Mass spectrometry in proteomics

Haixu Tang
School of Informatics and Computing
Indiana University, Bloomington

Modified from: www.bioalgorithms.info

Outline

- Proteomics & Mass spectrometry
- Application of MS/MS in proteomics
 - Protein sequencing and identification by mass spectrometry
 - Protein Identification via Database Search (SPC & spectral alignment)
 - De Novo Peptide Sequencing (Spectrum graph)
 - Hybrid
 - Identifying Post Translationally Modified (PTM) Peptides
 - (Quantitative proteomics)
 - identifying proteins that are differentially abundant

Entering the era of human omics

- Genomic and other omic approach will become a part of routine healthcare practice
- Genomics: revealing static genetic information in somatic cells; may alter in tumor cells
- Omics approaches: high-throughput monitoring of cellular systems at the genome-scale
 - Transcriptomics: dynamic alteration of the forms and abundances of proteins
 - Glycomics: dynamic alteration of glycansynthesis
 - Epigenomics: dynamic alteration of chromatin (on which the genome is physically located) status
 - Metabolomics: dynamic alteration of metabolic reactions
 - Immunomics: dynamic alteration of immune response

Mike Snyder (Stanford): integrated Personal Omics Profiling (iPOP)

- An analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period;
 - Every half a month to two months
- Uncover extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions;
- Revealed various medical risks, including type II diabetes
- Can be used to interpret healthy and disease states by connecting genomic information with additional dynamic omics activity;

The Dynamic Nature of the Proteome

- The proteome of the cell is changing
 - Various extra-cellular, and other signals activate pathways of proteins.
 - A key mechanism of protein activation is post-translational modification (PTM)
 - These pathways may lead to other genes being switched on or off
 - Mass spectrometry is key to probing the proteome and detecting PTMs

Dynamic proteomic profiling

- Identify proteins in a complex sample (e.g., human blood samples)
 - Shotgun approach (bottom-up); Top-down approach
- Quantify these proteins in samples from various conditions (e.g., disease vs. healthy, dynamic sampling from multiple time points of the same individual)
- Identify post-translation modifications (PTMs) of proteins (phosphorylations, acetylations, glycosylations, etc)
 - Different PTMs are dynamic with different time scales
An analytical technique for the determination of the elemental composition of a sample or molecule

Ion source: ESI (electrospray ionization), MALDI (matrix-assisted laser desorption/ionization)

Mass analyzer: separate the ions according to their mass-to-charge ratio, e.g., TOF (time-of-flight)

Mass Spectrometry (MS)

Shotgun proteomics

Protein identification
Inferring which proteins are present in the sample
A probabilistic point of view: the likelihood of each protein (in the database) being in the sample

Peptide-spectrum matchings (PSMs)

Industrial standard: report identified peptides by controlled false discovery rate (FDR) – the forward-decoy strategy
- Search both the target and a decoy database (e.g. the reverse protein database)
- Use the peptide-spectrum matches (PSMs) in decoy database to estimate the false PSMs in the target database
- FDR = # decy PSMs / # target PSMs
- Can be used for any search engine or scoring model

Protease, e.g. trypsin, break protein into peptides.
A Tandem Mass Spectrometer further breaks the peptides down into fragment ions and measures the mass of each piece.
Mass Spectrometer accelerates the fragmented ions; heavier ions accelerate slower than lighter ones.
Mass Spectrometer measure mass/charge ratio of an ion.
Breaking Proteins into Peptides

\[\text{protein} \rightarrow \text{peptides} \]

Tandem Mass Spectrometry

- Tandem Mass Spectrometry (MS/MS): mainly generates partial N- and C-terminal peptides
- Chemical noise often complicates the spectrum.
- Represented in 2-D: mass/charge axis vs. intensity axis

Protein Identification with MS/MS

MS/MS Peptide Identification:

N- and C-terminal Peptides
N- and C-terminal Peptides

Peptide Shotgun Sequencing

Reconstruct peptide from the set of masses of fragment ions (mass-spectrum)

Issue 1: Spectrum Consists of Different Ion Types

Because peptides can be broken in several places.

Issue 2: Noise and Missing Peaks

The peaks in the mass spectrum:

- Prefix and Suffix Fragments.
- Fragments with neutral losses (-H₂O, -NH₃)
- Noise and missing peaks.

De Novo vs. Database Search

Database Search

De Novo

Database of known peptides

AVGELTK
Peptide Identification Problem (Database Search)

Goal: Find a peptide from the database with maximal match between an experimental and theoretical spectrum.

Input:
- S: experimental spectrum
- database of peptides
- Δ: set of possible ion types
- m: parent mass

Output:
- A peptide of mass m from the database whose theoretical spectrum matches the experimental S spectrum the best

Peptide Identification by Database Search

- Compare experimental spectrum with theoretical spectra of database peptides to find the best fit
- The match between two spectra is the number of masses (peaks) they share (Shared Peak Count or SPC)
- In practice mass-spectrometrists use the weighted SPC that reflects intensities of the peaks
- Match between experimental and theoretical spectra is defined similarly
- To find the peptide with theoretic spectrum that is most similar to the real spectrum

Peptide Sequencing Problem (De Novo)

Goal: Find a peptide with maximal match between an experimental and theoretical spectrum.

Input:
- S: experimental spectrum
- Δ: set of possible ion types
- m: parent mass

Output:
- A peptide with mass m, whose theoretical spectrum matches the experimental S spectrum the best

De novo Peptide Sequencing

Building Spectrum Graph

- How to create vertices (from masses)
- How to create edges (from mass differences)
- How to score paths
- How to find best path

Intensity

Mass/Charge (M/Z)

a is an ion type shift in b
MS/MS Spectrum (Ion Types Unknown & With Noise)

Some Mass Differences between Peaks Correspond to Amino Acids

Knowing Ion Types

- Some masses correspond to fragment ions, others are just random noise
- Knowing ion types $\Delta = \{\delta_1, \delta_2, \ldots, \delta_k\}$ lets us distinguish fragment ions from noise
- We can learn ion types δ_i and their probabilities q_i by analyzing a large test sample of annotated spectra.

Vertices of Spectrum Graph

- Masses of potential N-terminal peptides
- Vertices are generated by reverse shifts corresponding to ion types $\Delta = \{\delta_1, \delta_2, \ldots, \delta_k\}$
- Every N-terminal peptide can generate up to k ions $m \cdot \delta_1, m \cdot \delta_2, \ldots, m \cdot \delta_k$
- Every mass s in an MS/MS spectrum generates k vertices $V(s) = \{s + \delta_1, s + \delta_2, \ldots, s + \delta_k\}$ corresponding to potential N-terminal peptides
- Vertices of the spectrum graph: \{initial vertex\}$\cup V(s_1) \cup V(s_2) \cup \ldots \cup V(s_m) \cup \text{terminal vertex}\$

Reverse Shifts

- Two peaks $b \cdot H_2O$ and b are given by the Mass Spectrum
- With a $+H_2O$ shift, if two peaks coincide that is a possible vertex.
Edges of Spectrum Graph

- Two vertices with mass difference corresponding to an amino acid \(A \):
 - Connect with an edge labeled by \(A \)
- Gap edges for di- and tri-peptides

Paths

- Path in the labeled graph spell out amino acid sequences
- There are many paths, how to find the correct one?
- We need **scoring** to evaluate paths

Path Score

- \(p(P, S) = \text{probability that peptide } P \text{ produces spectrum } S = \{s_1, s_2, \ldots, s_q\} \)
- \(p(P, s) = \text{the probability that peptide } P \text{ generates a peak } s \)
- **Scoring** = computing probabilities
- \(p(P, S) = \prod_{s \in S} p(P, s) \)

Finding Optimal Paths in the Spectrum Graph

- For a given MS/MS spectrum \(S \), find a peptide \(P' \) maximizing \(p(P, S) \) over all possible peptides \(P \):
 \[p(P', S) = \max_P p(P, S) \]
- Peptides = paths in the spectrum graph
- \(P' = \text{the optimal path in the spectrum graph} \)

De Novo vs. Database Search: A Paradox

- The database of all peptides is huge \(\approx O(2^n) \).
- The database of all known peptides is much smaller \(\approx O(10^n) \).
- However, *de novo* algorithms can be much faster, even though their search space is much larger!
- A database search scans all peptides in the **database of all known peptides** search space to find best one.
- *De novo* eliminates the need to scan database of all peptides by modeling the problem as a graph search.
- **But De novo** sequencing is still not very accurate!

Sequencing of Modified Peptides

De novo peptide sequencing is invaluable for identification of unknown proteins:

However, *de novo* algorithms are designed for working with high quality spectra with good fragmentation and without modifications.

Another approach is to compare a spectrum against a set of known spectra in a database.
Protein identification problem: a probabilistic formulation

\[P(P_i^1 = 1 | S_j) = \prod_j P(S_j | q_j = 1) P(q_j = 1 | P_i = 1) P(P_i = 1) \]

Challenges:
1. Is peptide detectability predictable?
2. How to assess PSMs?
3. How to model degenerate peptides?

Basic Bayesian model

\[\text{MAP solution: } \min_{x_1, x_2, ..., x_m} \sum_l P(S_l | x_1, x_2, ..., x_m) \]

Huge protein configuration space (2^n putative solutions)

Extending the probabilistic formulation to protein inference problem

- Protein configuration graph
 - Include not only identified peptides, but also non-identified peptides
 - Edge weights represent the prior probabilities of observing a peptide in a shotgun proteomics platform (i.e., peptide detectabilities)

Probabilistic approach to protein inference problem

Extreme case: multiple proteins sharing the same (single) identified peptide

Probabilistic formulation: Bayesian models

Combinatorial formulation: minimum missed peptides

Incorporation of peptide detectability: the probability that the peptide will be observed in a standard sample analyzed by a standard proteomics routine
From protein identification to protein quantification

\[A_{ijz} = r_{ijz} \cdot q_i + \epsilon_{ijz} \]

Peak area of peptide \(j \) charged \(c \) from protein \(i \)

Quantity (abundance) of protein \(i \)

Peptide response rate

Background noise

Assumption: 1) considering only unique (non-redundant) peptides; 2) errors model, Log-normal/Poisson: \(\sigma^2_{ijz} \propto r_{ijz}^2 \); Gaussian: \(\sigma^2_{ijz} \propto r_{ijz} \)

Post-Translational Modifications

Proteins are involved in cellular signaling and metabolic regulation.

They are subject to a large number of biological modifications.

Almost all protein sequences are post-translationally modified and 200 types of modifications of amino acid residues are known.

Examples of Post-Translational Modification

Phosphorylation

Glycosylation

Post-translational modifications increase the number of "letters" in amino acid alphabet and lead to a combinatorial explosion in both database search and de novo approaches.

Identification of Peptides with Mutations:

Challenge

Very similar peptides may have very different spectra (so SPC won’t work!)

Goal: Define a notion of spectral similarity that correlates well with the sequence similarity.

If peptides are a few mutations/modifications apart, the spectral similarity between their spectra should be high.

Similar Peptides with Different Spectra

<table>
<thead>
<tr>
<th>No mutations</th>
<th>1 mutation</th>
<th>2 mutations</th>
</tr>
</thead>
</table>

Problem: SPC diminishes very quickly as the number of mutations increases. (Only a small portion of correlations between the spectra is captured by SPC.)

Search for Modified Peptides:

Virtual Database Approach

Yates et al., 1995: an exhaustive search in a virtual database of all modified peptides.

Exhaustive search leads to a large combinatorial problem, even for a small set of modifications types.

Problem (Yates et al., 1995). Extend the virtual database approach to a large set of modifications.
Spectral Convolution

\[S_2 \otimes S_1 = \{ s_2 - s_1 : s_1, s_2 \in S_1 \times S_2 \} \]

Number of pairs \(s_1, s_2 \in S_2 \) with \(s_2 - s_1 = x \):

\[(S_2 \otimes S_1)(x) \]

The shared peaks count (SPC peak):

\[(S_2 \otimes S_1)(0) \]

Spectral Comparison: Difficult Case

\[S = \{10, 20, 30, 40, 50, 60, 70, 80, 90, 100\} \]

Which of the spectra

\[S' = \{10, 20, 30, 40, 50, 55, 65, 75, 85, 95\} \]

or

\[S'' = \{10, 15, 30, 35, 50, 55, 70, 75, 90, 95\} \]

fits the spectrum \(S \) the best?

SPC: both \(S' \) and \(S'' \) have 5 peaks in common with \(S \).

Spectral Convolution: reveals the peaks at \(0 \) and \(5 \).

Limitations of the Spectrum Convolutions

Spectral convolution does not reveal that spectra \(S \) and \(S' \) are similar, while spectra \(S \) and \(S'' \) are not.

Clumps of shared peaks: the matching positions in \(S' \) come in clumps while the matching positions in \(S'' \) don’t.

This important property was not captured by spectral convolution.

Shifts

\[A = \{ a_1 < \ldots < a_n \} : \] an ordered set of natural numbers.

A shift \((i, \Delta)\) is characterized by two parameters, the position \(i \) and the length \(\Delta \).

The shift \((i, \Delta)\) transforms

\[\{ a_1, \ldots, a_n \} \]

into

\[\{ a_{i+\Delta}, \ldots, a_{i+n-1} \} \]
Shifts: An Example

The shift \((i, \Delta)\) transforms \(\{a_1, \ldots, a_n\}\) into \(\{a_1, \ldots, a_i\Delta, a_{i+\Delta}, \ldots, a_n\Delta\}\)

e.g.

\[
\begin{align*}
10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & \\
10 & 20 & 30 & 35 & 45 & 55 & 65 & 75 & 85 & \\
10 & 20 & 30 & 35 & 45 & 55 & 62 & 72 & 82 & \\
\end{align*}
\]

Spectral Alignment Problem

- Find a series of \(k\) shifts that make the sets \(A = \{a_1, \ldots, a_n\}\) and \(B = \{b_1, \ldots, b_n\}\) as similar as possible.

- \(k\)-similarity between sets

- \(D(k)\) - the maximum number of elements in common between sets after \(k\) shifts.

Representing Spectra in 0-1 Alphabet

- Convert spectrum to a 0-1 string with 1s corresponding to the positions of the peaks.

Comparing Spectra=Comparing 0-1 Strings

- A modification with positive offset corresponds to inserting a block of 0s
- A modification with negative offset corresponds to deleting a block of 0s
- Comparison of theoretical and experimental spectra (represented as 0-1 strings) corresponds to a (somewhat unusual) edit distance/alignment problem where elementary edit operations are insertions/deletions of blocks of 0s
- Use sequence alignment algorithms!

Spectral Alignment vs. Sequence Alignment

- Manhattan-like graph with different alphabet and scoring.
- Movement can be diagonal (matching masses) or horizontal/vertical (insertions/deletions corresponding to PTMs).
- At most \(k\) horizontal/vertical moves.

Use of \(k\)-Similarity

SPC reveals only \(D(0) = 3\) matching peaks.
Spectral Alignment reveals more hidden similarities between spectra: \(D(1) = 5\) and \(D(2) = 8\) and detects corresponding mutations.
Protein Identification

- We can detect peptides from mass spectra by database search or de novo approaches
- Homologous proteins

References

- Mass spectrometry-based proteomics, Nature 422:198, 2003
- Applying mass spectrometry-based proteomics to genetics, genomics and network biology, Nature Reviews Genetics 10, 617-627, 2009