
Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

1Index Trees

Data Structures & File Management

Indexing with Trees

Hash tables suffer from several defects, including:

- good, general purpose hash functions are very difficult to find

- static table size requires costly resizing if indexed set is highly dynamic

- search performance degrades considerably as the table nears its capacity

Using a structured tree (BST, AVL) as an index offers some advantages:

- self-contained, data-independent implementation

- easily accommodates insertion and deletion

- balancing is relatively cheap, although complex in design

But, log(N) search cost is much higher than that of a good hash table.

The tree MUST be well-balanced for good performance.

BST and AVL trees are difficult to store efficiently on disk if index is huge.

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

2Index Trees

Data Structures & File Management

2-3 Trees

The first of these difficulties can be moderated by allowing a tree node to have
more than two children.

The third can be addressed by allowing an internal node to store a larger number
of values.

In a 2-3 tree:
- each node contains either one or two key values

- every internal node either holds one key value and has two children, or
holds two key values and has three children

- every leaf is at the same level in the tree

- there is a BST-like arrangement of values for efficient searching

Compared to a BST:

- 2-3 trees have lower update cost on average

- a 2-3 tree storing N keys will be shallower than the corresponding BST

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

3Index Trees

Data Structures & File Management

2-3 Tree Properties

A 2-3 tree:

3318

302312 48

1510 2120 3124 4745 5250

Each node can store up to two key values and up to three pointers.

The left child holds values less than the first key.

The middle child holds values greater than or equal to the first key and less than
the second key.

The right child holds values greater than or equal to the second key.

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

4Index Trees

Data Structures & File Management

2-3 Tree Insertion

Insertion into a 2-3 tree is similar to a BST. First find the appropriate leaf…

3318

302312 48

151410 2120 3124 4745 5250

Inserting 14…

leaf is not full, so
just insert new
key, shifting old
key if
necesssary.

Inserting 55…

leaf is full, but parent is
not, so create a new right
child, moving larger key
from middle child to
parent.

5248

4745 50 55

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

5Index Trees

Data Structures & File Management

2-3 Tree Splitting

If a subtree is sufficiently full, insertion may cause the parent to split:

3023

2120 3124

Inserting 19…

leaf is full, and so is the parent

30

19 3124

20

21

23

Median value is passed up to
the parent node… which has
now acquired another child…

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

6Index Trees

Data Structures & File Management

2-3 Tree Splitting the Root

In the worst case, the tree root splits, increasing the height of the tree:
Inserting 19 caused an internal node to split and a displaced value to be passed up.

Here, the parent is the tree root and is already full… so it splits also…

30

19 3124

20

21

23

3318

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

7Index Trees

Data Structures & File Management

B Trees

2-3 trees provide the motivation for the B-tree family. In a B-tree of order m:

- The root is either a leaf or has at least two children.

- Aside from the leaves, and possibly the root, each node has between m/2
and m children.

- Aside from the leaves, for each node the number of key values stored is
one less than the number of children.

- All leaves are at the same level in the tree, so the tree is always height
balanced.

- Values are organized as in a 2-3 tree for efficient searching.

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

8Index Trees

Data Structures & File Management

B Tree Example

A B-tree of order 4:

A B-tree will be relatively shallow compared to a binary tree storing the same
number of key values. Since a binary search may be applied to the key values in
each node, searching is highly efficient.

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

9Index Trees

Data Structures & File Management

B Tree Insertion

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

10Index Trees

Data Structures & File Management

B Trees

In a B-tree:

- The value m is usually chosen so that each node will occupy a disk sector.

- So, depending upon the key type, an internal node may have hundreds of
children.

- Each internal node must be at least 50% full, reducing the height of the
tree.

- The average cost of search, insertion and deletion, for large key sets, is
Θ(logKN) where K is the average branching factor in the tree.

Computer Science Dept Va Tech July 2000 ©2000 McQuain WD

11Index Trees

Data Structures & File Management

B+ Trees

In B+ trees:

- Internal nodes store only key values and pointers*.

- All records, or pointers to records, are stored in leaves.

- Commonly, the leaves are simply the logical blocks of a database file
index, storing key values and offsets. In this case, many key values will
occur twice in the tree, once at an internal node to guide searching, and
again in a leaf.

- If the leaves are simply an index, it is common to implement the leaf level
as a linked list of B tree nodes… why?

The B+ tree is the most commonly implemented variant of the B-tree family, and
the structure of choice for large databases.

* In small databases, it is fairly common to use a B-tree
as a direct data structure, with nodes storing records.

