " the probability distribution over the all six
outcomes P(x)=f(x), x=1,2,3,4,5 or 6, but >f(x)=1.

Probability mass function (pmf)

A probability mass function is a function that
gives the probability that a discrete random
variable is exactly equal to some value; it is often
the primary means of defining a discrete
probability distribution

An example

1
[1N12 heads
P(X)= 2 tails
others

Probability density function (pdf)

Probability density functions (pdf) are for
continuous rather than discrete random
variables; f(x)

A pdf must be integrated over an interval to yield
a probability, since P(x = 2)=0

& b
Pla! X! V)= f(x)dz

a

Cumulative distribujon function (cdf)
P(X ! x)= f ()d(t)

Joint probability

Two experiments (random variables) X and Y
P(X,Y)" joint probability (distribution) of X and Y
PX,Y)=P(X]Y)P(Y)=P(Y|X)P(X)

P(X]Y)=P(X), X and Y are independent
Example: experiment 1 (selecting a dice),
experiment 2 (rolling the selected dice)

P(y): y=D1 or D2

P(i, D1)=P(i| D1)P(D1)

P(i| D1)=P(i| D2), independent events

The probability of a DNA sequence

Event: Observing a DNA sequence S=s1s2...sn:
si€ {A,C,G,T}

Random sequence model (or Independent and
identically-distributed, i.i.d. model): si occurs at
random with the probability P(si), independent
of all othner residues in the sequence;

P(S)= | P(s)

This model will be used as a background
model (or called a null hypothesis).

Marginal probability

The distribution of the marginal variables (the
marginal distribution) is obtained by marginalizing
over the distribution of the variables being discarded
(so the discarded variables are marginalized out)

PX)=2yP(X[Y)P(Y)

Example: experiment 1 (sel{g@t}n_g %ce), d
experiment 2 (rolling the se eéted jic )r'y) v
P(y): y=D1 or D2
P(i) =P(i| D1)P(D1)+P(i| D2)P(D2)
P(i| D1)=P(i| D2), independent events
P(i)= P(i| D1)(P(D1)+P(D2))= P(il D1)
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Conditional probability

Conditioning the joint distribution on a particular
observation

Conditional probability P(X|Y): the measure of how
likely an event X happens under the condition Y;
_Pxy) . Pxy)
POMI="ph) = Piyidy
Example: two dices D1, D2
P(i|D1) " probability for picking i using dicer D1
P(i|D2) " probability for picking i using dicer D2

Probability models

A system that produces different outcomes with
different probabilities.

It can simulate a class of objects (events),
assigning each an associated probability.

Simple objects (processes) " probability
distributions

Typical probability distributions

Binomial distribution
Gaussian distribution
Multinomial distribution
Poisson distribution
Dirichlet distribution

Binomial distribution
An experiment with binary outcomes: 0 or 1;

Probability distribution of a single experiment:
P(1)=pand P(0’) = 1-p;

Probability distribution of N tries of the same
experiment

. $ k N'k
Bi(k AAglout of N tries) ~%{§,;‘P @ p)

Gaussian distribution

When N -> «, Bi -> Gaussian distribution
The Gaussian (normal) distribution is a
continuous probability distribution with probability
density function defined as:
1 1% py2
foop!d)= L——¢ 207
X! T

W mean (expectation); ! 2: variance (! : the standard
derivation)

If we define a new variable u=(x-p)/!

1 2
# L= v /2
fa) # e

Gaussian distribution

T T T T

L p=-2, 0%=05,— |

~

n L L L n n
2 ) 5

1
X Figure from Wikipedia

standard normal distribution when p=0and ! 2=1
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Multinomial distribution

An experiment with K independent outcomes
with probabilities @, i =1,...,K, >6=1.
Probability distribution of N tries of the same
experiment, getting ni occurrences of outcome i, Y ni
=N (n={n}).
nK
P(I")=M"*(n) 7

_ nl!pzléééK!
O ! (ke

M (n)

Example: a fair dice

Probability: outcomes (1,2,...,6) are equally
likely to occur

Probability of rolling 1 dozen times (12) and
getting each outcome twice:

12 (i)l2 ~3.4x103
26 \6

Example: a loaded dice

Probability: outcomes (1,2,...,6) are
unequally likely to occur: P(6)=0.5,
P(1)=P(2)=...=P(5)=0.1

Probability of rolling 1 dozen times (12) and
getting each outcome twice:
2(0.5" (0. ~1.87x10+

Poisson distribution

Poisson gives the probability of seeing n events
over some interval, when there is a probability p
of an individual event occurring in that period.

Poisson distribution for sequencing coverage
modeling

Assuming uniform distribution of reads:
Length of genomic segment: L

Number of reads: n Coverage A=nl/L
Length of each read: |
How much coverage is enough (or what is sufficient oversampling)?
Lander-Waterman model: P(x) = (Ax * e#) / x!
P(x=0) = e

where A is coverage

Poisson distribution

c Po=e™® % not sequence % sequenced (1- Po)
1 0.37 37% 63%

2 0.135 13.5% 87.5%

3 0.05 5% 95%

4 0.018 1.8% 98.2%
5 0.0067 0.6% 99.4%

6 0.0025 0.25% 99.75%
7 0.0009 0.09% 99.91%
8 0.0003 0.03% 99.97

9 0.0001 0.01% 99.99%
10 0.000045 0.005% 99.995%
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Dirichlet distribution

Outcomes: 6=(01, 62,..., k)

K K
Density: D("1#) = 2" *@#) [["F"' "%>_"i - 1)

% ¢ i=1 =g
Z(a) = oF 5 6 —1)do = Jﬂ
i=1 i=1 € o)

(a1, a2,..., oK) are constants " different a
gives different probability distribution over 6.

K=2" Beta distribution

Example: dice factories

Dice factories produce all kinds of dices: 6(1),
6(2),..., 6(6)

A dice factory distinguish itself from the others
by parameters o=(a1,02,03, 04, 05, 016)

The probability of producing a dice 6 in the
factory a is determined by ¢46|a)

Probabilistic model

Selecting a model

A model can be anything from a simple distribution to
a complex stochastic grammar with many implicit
probability distributions
Probabilistic distributions (Gaussian, binominal, etc)
Probabilistic graphical models

Markov models

Hidden Markov models (HMM)

Bayesian models

Stochastic grammars

Data" model (learning)

Thedparameters of the model have to be inferred from
the data

MLE (maximum likelihood estimation) & MAP
(maximum a posteriori probability)

Model " data (inference/sampling)

MLE

Estimating the model parameters (learning):
from large sets of trusted examples

Given a set of data D (training set), find a model
with parameters 6 with the maximal likelihood
P(DI6)

Que =argmax P(D!)

Example: a loaded dice

Loaded dice: to estimate parameters 6, 6,
based on N observations D=d,,d,,...dy

6=n,/ N, where n; is the occurrence of i outcome
(observed frequencies), is the maximum
likelihood solution (BSA 11.5)

P(n|émLe ) > P (n|6) for any 8 7 Ouie

Learning from counts

When to use MLE

A drawback of MLE is that it can give poor
estimations when the data are scarce
E.g, if you flip coin twice, you may only get heads,
then P(tail) =0

It may be wiser to apply prior knowledge (e.g, we
assume P(tail) is close to 0.5)
Use MAP instead
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MAP
Bayesian statistics
ropy = TP
__P(D]HP()
22 P(DI)P(!)

P(6) " prior probability
P(6D) " posterior probability

MAP Byap argmax P (! D)
P()P()
P(D)

argmg\x P(DINHP()

= argmax

Example: two dices

Prior probabilities: fair dice 0.99; loaded dice: 0.01;

Loaded dice: P(6)=0.5, P(1)=...P(5)=0.1

Data: 3 consecutive ABAEs:
P(loaded|3A6A€)=P(loaded)*[P(3AGAd]loaded)/P(3AGAL)] =
0.01*(0.5%/C)
P (fair|3ABAg)=P (fair)*[P(3ABAS] fair)/P (3ABAL)] = 0.99 *
((1/8)3/ C)
Model comparison by using likelihood ratio: P(loaded|
3A6AE) / P(fair| 3AGAL) < 1

So fair dice is more likely to generate the observation.

Learning from counts: including prior
Use prior knowledge when the data is scarce
Use Dirichlet distribution as prior for the
multinomial distribution:

Posterior  P(6|n) = PwOPO) _ Pnl6)D(bla)

i . Pn) P(n)
Posterior mean estimator
OPME = 9D(OIn+ a)do=Z'Yn+a) 6 o' tdo
k
wpve _ Nitli

! N+ A

Equivalent to-add ¢; as pseudo-counts to the
observation n;(BSA 11.5)

We can forget about statistics and use
pseudo-counts in the parameter estimation!

Sampling

Probabilistic model with parameter 6" P(x|
0) for event x;

Sampling: generate a large set of events xi
with probability P(xi| 8);

Random number generator ( function rand()
picks a number randomly from the interval
[0,1) with the uniform density;

Sampling from a probabilistic model "
transforming P(xi| 6) to a uniform distribution

For a finite set X (x&€X), find i s.t. P(x1)+...+P(xi-1)
<rand(0,1) < P(x1)+...+P(xi-1) + P(xi)
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Entropy

Probabilities distributions P(x;) over K events

H(x)=-3 P(x) log P(x))
Maximized for uniform distribution P(x;)=1/K
A measure of average uncertainty

Mutual information

Measure of independence of two random
variable X and Y
P(X]Y)=P(X), X and Y are independent "
P(X,Y)P(X)P(Y)=1
M(X;Y)=Zxy P(x,y)log[P(x,y)/P(x)P(y)]

0" independent




