Module network



Bayesian network: a toy example

Variables X: STOCKS (space: {f\, -——, ¥} ) MSFT
MSFT: microsoft

AMAT: Applied materials
INTL: Intel

MOT: Motorola

DELL: Dell

HPQ: Hewlett-Packard

CPD4
P(INTL|MSFT)
MSFT '\ . v Conditional probability distribution (CPD)
One for each variable:
() - _ CPD1: MSFT; CPD2: MOT
— | o CPD3: AMAT; CPD4: INTL
CPD5: DELL; CPD6: HP
v " ’ 4

BN defines the dependency relations, e.g.
CPD4: P(INTL) = P(INTL| MSFT)



Issues with Bayesian network

e Large search space for problems of many
parameters variables (e.g. the gene requlatory
network modeling problem)

— Each CPD (parameters) to be learned from data for
each variable

— The search space of the putative network is even
larger!

* Training data is not sufficient to determine the optimal
model structure

* Results are hard to be interpreted

— a large network of thousands of nodes
* Gene regulatory network



Module networks
* Segal et al. Module networks: identifying

regulatory modules and their condition-
specific regulators from gene expression
data. Nat Genet. 2003 Jun;34(2):166-76.

— |dentifies modules of coregulated genes, their regulators
and the conditions under which regulation occurs,
generating hypotheses in the form “regulator X regulates
module Y under conditions W”.

* Leveraging models of cell regulation and
GWAS data in integrative network-based
association studies. Nature Genetics 44, 841—
847 (2012)



Modular biological networks

* Evolution of Complex Modular Biological

Networks

— PLoS Comput Biol 4(2): e23. 2008

— “One of the main contributors to the robustness and evolvability of
biological networks is believed to be their modularity of function, with
modules defined as sets of genes that are strongly interconnected
but whose function is separable from those of other modules. “

* Learning biological networks: from modules

to dynamics
— Nature Chemical Biology 4, 658 - 664 (2008)



Modules on Bayesian network

Modules: a set of variables with the same
dependence (the same set of parents and the
same CPD)

A module set C: My, ... ,M,
Val(M)): possible values of M,

for each module M,

* a set of parents Pa; ;

 a conditional probability distribution template
P(M;[Pay;)

a module assignment function A: assigns each

variable X; to one of the K modules
A(MSFT) = 1, A(MOT) = 2, etc

Unrolling a Bayesian network with a well-defined
distribution, i.e. the resulting network must be
acyclic.



From Bayesian To Module

(a) Bayesian network (b) Module network



Module networks

 Module network template: T= (S, ©), s.t. for each
module M;

— S: a set of parents {Paw. in X for each M}
— O: a conditional probability distribution P(M; | Pa,,)
* T > Module graph: G,,

 Module network M=(C, T, A)
— C: set of variables
— T: module network template
— A: module assignment function
— B,,: underlined Bayesian network
— Gy, is acyclic <-> B, is acyclic



Reasoning: same as BN




Learning structures of module networks

e Likelihood score

L(M:D) = ﬁL j(Pan A(X ),eMjlpan :D)

j=1

— For each variable j, X): module assignment
— @Mjlpan: parameters of P(M;|Pa,)

e Bayesian score (and priors)

max P(G | D) « max P(D1G)P(G) = [ p(D16,.G)P(6,1G)do,

0

S.A0 S,A0

max P(S,A,0 1 D) x max P(D1S,A4,0)P(S,A.0) = Y P(D16,.,5,A)P(6; 1S,A)P(S.A)
0

— G IObaI mOd U Ia rlty P(HS | S,A) = P(HS | S) Only template is important for prior!
P(S,A) _ p(S)K(A)C(A,S) C(A,S) is a constraint indicator function that is equal to 1 if the combination of

structure and assignment is a legal one (i.e., the module graph induced by the
assignment A and structure S is acyclic)



Assumptions

* Parameter independence, parameter modularity, and structure
modularity are the natural analogues of standard assumptions in
Bayesian network learning.

* Parameter independence implies that P(© | S, A) is a product of
terms that parallels the decomposition of the likelihood, with one
prior term per local likelihood term Lj.

* Parameter modularity states that the prior for the parameters of a
module Mj depends only on the choice of parents for Mj and not on
other aspects of the structure.

e Structure modularity implies that the prior over the structure Sis a
product of terms, one per each module.



Assumptions - Explainations

* These two assumptions are new to module networks.

* Assignment independence: makes the priors on the parents and
parameters of a module independent of the exact set of variables
assigned to the module.

e Assignment modularity: implies that the prior on A is proportional
to a product of local terms, one corresponding to each module.

* Thus, the reassignment of one variable from one module Mi to
another Mj does not change our preferences on the assignment of
variables in modules other than i; j.



Learning structures of module networks

* Assuming global modularity, etc

Score(S,A,0 D) = ESCOreM} (Pan ,A(X"‘),HMJ_IPGM' :D)
— Structure search step

* learns the structure S (and 8), assuming that A is fixed

— Similar as the learning of a Bayesian network structure (on a
smaller set of nodes)

— Update the dependency structure and parameters for each
module (M;) at a time

— Module assignment search step
* As clustering
e Sequential update



Sketch of learning algorithm

Input:
D // Data set
K // Number of modules

Output:
M // A module network

Learn-Module-Network
Ao = cluster X into K modules
So = empty structure
Loop 7 =1,2,... until convergence
St = Greedy-Structure-Search(4;—1, 5;—1)
A; = Sequential-Update(A4;—1,.5);
Return M = (4;,.5;)

Converge to a local maximum



Sequential updates of assighment function

Input:

D // Data set

Ap // Initial assignment function

S // Given dependency structure
Output:

A /I improved assignment function
Sequential-Update

A=A
Loop
Fori=1ton
For j=1t0o K

A" = 4 except that 4'(X;) = j
If (G4, A') is cyclic, continue
If score(S5,A4" : D) > score($5,4 : D)
A=
Until no reassignments to any of Xj,...Xj,
Return 4



Gene regulatory network modeling
problem

* |nput: gene expression values on various
conditions

— Matrix with rows being genes and columns being
conditions

— Constraint: a subset of genes that are regulators
* From domain knowledge, limit the search space
e Output: module network of gene expression
— Modules: genes co-regulated
— Parents: regulatory genes
— Module network: pathways
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Regulation types
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This is an example for a

regulating module.




Gene Expression Data

Expression data which measured the response of yeast to different
stress conditions was used.

* The data consists of 6157 genes and 173 experiments.

e 2355 genes that varied significantly in the data were selected and
learned a module network over these genes.

* A Bayesian network was also learned over this data set.



Candidate regulators

A set of 466 candidate regulators was compiled from SGD and YPD.

* Both transcriptional factors and signaling proteins that may have
transcriptional impact.

* Alsoincluded genes described to be similar to such regulators.

* Excluded global regulators, whose regulation is not specific to a
small set of genes or process.
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