
Efficient Publicly Verifiable 2PC over a Blockchain
with Applications to Financially-Secure Computations

Ruiyu Zhu

Indiana University

Bloomington, IN

zhu52@iu.edu

Changchang Ding

Indiana University

Bloomington, IN

dingchan@iu.edu

Yan Huang

Indiana University

Bloomington, IN

yh33@iu.edu

ABSTRACT
We present a new efficient two-party secure computation protocol

which allows the honest party to catch dishonest behavior (if any)

with a publicly-verifiable, non-repudiable proof without sacrificing

the honest party’s secret. Comparing to the best existing protocol of

its kind, ours requires a substantially simpler judge algorithm and is

able to process circuit evaluator’s input-wires two orders of magni-

tude faster. Further, we propose an automated, decentralized judge

implemented as a blockchain smart-contract. As a killer application

of combining our two-party PVC protocol with our decentralized

judge, we proposed the concept of financially-secure computation,

which can be useful in many practical scenarios where it suffices

to consider rational adversaries. We experimentally evaluated our

prototype implementation, demonstrated the 2PC protocol is highly

efficient and the judge is very affordable to protect users against

rational attackers.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •The-
ory of computation→ Cryptographic protocols.

KEYWORDS
secure computation, smart-contract, blockchain, rational adversary

ACM Reference Format:
Ruiyu Zhu, Changchang Ding, and Yan Huang. 2019. Efficient Publicly

Verifiable 2PC over a Blockchain with Applications to Financially-Secure

Computations. In 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’19), November 11–15, 2019, London, United Kingdom.
ACM,NewYork, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363215

1 INTRODUCTION
Secure computation is an important technique that has many real-

world applications. It offers a practical way to replace a mutually

trusted party with well-knownmathematical hardness assumptions.

Rigorous mathematical proofs assure all protocol participants that,

except for a negligible probability, after running the protocol they

cannot lose any extra information beyond what they expected and

agreed a priori.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3363215

However, real-world use of secure computation protocols is ham-

pered by the prohibitive cost of cryptography. This is especially

the case for MPC protocols that need to withhold active attacks

in settings without honest-majority. Typically, expensive, sophisti-

cated cut-and-choose mechanisms are employed in these protocols,

which incur a significant multiplicative factor (10–20x) overhead

compared to the semi-honest version of those protocols.

The large performance overhead can be attributed to an overly

pessimistic/simplistic threat model in the protocol design: (1) it

assumes the adversary has nothing to lose hence can risk everything

to break the security of these protocols; and (2) any leakage on the

secret inputs is considered as rendering immeasurable losses. This,

however, would not make sense in many realistic scenarios. For

example, when two-parties play a gambling game with 2PC, an

honest party’s loss is clearly bounded by the amount he/she has

already deposited. In business applications, the value of a company’s

sensitive data used in MPC can often be appraised with reasonable

accuracy. In addition, the participants can be required to put down

a security deposit that will be forfeited if cheating was caught,

hence attack is not free. Unfortunately, current definition of security

for MPC protocols doesn’t account for these factors, but requires

running the protocol with the worst scenario in mind: the good

guy losses everything while the bad guy attacks for free.

In this work, we develop secure protocols that take the financial

gain/loss of the attacker into account. We suggest a new notion

of security for MPC protocols, called financial security, which can

be useful in many business applications.We realized financially-

security 2PC by combining a public verifiable covert (PVC) protocol

with today’s blockchain technology. In our design, the two parties

will deposit some fund through smart-contract before running the

2PC protocol. Then, the PVC protocol is executed using properly

configured (based on their deposits and the appraised value of

the secret inputs) security parameters. In event of cheating being

caught, a smart-contract transaction will be executed on behalf of

the honest party to reclaim the attacker’s deposit. In essence, the

judge of the PVC protocol is a blockchain smart-contract.

Simple and intuitive as the basic idea above sounds to be, this

work exposes several challenges that were not considered before

in prior studies. First, there are no quantitative notion of financial

gain/loss in existing formal models and definitions of secure compu-

tation. Second, the cost of the judge algorithm has to be sufficiently

low so that it can actually run as smart-contract transactions over

a well-established, reliable blockchain network.

Unfortunately, the complexity of the judge algorithm was not

a focus in the design of all existing PVC protocols, which used a

monolithic algorithm to carry out an enormous amount of com-

putation. On the other hand, due to many practical constraints

https://doi.org/10.1145/3319535.3363215
https://doi.org/10.1145/3319535.3363215

(see Section 2.2), smart-contracts are only capable of executing

small-scale computations at affordable costs. Take the most re-

cent PVC protocol [22] as an example, even for a simple AES

circuit (6800 ANDs), the gas cost of the judge’s verify will be

at least 6800 × 4 × GAES (merely for re-garbling the circuit) plus

128 × (8 × GECMULT + 5 × GECADD) (only to replay the 128 base

PVW-OT, each of which requires 8 elliptic curve multiplications

and 5 elliptic curve additions). On Ethereum, by far the most popu-

lar platform supporting smart-contracts, the gas cost of computing

a single AES cipher,GAES, is 340K (using a solidity implementation

derived from the reference implementation of AES cipher in C). The

gas cost of ECC multiplication and addition are GECMULT = 40K
and GECADD = 0.5K , respectively [40]. Hence, the total gas cost

would amounts to at least 9.2 billion, which is worth roughly $7176

USD at the time of writing this paper! Even if the SHA3 EVM instruc-

tions are used in place of the expensive AES function for garbling

(though sacrificing runtime performance by a factor of 10 or so),

the base OT part alone will still require at least 41 million gas,

which is way above the threshold (8 million gas) allowed in current

Ethereum blocks. It would be theoretically possible to divide a long

computation into multiple smaller chunks so that it can be included

in multiple Ethereum blocks. However, in reality, such hacks are ex-

tremely impractical because of the heavy use of long-term storage

(1000x more expensive than volatile memory) to keep intermediate

values across different blocks, and also because of the need for

uploading (linearly) many code chunks sliced from the dynamic

instruction trace of the long computation.

1.1 Contributions
New Methodology. We propose the concept of financial security.

A financially secure 2PC guarantees that the expected financial gain

of a cheating adversary must be smaller than a preset threshold

(which can be negative), where an adversary’s expected financial

gain is calculated from the appraised value of the honest party’s

input, the adversaries security deposit, and the cheating deterrence

rate of the PVC protocol. Comparing to the conventional definition

of security for 2PC, the new notion allows to reduce the amount

of heavyweight cryptography based on a quantitative analysis on

each party’s stake in the 2PC protocol.

New protocol design and implementation. Wepropose a financially-

secure 2PC protocol by combining public-verifiable covert (PVC)

secure computationwith an efficient, decentralized, automatic judge

realized as an Ethereum smart-contract.We have overcome the tight

budget of today’s smart-contracts by designing a simpler PVC pro-

tocol (with a much simplified judge), as well as an efficient succinct

proof search mechanism to further reduce the judge’s cost. The

proof searching process uses only logarithmic rounds in the size of

the circuit and guarantees the honest party to obtain a constant-size

irrefutable proof. As a side benefit, our judge doesn’t need to know

the circuit to verify the proof, hence is application-independent. We

developed a prototype implementation of our protocol and experi-

mentally demonstrated the substantial performance advantage of

our protocol, and the practicality/affordability of penalizing a cheat-

ing adversary via smart-contracts, (therefore, it makes no sense for

any rational attacker to ever try to attack).

As a part of this work, we proposed a cut-and-choose based

PVC 2PC protocol. Our protocol features a significantly simpler

judge that only needs to verify one garbled circuit (GC), one signed

GC-hash, and one sender non-repudiable OT (consisting of veri-

fying 3 ECMULT + 1 ECADD + two signed messages). In case of

normal execution, our protocol is able to offer 1/n-deterrence with
only n calls to a sender non-repudiable OT (whose cost is compa-

rable to the signed-OT) and a single call to a standard correlated-

OT-extension protocol (containing only l + s OTs where l is the
evaluator’s input length and s is the statistical security parameter),

hence O(n + l) bandwidth cost overall. In comparison, the best

existing protocol [22] requires signing and verifying messages of

lengthO(n · (l + s)). Thus, our PVC protocol is not only simpler but

also asymptotically more efficient, hence may be of independent

interest.

1.2 Related Work
MPC with Covert Adversaries. Canetti and Ostrovsky [13] con-

sidered secure computation against honest-looking adversaries who
may deviate from protocol specification only if the deviation can-
not be detected. The current notion of covert secure computation

was first formalized by Aumann and Lindell, who also presented a

cut-and-choose-based solution in the two-party setting [7]. Their

construction was then improved, and also extended to work in the

multiparty setting without honest majority by Goyal et al. [19].

Publicly Verifiable Secure Computation. Merely detecting misbe-

havior, especially by a party who itself can be questionable, may

not be enough to intimidate the attackers. So Asharov and Or-

landi proposed the concept of publicly verifiable covert (PVC) secure
computation and realized it using a signed-OT primitive [6]. A

PVC protocol enables the honest party to prove to the public of

the cheater’s misbehavior without sacrificing its own secret input.

Kolesnikov and Malozemoff presented a more efficient construction

of PVC based on signed OT-extension [29].

In a recent concurrent work, Hong et al. provided the first effi-

cient implementation of two-party PVC protocol [22]. Their proto-

col doesn’t use signed OT-extension but requires the circuit gen-

erator to run instances of OT-extension protocol with the same

random seeds used to generate the corresponding garbled circuits.

In comparison, we developed a different mechanism to prevent

selective-OT attacks which is even simpler and more efficient in

both practical and asymptotic sense. Like their protocol, our PVC

protocol of Figure 7 is also defamation-free (thus “non-halting detec-
tion accurate”). In addition, we focus on realizing the judge as auto-

matic, decentralized smart-contracts. We also proposed financially-

secure 2PC as an application of our PVC protocol, both of which

are beyond the scope of their paper.

Secure Computation with a Blockchain. Research on leveraging

Bitcoin network for MPC was initially focused on solving the fair-

ness issues [3, 11, 27, 31]. The goal was to ensure that a party who

aborts prematurely with the output should pay a monetary penalty

to the honest parties. In addition, [3] also suggested linking MPC

inputs and outputs to Bitcoin transactions to prevent cheating on

MPC input and enforcing the MPC outcome, two issues out of

the scope of the conventional MPC research. [33] proposed the

secure cash distribution with penalty primitive that can handle

many stateful secure computations such as auctions and games.

Kiayias et al. [27] further formalized the interaction between MPC

and Blockchain as standard ITMs (Interactive Turing Machines)

and discussed the applicability of composition theorem in these

scenarios. [32] proposed a method to achieve fairness for polyno-

mially many instances of secure computations with low amortized

cost. Researchers have applied and improved these techniques to

enable decentralized poker as a killer application [12, 15, 31].

In contrast, our work focuses on leveraging blockchain smart-

contracts to realize an affordable, automated, decentralized judge

for public verifiable financially-secure computations.

Refereed Delegation of Computations. The idea of allowing in-

dividual independent parties to commit and contest each other

deterministic computation was first proposed by Canetti et al. [14]

and later popularized in the work of VerSum [38] and Arbitrum [24].

Similar to this work, these schemes can also resolve a dispute by pro-

ducing a constant publicly verifiable proof of computational faults

in logarithmic rounds. However, they used this idea for verifiable

computation purpose, hence the focus was on a generic architec-

ture to allow verifying arbitrary computations. Contrasting with

these works, we target at a specific task (garbling) in the context of

improving GC-based secure computation protocols, which allows

us to consider a much simpler but more efficient execution model.

Rational Cryptography. There have been a large body of research

papers on rational cryptography [4, 17, 18, 21, 28]. Although those

works also assumed and exploited that the adversaries have certain

“rational”, our work is very different from those works in many

aspects of the problem context: (1) Our focus is on improving the

performance of GC-based cut-and-choose protocols for two-party

secure computation in presence of rational adversaries; whereas

those works were about MPC protocols based on rational secret

sharing; (2) We reveal and address the practical challenges in real-

izing an automated and decentralized judge using smart-contracts

over a real-world blockchain network; (3) In our model, the adver-

sary is simply rationalized to weigh the legitimate selling price of

an honest party’s input data against the expected penalty of caught

cheating, whereas prior works were about a completely different

assumption that the adversary is interested in learning the secret

inputs of the other players while preventing others from learning

their own secrets; (4) We don’t consider the fairness problem (but

several existing blockchain-based fairness solutions can be used

with our protocol to address the concern); whereas fairness is a

main goal in most of those prior works.

2 PRELIMINARIES
We present some useful building blocks that appear in our solutions.

A list of common variables is summarized in Figure 1.

2.1 Incremental Collision-Resistant Hash
Incremental collision-resistant hash was first proposed by Bellare

et al. [8] to speed up cryptographic processing of a file undergoing

active updates, or many large files whose differences are small. The

key idea was that if a file has already been processed, then another

file similar to the processed one could be finished with a cost that

s The statistical security parameter. Typically, s = 40

κ The computational security parameter. Typically κ = 128

n The total number of GCs involved in cut-and-choose.

l The length of each party’s input and the circuit output, i.e.,

we assume f : {0, 1}l × {0, 1}l 7→ {0, 1}l .

J·K· For a party P and a messagem, JmKP
def

== (m, SignpkP (m)).
When JmKP is treated as a non-repudiable claim of the value

ofm by P , we implicitly assume SignpkP (m) is a signature
over a non-ambiguous claim on the value of m including

necessary meta-data.

Ri The XOR difference between a wire’s 0-label and 1-label in

the i th GC.

widx(j) The index of the wire associated with x j , the j-th bit of P1’s

input x .

widy(j) The index of the wire associated with yj , the j-th bit of P2’s

input y .

widr(j) The index of the wire associated with r j , the j-th bit of P2’s

augmented input r .

widz(j) The index of the wire associated with zj , the j-th bit of the

output z .

f , fi f is the circuit description file; fi is the i th line of f .

F , Fi F is the garbled circuit of f ; Fi is the i th garbled gate in F .

IHM
i The incremental hash of the first i blocks of a message M .

IH f
i The incremental hash of the first i lines of the circuit file f .

IH F
i The incremental hash of the first i garbled gates of the GC F .

{{·}} {{v }} denotes a pair of signed values (Jv1KP1

, Jv2KP2

) where

v1 and v2 are, resp., P1’s and P2’s non-repudiable claims on

the value of the same variable v.

identical identical({{v }}) evaluates to whether v1 = v2.

peer peer({{v }}) evaluates to v1 if it was P2 calling the function

and v2 if it was P1 calling.

Figure 1: Table of Notations.

only depends on the size of the difference (as opposed to the entire

file).

We will use a restricted version of incremental collision-resistant

hash that only considers “append” operation. Thus, we define an

incremental collision-resistant hash schemeH as a tuple of efficient

algorithms (Gen,H , IncH) where (Gen,H) constitutes a collision-

resistant hash scheme, and for allM ′ = M ∥δ , and s ← Gen(1κ) for
computational parameter κ,

H s (M ′) = IncHs (H s (M),δ)

and the cost of IncH is only polynomial in the length of δ .
In this paper, we show how incremental collision-resistant hash

and the hash-then-sign method can be applied in a fresh context,

to allow an honest party to efficiently rebut a false claim from its

dishonest peer about a computation. The rebuttal has only loga-

rithmic round in the size of the computation and generates a proof

that costs only constant computation for a judge to verify.

2.2 Blockchain and Smart-Contracts
A blockchain is an open, decentralized ledger system operated

by volunteers all over the world connected by the Internet. The

consensus on records in the ledger is reached either through proof-

of-work, proof-of-stake, or a mix of both. When its ledger is used

to record balances of accounts, a blockchain essentially realizes a

cryptocurrency. Bitcoin [1, 34] and Ethereum [2, 40] are two most

valuable blockchains in market capitalization.

A major advantage of Ethereum over Bitcoin is its support of

smart-contracts, which allows to run Turing-complete computa-

tions specified by EVM (Ethereum Virtual Machine, a stack-based

RISC architecture) assemblies to manage its transactions. However,

the support of Turing-complete smart-contracts comes with a heavy

burden to Ethereum volunteers, e.g., to permanently remember its

source code and to re-run the same computation by all Ethereum

miners who are actively mining (and also when establishing a

new Ethereum node). To limit the impact of smart-contracts on

Ethereum’s throughput and scalability, EVM introduced a stringent

pricing scheme [40] on every instruction and storage (short-term or

long-term) used by its computations. For example, it charges 21000

gas base rate plus 68 gas/byte for each transaction and additional

32000 gas for contract creation, 5000 gas/word (1 word = 32 bytes)

for modifying long-term variables, 3 gas to perform an addition,

30 gas plus 6 gas/word for SHA-3, and 3 gas/word for short-term

storage. To execute a smart-contract transaction, a user must set

enough fund aside to drive the smart-contract execution till the

fund depletes.

When a transaction is submitted, a gas-price needs to be specified,
e.g., 4 × 10

9
wei/gas which allows the transaction to be included

within 2 minutes, indicating the user is willing to pay 4 Gwei per

gas spent in executing this transaction. The higher gas-price one

offers, the quicker it gets included on the chain. Since 1 Ether is

10
18

wei and 1 Ether is worth $195 USD at the time of writing this

paper, 1 gas converts to 7.8 × 10
−7

USD. We note that both the

gas-price and Ether/USD conversion rate fluctuate over time.

2.3 Garbled Circuits
In this work, we use a slightly modified definition of secure garbling

scheme from the one proposed by Bellare et al. [10] (and enhanced

by Frederiksen et al. [16] for verifiability), to emphasize the use

of seeds and determinism of the garbling algorithm. We define gar-

bling scheme G as a tuple of efficient deterministic algorithms

(Gb, Ev, En,De,Ve) that have the following syntax:
• X B En(e,x) runs the encoder En with encoding information e
and an input x to produce X (i.e., the encoding of x);

• (F , e,d) B Gb(1κ , f , Seed): runs a deterministic garbler Gb on

input function f and a uniform Seed to produce a garbled circuit

F , the encoding and decoding information e,d (where κ is a

computational parameter);

• Y B Ev(F ,X) runs the evaluator Ev on garbled circuit F and

encoded input X to produce the encoded output Y ;

• y B De(d,Y) runs decoder De with decoding information d on

encoding Y to decode Y into plaintext y.

• b B Ve(f , Seed, F ,d) runs the verifier Ve and outputs a bit indi-

cating if F and d are indeed the outputs of Gb(1κ , f , Seed).
Note that unlike the syntax used by Frederiksen et al. [16], we don’t

need e to be an input to Ve because in our protocol e will never

be given to the evaluator and can be deterministically reproduced

from Seed. Interesting properties of garbling include correctness,

privacy, obliviousness, authenticity, and verifiability.

• Correctness: For all f , all (F , e,d) B Gb(1κ , f , Seed) and all x ,

De(d, Ev(F , En(e,x))) = f (x).

• Privacy: There exists an efficient S so that for all f and all x ,{
(F ,X ,d) :

(F , e,d) B Gb(1κ , f , Seed)
X B En(e,x)

}
≈
{
S(1κ , f , f (x))

}
.

• Obliviousness: There exists an efficient S so that for all f and x ,{
(F ,X) :

(F , e,d) B Gb(1κ , f , Seed),
X B En(e,x)

}
≈
{
S(1κ , f)

}
.

• Authenticity: For all efficient adversary A, all f and all x :

Pr

©­«
Y , Ev(F ,X)

and
De(d,Y) , ⊥

:

(F , e,d) B Gb(1κ , f , Seed)
X B En(e,x)

Y ← A(1κ , f , F ,X)

ª®¬ ≤ negl(κ).

• Verifiability: For all efficient adversary A, all f and all x ,

Pr

(
De(d, Ev(F , En(e,x))) , f (x)
and Ve(f , Seed, F ,d) = 1

: (F , e,d, Seed) ← A(1κ , f)
)
≤ negl(κ).

When applying a garbling scheme for two-party secure com-

putation purpose, one party, called the circuit generator, will run

the Gb function and send the garbled circuit F to the other party,

known as the circuit evaluator. In addition, the circuit generator

will run En to translate its own plaintext input into their encodings

that are also known as wire-labels and send them to the evaluator.

The parties will run oblivious transfer protocols for the evaluator

to obtain the encodings of its own plaintext input. Once all circuit

input encodings are available at the evaluator’s end, the evaluator

will run the Ev algorithm to obtain Y , the encoding of the output.
Finally, depending on who will learn the plaintext result, Y will be

either decoded to plaintext by the evaluator, or sent back to and

decoded at the circuit generator’s side.

In presence of adversaries who could deviate from protocol spec-

ification (which will allow a malicious generator to learn extra

information of the evaluator), a common cryptographic treatment,

called cut-and-choose, is to require the generator to producemultiple

garbled circuits using different seeds for the same public function

f , so that some random garbled circuits will be checked to gain

confidence over the circuit generator’s honest behavior and only

the rest are evaluated for computing the result. Note that garbled

circuits are typically very large. Hence, to save bandwidth, usu-

ally only short collision-resistant hashes of the garbled circuits are

transmitted for verification purpose [19]. In our case, the syntax of

Ve becomes b B Ve(f , Seed,h,d), and the inequality in the defini-

tion of verifiability becomes,

Pr

©­«
De(d, Ev(F , En(e,x))) , f (x)

and h = H (F)
and Ve(f , Seed,h,d) = 1

: (F , e,d, Seed) ← A(1κ , f) ª®¬ ≤ negl(κ).

where h = H (F)withH being a collision-resistant hash (and option-

ally, incremental only if generating succinct proof of misbehavior

is desired).

In practice, garbling schemes can be efficiently implemented

using hardware-accelerated assembly instructions either in the ran-

dom oracle model [9, 41] or under standard assumptions only [20].

2.4 Oblivious Transfer
Oblivious transfer is an important enabling primitive for MPC pro-

tocols. A composable actively-secure string OT, which allows an OT

receiver to obliviously select one out of two messages from the OT

sender, can be built from various computational hardness assump-

tions such as DDH and lattice LWE [36]. To avoid expensive public-

key operations, OT-extension protocols were proposed to amortize

the cost of a few expensive public-key operations over polynomi-

ally many OT instances, first in the semi-honest model [23], then

in the malicious model [5, 26]. In this work, we use a variant of

OT-extension called Correlated OT-extension (see Figure 5 and Fig-

ure 2) first seen used in [35] for the same purpose of preventing

selective failure attacks on the evaluator’s inputs.

3 APPROACH OVERVIEW
We summarize the key ideas of the PVC protocol (Section 3.1), the

short proof generation and verification mechanism (Section 3.2).

We will conclude this section with a brief, intuitive explanation of

the financial-security threat model (Section 3.3).

3.1 Publicly Verifiable Covert 2PC
Our PVC protocol is based on cut-and-choosing garbled circuits

(GC) but lifts most of the heavyweight due to cut-and-choose by

considering only covert adversaries. A covert attacker will cheat

only if cheating is caught with a probability less than certain thresh-

old, say 1/n. So it suffices to generate n GCs, open n − 1 of them

for verification purpose and evaluate only one GC. If any GC fails

the verification, the honest party obtains a non-repudiable proof

than can be checked by the rest of the world without risking its

own secret input. Nevertheless, the cut-and-choose-based PVC pro-

tocol involves multiple garbled circuits and is still subject to some

consistency-related attacks. For example, to guess about the eval-

uator’s secret input, a malicious circuit generator could run the

OT with some input wire-labels different from those produced by

garbling. This is also known as the selective failure attacks on OT

inputs, or selective-OT attacks for short.

Correlated-OT + Lightweight Circuit Augmentation. To thwart

such attacks, our PVC protocol (Figure 7) only makes a single
call the standard correlated-OT FCorrOT (Figure 5) to translate

the circuit evaluator’s input y into input wire-labels on the (only)

evaluation-GC (Step (4) of Figure 7). As Figure 2 shows, FCorrOT can

be efficiently realized by slightly modifying Keller-Orsini-Scholl’s

actively-secure OT-extension protocol. In our protocol, no signa-

tures are needed on any part of the transcript of running this

correlated-OT. Instead, the evaluator only needs to check the con-

sistency of a few values obtained from FCorrOT and simply abort in

case any check fails (Step (4)). A key insight behind this design is

that it is okay to not accuse a cheating correlated-OT sender’s mis-

behavior during OT if this misbehavior will either lead to an abort

(1) (Base OTs) R picks (κ + s) pairs of κ-bit uniform seeds{
(ki

0
, ki

1
)
}
i ∈[κ+s]. S uniformly picks a bit matrix H ∈

{0, 1}κ×(κ+s) and a string ∆′ ∈ {0, 1}κ+s such that ∆ = H∆′,
where ∆ is S’s input to the correlated OT, and H has rank κ.
For all i ∈ [κ +s], R and S call FOT as the sender and receiver,

respectively, so that S learns ki
∆′i
.

(2) (OT Extension) R computes ∀i ∈ [κ + s],T0i B PRG(ki
0
),

T1i B PRG(ki
1
), ui B T0i ⊕T1i ⊕x′where T0i ,T1i ,ui , x′ ∈

{0, 1}l+κ+s and x′ is formed by appending κ + s random bits

picked by R to its own l-bit OT choice vector x. R sends{
ui
}
i ∈[κ+s] to S . S computes Ti B PRG(ki

∆′i
) ∈ {0, 1}l+κ+s

and qi B Ti ⊕∆′iu
i
. Let qj be the jth row of the l ×(κ +s) bit

matrix [q1, . . . , qκ+s], and T0j be the jth row of the l ×(κ+s)

bit matrix T0 = [T01, . . . ,T0κ+s].
(3) (Correlation Check) S picks l + κ + s uniform (κ + s)-bit

vectors {χi }i ∈[l+κ+s] and sends them to R. R sends χ B∑l+κ+s
j=1

x′j χj and t B
∑l+κ+s
j=1

(T0j ⊙ χj) (where ⊙ is bitwise

AND of two equal-length strings) to S . S computes q B∑l+κ+s
j=1

(qj ⊙ χj) and verifies t = q + χ∆′.

(4) (Compress and Output) S sendsH ,

{
vj B mj ⊕ Hqj

}
j ∈[l]

to R and outputs ⊥. R outputs

{
mx j B vj ⊕ H T0j

}
j ∈[l].

Figure 2: Realize FCorrOT in the FOT-hybrid model.

or eventually be accused in a later stage with a probability greater

than what the adversary can tolerate, all in a way independent of

the honest party’s input. This is indeed the case in our protocol:

(1) errors in any of the GCs will be caught with an irrefutable proof

with probability greater than 1 − 1/n; (2) selective failure attacks
on input wire-labels to the correlated-OT will cause protocol to

abort except for a negligible probability, because correlated-OT

guarantees that every pair of the sender’s input wire-labels to the

OT has to share the same XOR-difference.

One may still worry about a malicious correlated-OT sender’s

ability to guess the OT receiver’s input by calling FCorrOT with a

corrupted RI but with some 0-labels in {L0

I,widy(j)
}j ∈[l] carefully

crafted such that

{
L
ŷj
I,widy(j)

}
j ∈[l]

are all valid wire-labels (where ŷj

denotes the attacker’s guess ofyj). This attack would be particularly
worrisome when l is small or the entropy in y is low so it is easy

to guess y. To this end, we introduced a preparation step (Step (0)

of Figure 7) where the function f is augmented into f ′, which has

s (a small statistical security parameter, e.g., 40) auxiliary input-

wires for input r (whose value will be picked uniformly by the

evaluator) and also treats the wires of y and r as evaluator’s output-
wires (so ordered-pairs of wire-label hashes on these wires are sent

to the evaluator as part of the decoding information). After the

correlated-OT is done, the evaluator will ensure that all wire-labels

representing y and r obtained from FCorrOT are consistent with the

decoding information on these wires. This lightweight mechanism

reduces the success rate of the aforementioned attack to 2
−s

(as

r ∈ {0, 1}s). We remark that the decoding information on the wires

of y is also indispensable, because otherwise an attacker can easily

flip the 0-label and 1-label on a bit of y without ever being detected.

Moreover, it is important to augment f for all garbled circuits (as

opposed to only the evaluation-circuit), because otherwise there is

no guarantee that the decoding information on those output-wires

is valid (if it could never be checked).

Finally, we note that the correlated-OT used for translating the

evaluator’s secret input bits are executed only after the garbled cir-

cuits are sent. This allows the OT to be done only once as compared

to n times in prior protocols, and dismisses the need to sign and

examine the transcript of the correlated-OT. However, it poses a

challenge in proving the protocol secure: a simulator will not be able

to learn f (x ,y) at the time of circuit garbling any more. To obtain a

rigorous proof of security, we introduced l “RIGHT” gates, ▶, in f ′,
which always returns its right input, to derive f (x ,y) as x ▶ f (x ,y).

A ▶ gate is implemented using∧ and ⊕: a ▶ b = ((a⊕b)∧a ⊕ b)⊕b.
These seemingly redundant ▶ gates helps in our security proof: For

the case when the evaluator is corrupted, it allows the simulator

S to garble the evaluation-circuit with all ▶s replaced by “LEFT”

gates, ◀, which always return its left input. The fact that these re-

placements can’t be noticed by P2 depends on not only the privacy

and obliviousness properties of secure garbling, but also the fact

that S only needs to obliviously modify the garbled rows of the

AND gate (by flipping the right input before AND-ing) in every ▶
to turn a ▶ into a ◀.

Sender Non-Repudiable OT. We use seed-based deterministic gar-

bling and use n instances of OT to allow the evaluator to obliviously

select n − 1 GCs as check-GCs whose seeds are obliviously trans-

ferred. To ensure a cheating circuit generator be indicted for sending

corrupted GCs, we use Sender Non-Repudiable OT, FSNR-OT, to trans-
fer the GC seeds. FSNR-OT provides conceptually the same function-

ality as signed-OT of [6], except that FSNR-OT is defined completely

through an ideal two-party stateful functionality (see Figure 4). This
approach allows a cleaner description without relying on the less

standard notion of EU-CMRA (Existentially Unforgeable under Cho-

senMessage and Randomness Attacks) signatures as required by [6]

or EU-CMPRA (Existentially Unforgeable under Chosen Message

and Partial Randomness Attacks) signatures as in [29]. Note that

the Verify function of FSNR-OT is an authorized interface that re-
quires no interaction. We call it authorized because it only responds

non-trivially to queries that are signed (thus permitted) by the OT

receiver. This authorization requirement is critical security-wise as

it can prevent an OT sender to learn the receiver’s choice by simply

querying the Verify function. It is also important for the Verify
function to be non-interactive: we want a judge to be able to verify

an OT receiver’s claim without any help from a potentially mali-

cious OT sender (who can refuse to assist in the proof). Finally, it

is easy to see that by definition, there is no chance that a malicious

OT receiver can defame an honest sender by tricking Verify to

output 1 on some (b ′,m′) different from those actually used in the

corresponding Execute-OT. Our realized FSNR-OT with a protocol

almost the same as that of signed-OT [6], except that we only use a

standard EU-CMA signature scheme. We describe and prove our

sender non-repudiable OT protocol in Section 4.1.

The Judge. Figure 8 describes the judge’s verification procedure.

To verify that a circuit generator has sent inconsistent Seedı and

hı , it suffices for the judge to verify that Seedı indeed comes from

the ıth OT but Seedı cannot produce the dı ,hı that was received
earlier from P1. The simplicity of this judge fits squarely in our plan

to run the judge as affordable smart-contracts. To the best of our

knowledge, this is the leanest judge for a PVC protocol by far.

Comparison with [6], [29], and [22]. Here we restrain the compar-

ison to the cost of processing evaluator’s inputs. Both [6] and [29]

employed the wire-splitting technique, except that [6] used (l · n2)

instances of PVW-based signed-OT whereas [29] is more efficient

because it uses n instances of signed-OT-Extension, each of which

contains (l · n) OTs. Most recently, [22] did not use wire-splitting

but proposed to let the OT sender to run each of the n instances of

OT-extension (each contains l OT) with the same randomness used

to generate the corresponding GC and sign its entire transcript. So

it amounts to O(nl + ns) bandwidth overall due to an O(s) additive
overhead from OT-extension. This, however, leaves the burden of

replaying the entire the OT-extension to not only the evaluator,

but also the judge. In contrast, our PVC protocol uses only one

instance of the standard OT-extension-based correlated-OT, which

boils down to O(l + s) total bandwidth, and requires no signing

and verifying the transcript of the correlated-OT. And our judge is

completely relieved of verifying anything about the correlated-OT.

[6] [29] [22] Ours

O(l · n2) O((l + s)n2) O(nl + ns) O(l + s)

Figure 3: Bandwidth cost for thwarting selective-OT

3.2 Affordable Judge and Succinct Proofs
Even though our judge has been greatly simplified, the tight budget

of smart-contracts would still make it infeasible to execute the judge

(whose cost is linear in circuit size because of the Ve algorithm) as a

monolithic computation on Ethereum. In this work, we propose an

efficient protocol for the honest party to derive a constant-size, non-

repudiable proof of the adversary’s misbehavior that cost the judge

Public Input: The sender’s and receiver’s public keys pkS , pkR .
Execute-OT:
(1) Receive (tag,m0,m1) where m0,m1 ∈ {0, 1}

n
from S , and

(tag,b) where b ∈ {0, 1} from R.
(2) Store (tag,b,mb) and sendmb to R.
Verify: Upon receiving Jtag′, (b ′,m′)KR , return 1 iff

VerifypkS
(
Jtag′, (b ′,m′)KR

)
= 1, tag′ = tag,b ′ = b,m′ =mb .

Figure 4: The Ideal Sender Non-Repudiable OT FSNR-OT.

Execute-OT: Upon receiving

(
∆, {mi }i ∈[l]

)
where ∆,mi ∈

{0, 1}κ ∈ {0, 1}κ from S and x where x ∈ {0, 1}l from R, send
{mi ⊕ xi∆}i ∈[l] to R.

Figure 5: The Correlated OT functionality FCorrOT.

constant gas to verify. We emphasize that by “proof”, we always

refer to a proof of misbehavior of the adversary. It is important that

the proof generation protocol is complete and sound. Informally,

completeness means that the honest party can always obtain such a

short proof, and soundness means that a dishonest party can never

derive a valid proof to defame the honest party.

We observe that in our PVC protocol (Figure 7), the only point

when cheating is considered being caught is in Step (3). At that point,
an honest evaluatormust have discovered thatVe(f ′, Seedı ,dı ,hı) =
0, where Seedı comes from the ıth non-repudiable OT and (dı ,hı)
were received earlier at the end of Step (2). We note all the checks

in Figure 8 are deterministic functions over (f ′, Seedı ,dı ,hı) whose
values come with non-repudiable evidences: (1) f ′ has been signed

in Step (0); (2) value of Seedı is irrefutable thanks to FSNR-OT;

(3) non-repudiation of dı ,hı received in Step (2) is backed by the

EU-CMA signature scheme. To reduce the judge’s work in verifying

the checks, especially the one involving computing Ve, we require
the two parties to compute the checks for the judge and contesting

each other along the way with non-repudiable claims about the

intermediate states of the computation. Moreover, they hash-then-

sign the computation using incremental cryptography. Therefore,

once they use binary search to find the first intermediate state that

they disagree upon, the honest party can submit the adversary’s

claim about the previous state (which has to be true) and the ad-

versary’s claim about the current state (which is false) to the judge.

The judge only need to replay a single step to decide if cheating

has occurred in the PVC protocol.

As a warmup, consider the case when the parties had a dispute on

the value of a very long message consisting ofn blocks. For example,

let {mi }
n
i=1

be an n-block message wheremi denotes its i
th
block,

and initially the parties agree on the incremental hash of the entire

message, i.e., IHn = IH ({mi }
n
i=1
), and each party has IHn signed

by its peer. If at some point the attacker claimed a value ˜IHk , IHk ,

then they will contest each other on the value of IH (k+n)/2. Since
the adversary cannot provide a value of IH (k+n)/2 that is consistent
both with its own claims of IHk and IHn , they will continue this

contesting process until they end up with an ı such that they agree

on IHı+1 but not IHı . At this point, the honest party already ob-

tained a non-repudiable proof, i.e., the adversary’s non-repudiable

claims on IHı and IHı+1. Thanks to the collision-resistance of the

hash, the attacker cannot find a presage of IHı+1. This proof can be

verified by a single call to IncH : IHı+1 = IncH (IHı ,mı+1), whose

cost is a constant. It is easy to see that this binary search can produce

such a proof in O(logn) rounds for disputes on static messages.

The idea also applies to resolving disputes on dynamic, determin-

istic computations such as Ve(f , Seed,d,h). However, the procedure
turns out to be much more complicated due to some subtle issues.

We model the garbled circuit as a sequence of garbled ANDs and

XORs whose order and wire-connections are determined by the

circuit file f ′, whose content has been incrementally hashed and

signed. Both parties should have also incrementally hashed the

sequence of garbled gates in order. To generate a short proof by

contesting the execution of Ve, the parties must have already agreed

on the values of f ′ (otherwise the PVC won’t even start), Seed (oth-

erwise, a proof of misbehavior would have obtained from FSNR-OT),

and d,h (otherwise, a proof would simply be the signed message

Jd,hKP1

received in Step (2)). That being said, they will begin with

searching for the first garbled gates whose contents they disagree.

Once this gate is found, say with index ı, they need to declare

values of the two input wire-labels, the garbled rows, the output

wire-label, and the circuit file description of this gate. Depending

on the adversary’s claim, the honest party will sequentially check

the following cases and must end up in one of them. For the first

two cases, the honest party easily obtains a succinct proof.

(1) This particular gate was garbled wrong.

(2) The hash of the garbled rows and output wire-label was wrong.

(3) They disagree on the input wire-labels. In this case, they have

already agreed on the incremental hash of all garbled gates up

to gate-(ı − 1) (because gate-ı is the first garbled gate they dis-

agreed). Since the sequence of garbled gates are in topological

order (thus the input wire-labels must have appeared as out-

put wire-labels of a previous gate), a proof of misbehavior can

be produced using the binary search method explained earlier

using the hash of the sequence of garbled gates.

(4) They disagree on the circuit description of this gate. In this case,

since the description is just one line in the circuit file, a proof

can thus be generated with the binary search method using the

hash of the circuit file.

For situation (1) described above, onemight worry that verifying the

correctness of a garbled gate can still be considered too expensive.

Indeed, re-garbling an AND costs at least 340K × 4 = 1.36M gas.

However, we note that it is easy to subdivide the work of garbling

an AND into 4 AES calls, and further into 10 basic AES rounds.

Therefore, with 6 more rounds of contesting to zoom into the AND

garbling, we can further reduce the judge’s effort to one basic AES

round, which costs only 34K gas.

It is not hard to prove by induction that if the adversary coop-

erates in running the proof search procedure to the end, then the

honest party will always obtain a constant proof of misbehavior in

logarithmic rounds and the proof can be verified by the judge using

constant resource. Nevertheless, an adversary can be uncooperative,

either by staying silent or through sending meaningless replies,

leaving the honest party unable to derive a short proof alone. We

finally tackle these two situations as below.

What if the adversary stays silent and refuses to cooperate? We

resolve this issue by requiring the parties to deposit certain amount

of fund in advance and always communicate through an Ethereum

smart-contract transaction, called sendmsg, which takes a party’s

messages as input, ensures the sequence numbers of consecutive

messages are sequentially incremented, and records the identity

of the most recent replying party. If the adversary keeps silent for

more than a threshold ntimeout number of blocks, the honest party

can take the silent adversary’s security deposit by invoking the

judge with a Timeout proof. sendmsg transactions are very cheap: it
only keeps two variables and checks one integer field (the sequence

number), and do nothing about its input otherwise. The inputs to

sendmsg will be uploaded on the blockchain, which is essentially a

public, sequenced, authenticated channel between the two parties.

Therefore, an adversary who refuse to cooperate with the judge

cannot gain any financial advantage.

Handling Adversary’s Non-sense Replies. To reduce cost, sendmsg
doesn’t really examine the contents of the replies, thus cannot

decide whether a reply “makes sense”. To address this issue, we

formalized the proof search procedure as a finite state automaton

with transitions well defined over the responses (also called records)
from both parties. Each state of this automaton must be entered

with a valid record of multiple key-value pairs, where the validity of

a record is defined with respect to the state and the set of keys in the

record, e.g., a valid record for state 1 must contain exactly the set of

keys named as key1, key2 , key3 . So the proof search procedure can

be encoded as transition rules of this FSA. Once we turn each of the

transition rules into a small transaction that checks the validity of

a message based on information of the two states the rule connects,

any meaningless message from the adversary immediately becomes

a proof of misbehavior that can be verified by the judge.

DoS Attacks. Due to the use of blockchain, an honest party run-

ning our protocol would be subject to DoS attacks. This is a vul-

nerability generally suffered by all other blockchain-based dispute

resolving schemes. On the other hand, a DoS attack is relatively

hard to launch due to the open design of public blockchain net-

works. Typically, the parties are recommended to reserve backup

channels to access the blockchain only in case of emergency. Since

the backup channels are not exposed, it is harder to block them

beforehand.

3.3 Financially-Secure 2PC
The net effect of executing a two-party PVC protocol can be mod-

eled by a zero-sum game — what the adversary expects to gain

(from cheating) is exactly what the honest party would lose.
1
In-

tuitively, a secure two-party computation is financially-secure if,
regardless of the adversary’s behavior, comparing to a (simulated)

adversary in the ideal world, the real-world adversary cannot gain

any extra financial advantage. This security notion will be useful

in working with rational adversaries, for whom it makes no sense

to attack if the expected extra gain from cheating is negative.
2

Backed by today’s blockchain networks like Ethereum, we real-

ize financially-secure 2PC by requiring the party who runs as the

circuit generator to make a security deposit dgen before starting the

PVC protocol.
3
If it is caught on cheating in the protocol execution,

the honest party simply invokes the smart-contract (judge) with

the proof it obtained during the protocol execution. Once verified,

the deposit dgen will be transferred to the honest party. Let the

asset of the evaluator’s input data be vev and assume our PVC pro-

tocol configured at (1 − 1/n)-deterrence is used. Then the 2PC is

financially-secure if vev/n − dgen · (1 − 1/n) ≤ 0. I.e., it is easy to

achieve financial-security by setting n ≥ 1 +vev/dgen. For example,

if the evaluator’s input is worth $1000 (i.e., he/she is willing to sell

its data for $1000) and the generator is willing to put down $100

1
We will not need to consider smart-contract fees when analyzing this zero-sum game

(see the discussion on smart-contract fees).

2
Even if the expected profit is negative, some adversary may still choose to go against

the odds hoping to profit from deviation. However, such adversary is no longer consid-

ered rational. Analyzing their behavior involves modeling their risk preference, which

is out of the scope of this paper. However, the concern can be alleviated by setting the

threshold of the adversary’s expected gain to a negative number.

3
In our PVC protocol, the circuit evaluator has no way to cheat for a profit, so no

deposit from them is needed for this purpose. However, each party needs to deposit a

separate dfee (referred as Type-II fee below) to cover the potential transaction fees in

case the judge is needed to resolve a dispute later.

deposit, it suffices to generate 11 copies of GCs in the PVC proto-

col to guarantee financial-security. Compared with the concept of

covert security, financial security enables direct and quantitative

justification on the choice of the deterrence parameter n.

A remark on the threat model. We consider scenarios where each

party knows how much its input is worth and is willing to sell their

data upfront for the amount of money. However, we do not assume

one’s data is worth to oneself as much as to the adversary. We note

that it suffices to set the cut-and-choose parameter n such that the

honest data owner is happy, because even if the data is worth more

to the adversary, it is considered acceptable for the adversary to buy

the data directly from the data owner at the price set by the honest

owner then profits from the purchased data. In other words, the

adversary cannot gain any extra financial advantage when running

our protocol comparing to executing an ideal model protocol.

What about the smart-contract fees? Per our discussion above,

it is a zero-sum game between the two protocol participants if

we ignore smart-contract transaction fees. In reality, all Ethereum

smart-contracts are executed with a fee. There are two types of

transaction fees involved in our protocol. Type-I fee covers the

transactions (e.g., newSession, deposit and conclude) which always

occur regardless of the adversary’s behavior; whereas Type-II fee

covers those transactions that occur only if the adversary cheats.

We note that Type-I fee cannot affect our game analysis because

it is a sunk cost independent of the adversary’s behavior. Regarding

Type-II fee, in our protocol, both parties need to deposit dfee that
is sufficient to cover both parties’ expenses in case a dispute is

needed, but so Type-II fee is always charged towards the cheater.

Thus, Type-II fee will not affect our game analysis, either. Therefore,

after all the blockchain fees are taken into account, it can still be

modeled by a zero-sum game.

Thanks to our enhancement techniques, we have experimentally

shown that Type-I fee is only 482K gas, or $0.38 USD, so normal

protocol executions are very affordable. We show that Type-II fee is

also reasonably low (at most 5.04M gas, or $3.93 USD for a billion-

gates circuit) for large scale applications.

Will the judge really be executed? One of the most interesting

phenomena we expect from this design is that the judge never

need to be invoked because no rational adversaries will attack a

properly configured PVC protocol. However, it is still critically

important to develop and deploy an affordable smart-contract to

handle the disputes so that all rational adversaries will stay away

from cheating. Note that these smart-contracts are executed only

in very rare situations, their run-time efficiency is less of a concern

as long as it is reasonable to intimidate rational attackers.

4 SECURE PUBLICLY-VERIFIABLE 2PC
We first describe the sender non-repudiable OT protocol which

is indispensable in catching misbehavior in a publicly verifiable

and defamation-free manner (Section 4.1). Then, we show the con-

struction and security proof of our publicly-verifiable 2PC protocol

(Section 4.2).

4.1 Sender Non-repudiable OT
The ideal FSNR-OT functionality needed by our PVC protocol was

given in Figure 4. FSNR-OT can be implemented based on the DDH-

based construction proposed by Peikert et al. [36]. We describe our

realization of FSNR-OT in Figure 6, whose basic idea is quite similar

to Asharov and Orlandi’s signed-OT [6]. However, our approach

does not rely on the less standard EU-CMRA signatures.

Public Input: Public keys pkS and pkR .
Initialize: S and R agree on a tag for this protocol instance.

Setup: Let G be a cyclic group of order q. R uniformly picks

д0,д1 ← G, α ← Zq , computes h0 B дα
0
,h1 B дα−1

1
, and

proves through F DDH
ZKPoK that (д0,h0,д1,h1 · д1) is a DDH-tuple.

Execute-OT:
(1) R, with choice bit b, uniformly picks r ← Zq and computes

and sends д B дrb ,h B hrb to the OT Sender (S).

(2) S , with input messagesm0,m1 ∈ G, verifies that д , 1 and

h , 1 (aborts otherwise), then computes (u0,w0) and (u1,w1)

where ∀i ∈ {0, 1}, ui = дsi · hti ,vi = дs · ht , andwi = vi ·mi
for some uniform s, t ∈ Zq that S randomly picks. S sends

Jtag,д,h,д0,д1,h0,h1, (u0,w0,u1,w1)KS to R.
(3) R verifies

VerifypkS
(
Jtag,д,h,д0,д1,h0,h1, (u0,w0,u1,w1)KS

)
= 1

and the values of (tag,д,h,д0,д1,h0,h1) in the signed mes-

sage are as they were actually used in previous steps. Then

R outputswb · u
−r
b .

Verify:
Any party V , who obtains(

Jtag′, (b ′,m′), rKR , Jtag,д,h,д0,д1,h0,h1, (u0,w0,u1,w1)KS
)
,

should output 1 iff all checks below pass:

(1) VerifypkR
(
Jtag′, (b ′,m′), rKR

)
= 1 and tag′ = tag;

(2) VerifypkS
(
Jtag,д,h,д0,д1,h0,h1, (u0,w0,u1,w1)KS

)
= 1;

(3) д = дrb′ ,h = h
r
b′ , andm

′ = wb′ · u
r
b′ .

Figure 6: Realize FSNR-OT in F DDH
ZKPoK-hybrid model.

Theorem 4.1. The protocol in Figure 6 securely realize FSNR-OT
in presence of malicious adversaries.

Proof. Our protocol in Figure 6 doesn’t alter the original DDH-

based PVW-OT [36] except for requiring the sender to sign some

of its outgoing messages. Therefore, the proof that Execute-OT
interface is securely realized is essentially the same as the security

proof of PVW-OT.

Next, we show the Verify interface is also securely realized.

Since the Verify interface does not require interaction. Its secu-

rity proof of Verify boils down to showing a completeness and a

soundness property.

• Completeness. It is trivial to verify that our instantiation ofVerify
always return 1 on signed input from an honest receiver R. In
the ideal/real model paradigm, completeness implies that Verify
in both models always outputs 1 on honest inputs.

• Soundness. If a malicious receiver R received (b,mb) when exe-

cuting the protocol but submits to Verify,(
Jtag′, (b ′,m′), r ′KR , Jtag,д,h,д0,д1,h0,h1, (u0,w0,u1,w1)KS

)
,

where (b ′,m′) , (b,mb), then Verify cannot return 1 no matter

if b = b ′ or not. We prove this by contradiction.

– If b = b ′ andVerify returns 1, then check-condition (3) in Fig-

ure 6 implies дrb = д = д
r ′
b′ = д

r ′
b , so it must be r = r ′, hence

m =m′, which contradicts to the fact that (b ′,m′) , (b,mb).

– If b = ¯b ′ and Verify returns 1, then check-condition (3) im-

plies дrb = д = дr
′

¯b
and hrb = h = hr

′

¯b
. In case b = 0, we have

hr
0
= дαr

0
= (дr

0
)α = (дr

′

1
)α = (дα

1
)r
′

= hr
′

1
= д
(α−1)r ′
1

, which

implies дr
′

1
= дr

0
= 1, contradicting to the fact that the sender

S had ensured that д = дr
0
, 1 when executing OT. Similarly,

we can show b = 1 contradicts to the fact that h = hr
0
, 1.

This completes the soundness proof. In the ideal/real model para-

digm proof, soundness implies that Verify in both models always

output 0 on corrupted inputs. □

4.2 The Two-Party PVC Protocol
Assume P1, the garbler holding input x ∈ {0, 1}

l
, and P2, the evalua-

tor holding input y ∈ {0, 1}l , want to compute and send z = f (x ,y)
(but nothing else) to P2. Here f is a public function represented

as a fully unrolled sequence of gates. Without loss of generality,

weassume x , y, and z each has l bits.
We model HR ,HL as distinct random oracles which are used

to derive the secret XOR difference (between 0- and 1-labels) and

the initial input wire-labels, resp. Let s,κ, widx(j), widy(j), widr(j),
widz(j) be as was defined in Figure 1. Let JmKP1

denote a pair

(m, SignpkP
1

(m)). Depending on the context, JmKP1

can serve as

an irrefutable evidence of P1’s claim on the value of m. When

used for this purpose, we assume JmKP1

is a signature over a non-

ambiguous claim on the value ofm including necessary meta-data

such as the names of the variables and timestamps as message

sequence number.

Our PVC protocol is formally specified in Figure 7. The judge for

our protocol is specified in Figure 8. The constructions make black-

box calls to FSNR-OT (Sender Non-Repudiable OT, see Figure 4) and

FCorrOT (Correlated OT, see Figure 5). The key ideas and intuitions

behind our design was given in Section 3.1. We assume the output

is revealed only to P2 but it isn’t hard to modify it to support other

arrangements of the output.

Theorem 4.2. The protocol in Figure 7 is a publicly verifiable se-
cure two-party computation protocol with (1−1/n)-deterrence against
covert adversaries.

Proof. We first show the protocol of Figure 7 securely computes

f (x ,y) in presence of covert adversary with deterrence 1 − 1

n .

When P1 is corrupted. Let S be an efficient simulator that runs P1

as a subroutine, interacts with the ideal 2PC functionality F2PC in

P1’s role. S interacts with P1 using the protocol of Figure 7 except

for the following changes:

(1) In Step (1), S extracts Seedi and wi for i ∈ [n] and computes

(d ′i ,h
′
i) B Gb(1κ , f ′, Seedi).

Inputs: The public function f : {0, 1}l × {0, 1}l 7→ {0, 1}l . P1 holds x ∈ {0, 1}l and P2 holds y ∈ {0, 1}l . Two random oracles HR ,HL .

Outputs: P1 outputs nothing; P2 outputs f (x ,y).

Protocol:
(0) [Augment f and Sign] Augment the function f to f ′ such that f ′(x , (y, r)) = (x ▶ f (x ,y),y, r). Namely, f ′ takes x ∈ {0, 1}l from

P1, (y, r) ∈ {0, 1}
l+s

from P2, and outputs (x ▶ f (x ,y),y, r) to P2. Then both parties hash and sign the circuit file of f ′, exchange and
verify each other’s signature on this circuit, and abort if the signature fails to verify or the circuits are not identical.

Remark 1. The “RIGHT” gate, ▶, will be realized using ANDs and XORs. We need it for proof of security: In the case of corrupted P2,
the simulator who doesn’t know x can obliviously change the ▶ gate into a “LEFT” gate ◀ in the evaluation-circuit and set x = z (where
z = f (x ,y) was obtained from the ideal 2PC functionality) to allow P2 to output f (x ,y). (see Section 4.2)

Remark 2. We intentionally designed (y, r) to be both P2’s input and output, for circuit verification reasons (so that P2 can carry out the
necessary checks later in Step (3) and Step (4) to thwart selective OT attacks).

(1) [OT c] P2 picks a uniform integer I ∈ [n] which is the index of the evaluation circuit. Let c ∈ {0, 1}n such that ci = 0 for all i , I and

ci = 1 when i = I. P1 picks uniform {wi }i ∈[n] wherewi ∈ {0, 1}
κ
. P1 and P2 run n instances of FSNR-OT. In the ith FSNR-OT, P1 sends

to FSNR-OT

(
“ith-OT”, (Seedi ,wi)

)
and P2 as the receiver sends FSNR-OT

(
“ith-OT”, ci

)
. As a result, P2 learns {Seedi }i ∈[n],i,I andwI .

(2) [Garble] For all i ∈ [n], P1 computes (Fi , ei ,di) B Gb(1κ , f ′, Seedi) and hi B H (Fi) where H is a collision-resistant hash and ei can

be parsed into

(
Ri ,

{
L0

i,widx(j)
,L0

i,widy(j)

}
j ∈[l]
,
{
L0

i,widr(j)

}
j ∈[s]

)
. Note that for all i ∈ [n], Ri = HR (Seedi); ∀i ∈ [n],

L0

i,widx(j)
= HL(Seedi ,widx(j)), ∀j ∈ [l]; L0

i,widy(j)
= HL(Seedi ,widy(j)), ∀j ∈ [l]; L0

i,widr(j)
= HL(Seedi ,widr(j)), ∀j ∈ [s],

which are, respectively, the XOR-difference between a 0-label and a 1-label on the same wire, 0-labels of P1’s inputs, 0-labels of P2’s

inputs, and 0-labels of the s augmented wires. Then P1 sends

{
J(di ,hi)KP1

}
i ∈[n] to P2.

(3) [Verify check-circuits] For every i , I, 0 ≤ i < n, P2 verifies that di ,hi can be produced by Gb(1κ , f , Seedi). If there exists an ı , I

such that dı ,hı cannot be produced by Gb(1κ , f , Seedı), then P2 halts and submits

(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (cı , Seedı)
z

P2

)
to Judge.

(4) [OT y] P2 sends I andwI to P1, who validateswI with its own copy ofwI . P2 samples uniform r ∈ {0, 1}s . The two parties run a

FCorrOT (of l + s OTs) where P1 as the sender sends

(
RI ,

{
L0

I,widy(j)

}
j ∈[l]
,
{
L0

I,widr(j)

}
j ∈[s]

)
to FCorrOT and P2 as the receiver sends({

yj
}
j ∈[l] ,

{
r j
}
j ∈[s]

)
to FCorrOT. As a result, P2 receives

({
L
yj
I,widy(j)

}
j ∈[l]
,
{
L
r j
I,widr(j)

}
j ∈[s]

)
. P2 verifies that the

{
L
yj
I,widy(j)

}
j ∈[l]

and

{
L
r j
I,widr(j)

}
j ∈[s]

obtained from FCorrOT is consistant with the decoding information dI and aborts otherwise.

(5) [Verify evaluation-circuit] P1 sends FI to P2, who verifies H (FI) = hI where H is a collision-resistant hash.

(6) [Evaluate] P1 sends

{
L
x j
I,widx(j)

}
j ∈[l]

to P2. Then P2 computes and outputs the first entry of

z
def

== De
(
dI , Ev

(
FI ,

{
L
x j
I,widx(j)

,L
yj
I,widy(j)

}
j ∈[l]
,
{
L
r j
I,widr(j)

}
j ∈[s]

))
.

Figure 7: Our publicly-verifiable two-party computation protocol with (1 − 1/n)-deterrence in the FSNR-OT-hybrid model.

Upon receiving

(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (cı , Seedı)
z

P2

)
, check

(1) VerifypkP
1

(
J(dı ,hı)KP1

)
= 1;

(2) FSNR-OT.Verify
(r

“ıth-OT”, (cı , Seedı)
z

P2

)
= 1 and cı = 0;

(3) Ve(f ′, Seedı ,dı ,hı) = 0.

and output P1-Cheats if they all hold, and P2-Cheats otherwise.

Figure 8: The Judge algorithm for our PVC 2PC.

(2) In Step (2), S receives J(di ,hi)KP1

. Let J be the set of indexes i
such that (d ′i ,h

′
i) , (di ,hi).

• If |J | ≥ 2, then S sends Blatant Cheat to F2PC and(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
to P1 (for ı uniformly picked in J) and aborts.

• If J = {ı}, then S sends Cheat to F2PC. If F2PC returns

Corrupted, S sends to P1(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
and aborts. Otherwise, S sets Attack B 1 and I = ı.

• If J = ∅, S sends Honest to F . S sets Attack B 0 and

uniformly samples I ∈ [n].

(3) In Step (4), S sends I andwI to P1. Then S uniformly samples{
r j
}
j ∈[s] and executes FCorrOT with P1 by setting yj = 0 for

j ∈ [l]. S also extracts P1’s inputs from FCorrOT.

• If Attack = 0, S aborts if P1’s inputs extracted are not(
RI ,

{
L0

I,widy(j)

}
j ∈[l]
,
{
L0

I,widr(j)

}
j ∈[s]

)
.

• If Attack = 1, S behaves the same as an honest P2.

(4) In Step (6): S receives

{
L
x j
I,widx(j)

}
j ∈[l]

from P1.

• If Attack = 1, S recovers
ˆf (which models the leakage of

an ideal covert 2PC in event of a successful attack) from{
L
x j
I,widx(j)

}
j ∈[l]
, FI ,dI and P1’s actual input to FCorrOT.

Then S sends
ˆf to F .

• If Attack = 0, S extracts x from

{
L
x j
I,widx(j)

}
j ∈[l]
, SeedI and

FI , then sends x to F .

Finally, S outputs whatever P1 outputs.

We now argue that the joint distribution of the outputs of S and

P2 in the ideal model is indistinguishable from that of the outputs

of the malicious P1 and an honest P2 in the real model. We prove

this by considering a series of hybrid experiments in each of which

a different simulator is used.

• Hybrid1: This is the real model execution. The simulator S1

in Hybrid1 knows y and interacts with P1 using the protocol

of Figure 7 as an honest P2.

• Hybrid2: S2 is the same as S1 in Hybrid1, except that:
(1) In Step (1), S2 extracts SeedI , thus can learn whether FI is

correct.

(2) In Step (4), S2 aborts if FI is correct but P1’s inputs RI and

{L0

I, j }j ∈[l+s] to FCorrOT is not consistent with SeedI .
We claim Hybrid1 ≈ Hybrid2 because
– If a different R′

I
was used in place of RI in FCorrOT, then

S1 will abort when verifying {L0

I,widr(j)
⊕ r jRI }j ∈[s] against

{H (L0

I,widr(j)
),H (L1

I,widr(j)
)}j ∈[s] contained in dI . Because

each r j is uniformly sampled, the probability that P1 guess all

s bits of r is at most 2
−s
.

– If P1 used a correct RI but a corrupted L0

I,widy(j)
for some

j, no matter what S1’s choice bit is, the value S1 obtained

from FCorrOT cannot be consistent with the pair of hashes

H (L0

I,widr(j)
), H (L1

I,widr(j)
) contained in dI . So is it the case

for a corrupted L0

I,widr(j)
. Note that P1 cannot swap the 0-

label and 1-label either, because S1 can always detect this

using the semantic value and the corresponding hash in dI .
Therefore, S2 and S1 will abort at the same time.

• Hybrid3: S3 is the same as S2, except that S3 extracts P1’s input

x and outputs f (x ,y) if the evaluation-circuit is correct. The

indistinguishably of Hybrid2 and Hybrid3 comes from the cor-

rectness of the garbling scheme.

• Hybrid4: S4 is the same as S3, except that S4 can interact with

the ideal F2PC as follows.

(1) In Step (1),S4 extracts Seedi andwi and recomputes (d ′i ,h
′
i) B

Gb(1κ , f ′, Seedi) for i ∈ [n]. Let J be the set of indexes i such
that (d ′i ,h

′
i) , (di ,hi).

– If |J | ≥ 2, then S4 sends blatantCheat to F2PC and(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
to P1 (for ı randomly picked in J) and aborts.

– If J = {ı}, then S4 sends Cheat to F2PC. If F2PC returns

Corrupted, S sends P1(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
and aborts. Otherwise, S4 sets Attack B 1 and I B ı.

– If J = ∅, S4 sends Honest to F2PC. S4 sets Attack B 0

and uniformly samples I ∈ [n].

(2) In Step (6): S4 receives

{
L
x j
I,widx(j)

}
j ∈[l]

from P1.

– IfAttack = 1, S4 recovers
ˆf from

{
L
x j
I,widx(j)

}
j ∈[l]
, FI ,dI

and P1’s input to FCorrOT. Then S4 sends
ˆf to F2PC.

– If Attack = 0, S4 extracts x from

{
L
x j
I,widx(j)

}
j ∈[l]

and FI ,

then sends x to F2PC.

S4 outputs whatever P1 outputs.

We claim Hybrid3 ≈ Hybrid4 because:
– If S4 sends Honest to F2PC, then both S3 and the actual P2 in

Hybrid4 will output f (x ,y).
– If S4 sends blatantCheat to F2PC, then both S3 and the actual

P2 in Hybrid4 will halt with(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
as output for a randomly chosen ı ∈ J .

– If S4 sends Cheat to F2PC, then S3 will abort and output(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (0, Seedı)
z

P2

)
with 1 − 1

n probability. Meanwhile, the actual P2 in Hybrid4
will abort and output the witness with the same probability.

Furthermore, bothS3 and the actual P2 inHybrid4 will output
ˆf (y) for 1

n probability where
ˆf is specified by P1.

• Hybrid5: S5 is the same as S4, except that it uses yi = 0 for

i ∈ [l] instead of P2’s real input y. S5 is exactly the simulator S

we described at the beginning.

We claim Hybrid5 ≈ Hybrid4 because: P1’s views in Hybrid4
and Hybrid5 are indistinguishable since FCorrOT is ideal and y
is never used by S4 in Hybrid4 except being given to FCorrOT.

By this series of indistinguishable experiments we have shown

that the ideal world execution and the real world execution are

indistinguishable. Thus our protocol is secure against corrupted P1.

When P2 is corrupted. Let S be an efficient simulator that runs

the corrupted P2 as a subroutine and interacts with F2PC in the

ideal model in P2’s role. S behaves like an honest P1 in the protocol

of Figure 7 except for the following changes:

(1) In Step (1), S extracts P2’s choice string c to FSNR-OT. Let C =
{i |ci = 1}, i.e., the set of indices i such that ci = 1.

(2) In Step (2), for all i < C , S generates (Fi , ei ,di) honestly. For all

i ∈ C , S computes (F̂i , êi , ˆdi) by garbling the function

ˆf ′(x , (y, r)) =
(
⊥, (x ◀ f (x ,y),y, r)

)
and computes

ˆhi = H (F̂i). So,

De
(

ˆdi , Ev
(
F̂i , En (êi , (x , (y, r)))

))
= (x , (y, r))

Then S sends J(di ,hi)KP1

for all i < C and

r
(ˆdi , ˆhi))

z

P1

for all

i ∈ C to P2.

(3) In Step (4), S receives (I,wI) and verifies that they are consis-

tent with his/her own record and I ∈ C . Then S runs FCorrOT
as described in the protocol and extracts y.

(4) In Step (5), S sends the F̂I to P2.

(5) In Step (6), S submits y to F2PC and receives z B f (x ,y) from

F2PC. S sends

{
L
zj
I,widx(j)

}
j ∈[l]

to P2. Finally, S outputs what-

ever P2 outputs.

We argue that the joint distribution of the outputs of S and P1 in

the ideal model is indistinguishable from that of the outputs of the

malicious P2 and an honest P1 in the real model. Since P1 has no

output in both ideal and real models, we only need to focus on the

view of P2. We will prove this using a series of hybrid experiments.

• Hybrid1: This is the real model execution. The simulator S1

interacts with P2 through the protocol of Figure 7 using P1’s

input x .

• Hybrid2: S2 is the same as S1 , except S2 aborts if I < C
in Step (4).

We claim Hybrid1 ≈ Hybrid2, because P2 can’t find the valid

wI where I < C except unless P2 guessedwI correctly. There-

fore, with all but a negligible probability, S2 aborts in Hybrid2
if and only if S1 also aborts in Hybrid1.
• Hybrid3: S3 is the same as S2, except:

(1) In Step (2),S3 replaces (Fi , ei ,di)with (F̂i , êi , ˆdi) for all i ∈ C .
(2) In Step (4), S3 extracts y from FCorrOT.

(3) In Step (6),S3 computes z = f (x ,y) and sends
{
L
zj
I,widx(j)

}
j ∈[l]

.

We claim Hybrid2 ≈ Hybrid3 because:
– P2 can’t distinguish (F̂i , êi , ˆdi) from (Fi , ei ,di) because: (1) the

garbling scheme is oblivious; and (2) garbled ▶ gates are

indistinguishable from garbled ◀ gates. (Note that for any

a,b ∈ {0, 1}, a ▶ b = ((a ⊕ b) ∧ a ⊕ b) ⊕ b. Let ∧̃ be a

corrupted AND that always and the first input bit with a

flipped value of its second input bit. It is easy to verify that

a ◀ b = ((a ⊕ b)∧̃a ⊕ b) ⊕ b. Because the garblings of ∧

and ∧̃ are indistinguishable and the wire connections of the

circuits for ▶ and ◀ are identical, garbled ▶ and ◀ are also

indistinguishable.)

– Since (F̂i , êi , ˆdi) corresponds to the identity function, the de-

coded results in Step (6) of Hybrid3 are the same as that in

Hybrid2.
• Hybrid4: S4 is the same as S3 , except that S4 interacts with the

ideal functionality F2PC: In Step (6), S4 sends y to F2PC, who

sends z B f (x ,y) back; then S4 outputs whatever P2 outputs.

Hybrid3 ≈ Hybrid4 because the ideal functionality F2PC com-

putes f (x ,y) correctly.

• Hybrid5: S5 is the same as S4, except that S5 sets x B 0 instead

of using P1’s actual input x .S5 is the simulatorS we gave earlier

at the beginning of the proof for the corrupted P2 case.

Hybrid4 ≈ Hybrid5 because S4 doesn’t use x in Hybrid4.
By this series of indistinguishable experiments we have shown

that the ideal and the real model executions are indistinguishable.

Thus our protocol is secure against corrupted P2.

Public Verifiability. It is easy to see that the proofs obtained from
our PVC protocol is publicly verifiable.

(1) Completeness. By definition, P1 cheats if he/she sent some di ,hi
and Seedi through FSNR-OT such that Ve(f ′, Seedı ,dı ,hı) = 0

where Ve is the public verification algorithm of the garbling

scheme. The judge checks exactly this fact, as well as the va-

lidity of Seedi through FSNR-OT. So whenever inconsistent

di ,hi , Seedi were sent, the judge must output “P1-Cheats”.
(2) Soundness. Note that Jdi ,hi KP1

is signed by an EU-CMA secure

signature scheme. By the security of EU-CMA and the definition

of FSNR-OT’s Verify function, P2 cannot forge the values of

di ,hi , Seedi and still pass the Verify functions of FSNR-OT and

the signature scheme. Therefore, the judge must always output

“P2-Cheats” on receiving forged (di ,hi , Seedi).
□

5 AUTOMATED DECENTRALIZED JUDGE
Our goal here is to develop a lightweight, decentralized judge that

can automatically verify proofs and punish the cheater. We ex-

plained the intuitions behind this part of the system in Section 3.2.

Here, we focus on the formal presentation and details.

5.1 Search Short Proofs of Peer’s Misbehavior
The proof search procedure is triggered by the event that P2 obtains

evidence

(
ı, J(dı ,hı)KP1

,
r

“ıth-OT”, (cı , Seedı)
z

P2

)
. We model the

proof searching process with a variant of finite state automaton

whose states are parameterized by a tag, which is a signed tuple of

values (including a state id and a variable number of values needed

by that state) that both parties have agreed. Each parameterized

state is entered with a record, which is a tag followed by one or

Algorithm 1 The short proof generation algorithm

1: fun genProofInductive (record)
2: halfRec1 B next(record)
3: halfRec2 B msgExchange(halfRec1)
4: if halfRec1.stateTag , half _rec2 .stateTag then
5: return (ErrMsg, record, halfRec2)
6: proof B genProofBase(halfRec2)
7: if proof , ⊥ then
8: return proof
9: else
10: record ′ B merge(halfRec1, halfRec2)
11: return genProofInductive(record ′)

more new (signed) claims. Namely,

tag def

== (id, tagval
1
, tagval

2
, . . .)

record def

== (tag, recval1, recval2, . . .),

with the number and semantics of the values specifically defined

for each state. Both parties must run a deterministic function gen-

ProofInductive of Algorithm 1 to navigate the states: first, they

compute a half-record (i.e., the tag and its own claim on a set of

values) for the next state (Line 2); then they exchange their half-

record and check if they agree on the tag of next state (Line 3). If

not, the honest party immediately obtains a proof (Line 5) because

next is deterministic function over the same record. Otherwise,

the honest party calls genProofBase to see if he/she can already

output a proof in this state (Line 8) and proceeds to a recursive call

to genProofInductive with the freshly merged record only if a

proof wasn’t found yet (Line 11). We will describe in detail how we

design the states and their transition rules for resolving disputes on

incrementally hashed messages (Section 5.2) and the computation

of Ve (Section 5.3).

The msgExchange function is realized as a lightweight Ethereum

transaction sendmsg. This binds both parties to faithfully run the

proof search algorithm to the very end, at which point an irrefutable

proof of misbehavior has to be derived by the honest party. sendmsg
never examines the contents of the messages but only (1) ensures

the message ids are indeed sequential, (2) remembers the identity

of the last responder and the block-depth (as a timestamp), and

(3) uploads the messages to the blockchain. If the adversary doesn’t

reply within a threshold number of block, the honest party will

invoke verifyPrf transaction with a Timeout proof.
If the adversary replies nonsensical messages, the honest party

can immediately output the two consecutive messages, the sec-

ond of which makes no sense according to the deterministic next

function, as a proof. This proof will be sent to and judged by an

appropriate smart-contract transaction who cares only about how

the next function for a particular state is computed. Therefore,

nonsense messages senders will be penalized.

Of the three checks of Figure 8 by the judge, the first one involves

only a small constant computation, the second check boils down to

three conditional checks defined by SNROT’s Verify (see Figure 6),

each of which involves only small constant computation. So, in the

rest of this section, we will focus on describing how to generate the

proof from contradicting claims on the computation of the third

check, which inflicts linear work on the judge if treated naïvely.

Notation. All values appear in a record are signedwith an EUCMA-

secure signature scheme. See Figure 1 for meanings of f , fi , F , Fi ,

IH f
i , IH

F
i , {{·}}, identical and peer.

Circuit File Format. We specify f in a circuit file format similar

to the one used by many MPC prototypes [37], except for a few

customary enhancements for efficient dispute resolution purpose.

It allows 4 types of gates: INPUT, OUTPUT, AND, and XOR. Each

line specifies exactly one gate. An INPUT gate is specified as a

line “INPUT”. E.g., “INPUT” appearing on the 10
th
line of the circuit

file means wire-10 is an input-wire of the circuit f . An OUTPUT

gate is specified as a line “OUTPUT wire#”. E.g., “OUTPUT 8” means

wire-8 is an output-wire of f . An AND gate is specified as a line

VE1 VE2 VE3 IH1 IH2

T1 T2

Figure 9: The state transition diagram

“AND wire# wire#”. E.g., “AND 8 9” appearing on the 10
th
line in

the file means wire-10 is the output of AND-ing wire-8 and wire-9.

Similarly to ANDs are the XOR gates specified.

We illustrated the state transition diagram in Figure 9. IH1 and
IH2 models the proof search process where the two parties have

disagreed on an incrementally signed (long) message (Section 5.2).

The message can either be the circuit file or a sequence of garbled

gates. States VE1, VE2, VE3 handles proof searching from a dis-

agreeing result of running the Ve algorithm. Note that both VE2
and VE3 can directly transit to IH1 when it is sure if there is a

problem in the garbled circuit F , or the circuit description f . Ex-
cept for state VE1, it is possible that a valid proof is obtained in

all states (through their respective genProofBase function), thus

terminating the automaton. Next, we describe the next and the

genProofBase functions in ML-like pseudocode, which makes

extensive use of pattern matching. We also borrow the “@” syntax

from Haskell to conveniently pattern matching both a value and

the value’s component values.

5.2 Warmup: Proofs from Disagreeing Hashes
When an adversary cheats, it can disagree with the honest party

on some message M that is too long to send to a smart-contract

to verify. E.g., F and f used by Ve can be very long. So we use

incremental hashes of the message, i.e., IHM
. The process can be

described as a state machine with the following parametric states.

5.2.1 State IH1. Let IHM
i be the (incremental) hash ofM from block

1 to block i , and Mi be the i
th
block of M . Entering this state on

record

(
(IH1, is, ie, IHM

ie ,
{{
Mis

}}
),
{{
IHM

is

}})
, the parties must have

agreed on the value of IHM
ie but disagree on Mis with is ≤ ie .

12: fun next

(
(IH1, is, ie, IHM

ie ,
{{
Mis

}}
),
{{
IHM

is

}})
13: | identical(

{{
IHM

is

}}
) ⇒ return ((T1, IHM

is ,
{{
Mis

}}
), IHM

is−1
)

14: | ¬identical(
{{
IHM

is

}}
) ⇒

15: return
(
(IH2, is, ie,

{{
IHM

is

}}
, IHM

ie), IH
M
(is+ie)/2

)
So if they also agree on IHM

is (Line 13), they only need to go to state

T1 where the cheater will be caught since it cannot provide the

information to reproduce the faked IHM
is . Note that T1 is a terminal

state where a proof is guaranteed to be derived. In case they disagree

on IHM
is (Line 14), they will enter state IH2, where they use binary

search to pin down whose claim on IHM
is was wrong.

In state IH1, the honest party can directly output a proof if is
happens to be the same as ie . Recall that they already agree on

IHM
ie , hence the cheater can be caught with the simple evidence

that IHM
ie , peer(IHM

is):

16: fun genProofBase

(
(IH1, is, ie, IHM

ie ,
{{
Mis

}}
),
{{
IHM

is

}})

17: | is = ie && peer(

{{
IHM

is

}}
) , IHM

ie ⇒ return (IH-Prf1, rec)

Given the proof (IHErr1, rec), the judge can check by extracting

is , ie , IHM
is , IH

M
ie from rec and verifying the same predicates on

which the proof was produced (Line 17).

If the parties enter the terminating state T1, they must agree

on IHM
is but not on Mis . Therefore, the honest party can output

(IH-Prf2, rec) as the proof:

18: fun genProofBase rec @

(
(T1, IHM

is ,
{{
Mis

}}
), IHM

is−1

)
19: return (IH-Prf2, rec)

The judge can check this proof by extracting

{{
Mis

}}
, IHM

is−1
, IHM

is

from rec and verifying IncH

(
IHM

is−1
, peer(

{{
Mis

}}
)

)
, IHM

is .

5.2.2 State IH2. Entering this state with record(
(IH2, is, ie,

{{
IHM

is

}}
, IHM

ie),
{{
IHM
(is+ie)/2

}})
,

the parties agree on indices is , ie (where is < ie) and IHM
ie but

disagree on IHM
is . They also proclaim their own values of IHM

(is+ie)/2
,

which may or may not be the same. Its next function can branch

into three cases.

20: fun next

(
(IH2, is, ie,

{{
IHM

is

}}
, IHM

ie),
{{
IHM
(is+ie)/2

}})
21: | is + 1 = ie ⇒ return ((T2,

{{
IHM

is

}}
, IHM

ie),Mie)

22: | identical(
{{
IHM
(is+ie)/2

}}
) ⇒

23: let mid B (is + ie)/2; mid ′ B (is +mid)/2 in
24: return ((IH2, is,mid,

{{
IHM

is

}}
, IHM

mid), IH
M
mid′)

25: | ¬ identical(

{{
IHM
(is+ie)/2

}}
) ⇒

26: let mid B (is + ie)/2; mid ′ B (mid + ie)/2 in
27: return ((IH2,mid, ie,

{{
IHM

mid

}}
, IHM

ie), IH
M
mid′)

If is + 1 = ie , then the disagreement between the two parties can be

verified by a single call to IncH, so they will enter state T2 where
the honest party obtains a proof as the cheater can’t reproduce the

correct IH ie from its corrupted IH is . If the gap between is and ie is

bigger than 1, the parties will re-enter state IH2 halving the search

range in a way based on if their claims of IH (is+ie)/2 match or not.

In state T2, the honest party simply output the record as a proof.

28: fun genProofBase rec @

(
(T2,

{{
IHM

ie−1

}}
, IHM

ie),Mie

)
29: return (IH-Prf3, rec)

A judge can verify this proof by checking

IncH

(
peer(

{{
IHM

ie−1

}}
),Mie

)
, IHM

ie .

5.3 Proofs from Disagreeing Claims on Ve
Let n be the size of circuit f ′. To resolve a dispute on the result of

Ve, the parties will enter state VE1 with record(
(1, 0, n, IHF

0
,
{{
IHF

n

}}
),
{{
IHF

n/2

}})
with disagreeing claims on IHF

n while having already agreed on

Seedı (otherwise, a valid proof should have been obtained from

SNROT’s Verify). The states and transitions involved in disputing

Ve are given below.

5.3.1 State VE1. Entering this state with record(
(VE1, is, ie, IHF

is ,
{{
IHF

ie

}}
),
{{
IHF
(is+ie)/2

}})
,

the parties agree on the indices is , ie (with is < ie) and IH F
is but

disagree on IHF
ie . They also proclaim their respective IHF

(is+ie)/2
,

which may or may not match.

30: fun next

(
(VE1, is, ie, IHF

is ,
{{
IHF

ie

}}
),
{{
IHF
(is+ie)/2

}})
31: | is + 1 = ie ⇒ return ((VE2, ie, IHF

is ,
{{
IHF

ie

}}
), (fie , Fie))

32: | identical(
{{
IHF
(is+ie)/2

}}
) ⇒

33: let mid B (is + ie)/2; mid ′ B (mid + ie)/2 in
34: return

(
(VE1,mid, ie, IHF

mid ,
{{
IHF

ie

}}
), IHF

mid′

)
35: | ¬ identical(

{{
IHF
(is+ie)/2

}}
) ⇒

36: let mid B (is + ie)/2; mid ′ B (is +mid)/2 in
37: return

(
(VE1, is,mid, IHF

is ,
{{
IHF

mid

}}
), IHF

mid′

)
If is +1 = ie , the parties have identified the first gate that caused the
trouble. So they will enter state VE2 to investigate whose claim on

IHF
ie was wrong. Otherwise, they re-enter state VE1 with the search

range reduced by half in a way depending on if their respective

IHF
(is+ie)/2

match or not.

5.3.2 State VE2. Entering this state with record(
(VE2, i, IHF

i−1
,
{{
IHF

i

}}
), {{fi}} , {{Fi}}

)
,

the parties agree that i is the index of the first gate whose hash (over
the garbled rows for AND gate, a wire-label if it is an AND, XOR

or INPUT gate, and the decoding information if it is an OUTPUT

gate) they have disagreed.

If both parties agree on fi , then they extract the indices of the

two input-wires of the ith gate and proceed to state VE3. Note that
the index i − 1 needs to be carried over to VE3 so that it can be used

to bound the range (as the ending index) of the gates about which

matching claims were made. If they disagree on fi (Line 42), they
will go to state IH1 with fi , where they will find out who lied on

the circuit description.

38: fun next

(
(VE2, i, IHF

i−1
,
{{
IHF

i
}}
), {{fi}} , {{Fi}} ,

)
39: | identical({{fi}}) ⇒
40: let (il , ir) B inputWireIndices(fi) in
41: return ((VE3, il , ir , i − 1, IHF

i−1
, fi, {{Fi}}), Fil , Fir)

42: | ¬identical({{fi}}) ⇒ return ((IH1, i, n, IH f
n , {{fi}}), IH

f
i)

At VE2, an honest party outputs a proof in two cases: (1) if its

peer can’t provide the preimage of its (forged) IHF
i (Line 44); (2) if

gate-i is an INPUT gate, so Li can be computed directly from Seedı .

43: fun genProofBase rec @

(
(VE2, i, (IHF

i−1
,
{{
IHF

i
}}
)), fi , Fi

)
44: | IncH(IHF

i−1
, Fi) , peer(

{{
IHF

i
}}
) ⇒ return (VE-Prf1, rec)

45: | gateType(fi) = INPUT⇒ return (VE-Prf2, Fi , Seedı)

It is trivial for the judge to verify these proofs: just check the predi-

cate in the corresponding conditions under which the proofs were

produced.

5.3.3 State VE3. Entering state VE3 with record(
VE3, i, j, e, IHF

e , fk, {{Fk}}), {{Fi}} ,
{{
Fj
}})
,

the parties have agreed on IHF
e with i ≤ e , and fk where i, j are the

indices of the input-wires of gate-k th, but disagreed on Fk or Lk . To
proceed, the parties inspect the actual wire-labels corresponding

to i or j. If they disagree on any of the two wire-labels, they will

go to state IH1 with specification of the gate, which defines the

disagreeing input wire-labels.

46: fun next

(
(VE3, i, j, e, IHF

e , fk, {{Fk}}), {{Fi}} ,
{{
Fj
}})

47: | ¬identical({{Fi}}) ⇒ return ((IH1, i, e, IHF
e , {{Fi}}), IH

F
i)

48: | ¬identical(
{{
Fj
}}
) ⇒ return ((IH1, j, e, IHF

e ,
{{
Fj
}}
), IHF

j)

In state VE3, an honest party finds a proof if the two parties end

up agreeing on both Li and Lj (which can be derived from Fi and Fj).
In this case, it must be true that Garble(fk , Li, Lj) , (peer({{Fk}})).
Namely, if gate-k is an XOR, then it must be that Li ⊕ Lj , Lk ; if
gate-k is an AND, then it must be that Gb(Li ,Lj) , Fk ; if gate-k
is an OUTPUT gate, then it must be the case that its decoding

information (H (L0

i),H (L
1

i)) , Fk ; (Note that gate-k can’t be an

INPUT gate because if this was true, a valid proof would have

already been generated at Line 45 before entering VE3.) In any case,

it suffices to output rec as the proof.

49: fun genProofBase rec @

(
(VE3, i, j, (e, IHF

e , fk, {{Fk}})), Fi, Fj
)

50: let Li = outputWirelabel(Fi)
51: Lj = outputWirelabel(Fj)
52: in if Garble(fk ,Li ,Lj) , peer({{Fk}})
53: then return (VE-Prf3, rec)

To verify this type of proofs, the judge simply checks the predicate

in the condition (Line 52) under which the proof was produced.

5.4 Judge as a Smart-Contract
Our judge is a smart-contract that offers a number of functions

for both parties to call to execute transactions. The life cycle of

the smart-contract is described by a number of stages depicted
in Figure 10. An instance of the contract is created per instance

of 2PC protocol. Once created, the contract stays in the Init stage

waiting for commitment of the security deposit. Once the deposit
transactions are executed, the contract enters the Engaged stage.

Only after this point should the parties start public verifiable secure

computation protocol.

If the secure computation protocol finishes normally, both par-

ties will call conclude to get back their deposits and be mutually

released. If a party doesn’t call conclude, its peer can still reclaim

its deposit after a certain period of time (measured by Ethereum

block depth).

If the evaluator catches a misbehavior in the PVC 2PC protocol

in Step (3), it will call initDispute to move the contract forward to

the MSG Exchange stage where both parties are obligated to coop-

erate in searching a short proof via running genProofInductive.

Finally, any party can submit a proof to move the contract to the

Judging stage, where the cheater get penalized and honest party

gets compensated, then finally end in the Mutual Release stage.

In this case, there will be at most logarithmic number of sendmsg
transactions plus exactly one verifyPrf transaction.

Init Engaged

MSG

Exchange
Judging

Mutual

Release

Figure 10: Lifecycle of the Judge as a Smart-Contract

6 APPLICATION: FINANCIALLY-SECURE 2PC
We propose financially secure computation as an interesting appli-

cation enabled by PVC and blockchain technologies.

Financially Secure Computation in the Ideal Model. We can aug-

ment the ideal covert 2PC functionality F covert

2PC [7] to define ideal fi-

nancially secure computationsF financial

2PC .We introduce three changes

to F covert

2PC to define F financial

2PC :

(1) When a protocol instance is created, F financial

2PC receives security

deposits d1,d2 from party P1 and P2, resp.

(2) At the Input step, in addition to receiving inputs x1,x2 from

P1, P2 resp., F financial

2PC also receives transfers of v1,v2 from

P1, P2, resp., where vi is the asset valuation of xi .
(3) Upon receiving Cheati from Pi ,

- With probability p, Pi is caught cheating and F
financial

2PC trans-

fers (d1 + d2) to Pi in addition to transferring vi to Pi .

- With probability (1−p), Pi succeeds in cheating andF
financial

2PC
transfers v1 +v2 to Pi and refunds d1,d2 to P1, P2, resp.

So the expected financial gain of a cheating party Pi in the ideal

model execution is (1−p)·vi−p·di . Sincep is an adjustable parameter

of F covert

2PC and {di ,vi }i ∈[2] are application specific parameters, it is

easy to setup p such that (1−p) ·vi −p ·di < 0. Namely, the expected

financial gain of any cheating Pi is negative. Finally, we also note

that an ideal financially secure computation can be viewed as a

zero-sum game between the two computation participants.

Realize F financial

2PC . We can realize F financial

2PC using our PVC 2PC

protocol of Section 4 with a judge implemented as an efficient

blockchain smart-contract. More specifically, thanks to the asym-

metry of the garbled circuit protocol, we only need P1 to make a

security deposit before starting the protocol. If the PVC protocol

finishes without P2 obtaining any evidence of cheating in Step (3),

P1 can finalize the contract to get its security deposit refunded. Oth-

erwise, P2 will submit its proof to the smart-contract to take P1’s

deposit. To a rational adversary who can attack in arbitrary ways

as long as the expected financial gain is positive, it is guaranteed

(by the security of PVC and the blockchain network) that it cannot

profit from attacking the real model protocol.

In practice, the blockchain network charges a fee for every smart-

contract transaction. In our design, the judge fee incurred by the

dispute resolution will be paid out of the pocket of the loser. So,

we require both parties to put down an extra deposit to cover the

cost of a potential dispute. This also helps to restrain a malicious

P2 from defaming an honest P1: upon receiving a false proof, the

judge will decide the proof submitter to be the cheater and transfer

its security deposit to its peer.

Implications. Since it doesn’t make sense for a rational adversary

to attack the protocol, the relatively slower and more expensive

dispute arbitration process would never need to run in practice.

However, we stress that it is critically important to construct effi-

cient smart-contract transactions to intimidate potential adversaries

from attacking. As a result, the performance of the arbitration is far

from as critical as the PVC protocol itself, so long as it is affordable

if it ever needs to run. This is also why the techniques given in Sec-

tion 5.4 is indispensable: if the parties can’t afford the cost of the

decentralized judge, the adversary could attack without penalty.

Comparison with maliciously-secure 2PC. There have been many

works on efficient maliciously-secure 2PC protocols, using either au-

thenticated garbling [25, 39, 42] or batched cut-and-choose [30, 43–

45]. In essence, our financially-secure 2PC trades security for per-

formance. However, since there is no single best malicious-secure

2PC protocol for all scenarios, the concrete performance benefit

of our financially-secure 2PC over a malicious 2PC will depend on

many factors including concrete security guarantees, network &

hardware conditions, and even the application circuits. Hence, a fair

comparison requires careful case-specific analysis and experiments.

One may worry that the cost of interacting with a blockchain would

offset the performance savings. However, we stress this will not be

the case because (1) first, the dispute phase that involves almost all

blockchain transactions wouldn’t actually happen to rational adver-

saries; and (2) second, the only remaining blockchain transaction

is the initial deposit transaction, which would require a substantial

confirmation time (e.g., 180 seconds). However, this waiting period

can either be accomplished in advance, or happen concurrently

with the garbled circuit protocol execution, thus having nearly zero

impact on overall performance.

7 IMPLEMENTATION AND EVALUATION
We implemented our PVC 2PC protocol in C++ and the judge in

Solidity. We measured the performance of the PVC protocol using

Google Compute Engine n1-standard-1 instances (1 vCPU, 3.75 GB
memory). The LAN (WAN) setting used in our experiments has 2

Gbps (200 Mbps) bandwidth and 0.2 ms (40 ms) round-trip latency.

We set security parameters s = 40,κ = 128.

7.1 PVC 2PC
Figure 11 shows the performance of our protocol running under

different configurations. We used AES circuit as the benchmark

application. Each AES cipher consists of 6800 ANDs, 26816 XORs,

256 INPUTs and 128 OUTPUTs. After our augmentation, it has 6928

ANDs, 27072 XORs, 296 INPUTs and 296 OUTPUTs. We included

the lines for n = 1 for easier comparison with the semi-honest

garbled circuit execution.

As expected, the impact of deterrence parameter n on band-

width is hardly observable. This is because only one GC is ac-

tually sent, whereas the added bandwidth due to the additional

SNROTs and GC-hashes are negligible in comparison with the size

of an actual GC. On the other hand, most of run-time is spent

on computing/verifying the incremental hash. For example, when

n = 20, we observed the time spent on computing the hashes is

3.297 × 20 = 65.9s , which is already 93% of the overall time. Note

that as n grows, the cost gap of our PVC protocol between the LAN

n LAN (s) WAN (s) Bandwidth (MB)

1 AES
1 0.036 0.08 0.21

5 0.17 0.30 0.21

20 0.69 0.82 0.21

100 AES
1 3.64 4.43 21.1

5 17.6 18.4 21.1

20 70.0 70.9 21.1

1000 AES
1 36 48 211

5 176 195 211

20 696 717 211

Figure 11: Performance of (1 − 1/n)-deterrence PVC 2PC

Dispute-Unfriendly Dispute-Friendly
Garble Hash Garble & Hash Garble Hash Garble & Hash

0.20 s 1.14 s 1.33 s 0.20 s 3.29 s 3.49 s

Figure 12: Generating and hashing a circuit of 100 AES

and the WAN settings shrinks quickly. When n is 20 or larger, the

cost differences are already very small.

To allow efficient proof search, we used an incremental hash con-

structed using SHA-3, i.e.,H1 = SHA3(m1),H
i+1 = SHA3(H i ,mi+1)

for all i ≥ 1. We also run a hash for every XOR gate. Experiments

show that this makes GC hashing 2.7x slower than regular SHA256-

based hashing (Figure 12). For reference, SHA256 costs 16.09 CPU

cycles/byte, which is close to SHA-3 (13.37 cycles/byte), according

to openssl. We stress that our slowdown is caused by the extra data

(H i
) going through the SHA-3 hashing. Therefore, this slowdown

factor can be reduced by decreasing the length ratio between H i

andmi . In both cases, we observe that hashing garbled circuit is

5.7–16x slower than garbling, hence clearly the bottleneck.

Comparison with [22]. The main difference between our PVC

protocol and theirs lies in P2’s input processing. [22]’s PVC runs n
instances of regular actively-secure OT-extension protocol, signs

all the traffic, and also requires the circuit evaluator to replay n − 1

of them and verify the signatures. Moreover, they required a judge

to fully replay one instance of the OT-extension and verify the

signature of the transcript. In contrast, our protocol only uses a

single instance of correlated OT protocol and there is no need to

replay it by the evaluator, nor the judge. As a result, we can process

the evaluator’s input 45–200x faster on LAN (14–60x on WAN) at

run-time while incurring no cost on the judge for the correlated-

OT (Figure 13). The 680K gas/wire for their judge is estimated by

2GAES = 2 × 340K as they need 2 AES per/wire. This cost could be

reduced by replacing AES with SHA3, but at the cost of slowing

down OT-extension’s speed by an order-of-magnitude due to the

speed gap between SHA3 (13.37 CPU cycles/byte) and AESNI (1.18

CPU cycles/byte).

7.2 Decentralized Judge
Figure 14 lists the fees in Ethereum Gas and USD for all transactions

in our smart-contract. Note that the gas costs we reported in the ta-

ble are the worst case costs for every transaction. The newSession

n LAN
(wires/s)

WAN
(wires/s)

Bandwidth
(bytes/wire)

Judge’s Cost
(gas/wire)

[22]

5 86.1K 68.4K 160

>680K
20 18.3K 15.0K 640

Ours
5 3.93M 0.97M 37 0
20

Figure 13: Processing the evaluator’s input-wires

Transaction Gas USD Transaction Gas USD
newSession 363K 0.2835

ve
ri

fy
Pr

f

VE1-ErrMsg 90K 0.0704

deposit 50K 0.0389 VE2-ErrMsg 97K 0.0754

conclude 69K 0.0535 VE3-ErrMsg 93K 0.0724

initDispute 100K 0.0783 IH1-ErrMsg 89K 0.0696

sendmsgVE1 77K 0.0598 IH2-ErrMsg 91K 0.0713

sendmsgVE2 77K 0.0603 IH-Prf1 72K 0.0564

sendmsgVE3 82K 0.0643 IH-Prf2 72K 0.0562

sendmsgIH1 79K 0.0616 IH-Prf3 72K 0.0561

sendmsgIH2 76K 0.0597 VE-Prf1 70K 0.0547

sendmsgT1 79K 0.0615 VE-Prf2 76K 0.0592

sendmsgT2 78K 0.0605 VE-Prf3 96K 0.0701

All fees in USD are calculated

assuming $195 USD/ETH and

4 · 10
−9

ETH/gas observed at the

time of writing this paper.

OT-Prf1 104K 0.0814

OT-Prf2 104K 0.0814

OT-Prf3 109K 0.0847

Timeout 54K 0.0424

Figure 14: Gas costs of smart-contract transactions

transaction initializes an instance of the smart-contract with a

session ID. The deposit transaction engages the parties by syn-

chronize basic information about the protocol like the circuit size

and the hash of f . The conclude transaction gets the parties mutu-

ally released when no dispute occurs. If the PVC protocol runs with

no dispute, these are the only three transactions to be executed,

which total at 482K gas at most, or roughly $0.38 USD.

In case an arbitration is needed, the initDispute transaction

gets the parties synchronized on a few values (e.g., the channel timer,

the Seedı etc) commonly needed for the rest of the transactions

during dispute. The sendmsg transactions enable the two parties to

exchange messages when searching for a succinct proof (Step (3)

of Algorithm 1). Because of the variation in the message format,

there are 7 different sendmsg transactions, one for each of the 7

states. Finally, the dispute will be wrapped up by a single verifyPrf
transaction, which can be any of the 15 types of proofs given on

the right part of Figure 14. We stress that, out of these transactions,

only sendmsg needs to be executed more than once.

Although a dispute will never have to happen when running the

protocol with rational adversaries, it is easy to estimate an upper-

bound of a dispute. Take a billion-gates (2
30
) circuit PVC protocol

as an example, it will require at mostGinitDispute+30GsendmsgVE1+

GsendmsgVE2+GsendmsgVE3+GsendmsgIH1+30GsendmsgIH2+GverifyPrf <

5.04M gas, or $3.93 USD per party to resolve a dispute. That is, each

party only needs to deposit $3.93 × 2 = $7.86 USD so we are sure

that the loser can pay all arbitration fees. Also, if the timeout thresh-

old in the dispute process is set to 12 blocks (roughly 3 minutes),

then the arbitration can be done in 3×(63×2+2) = 384 minutes, or

roughly 6.4 hours in the worst case. Since arbitration occurs very

rarely, we consider that delay to be acceptable in many scenarios.

After all, honest players will not lose money.

Finally, we measured that it costs 6M and 5M gas to upload the

smart-contract and its library to the Ethereum blockchain (roughly

$9 USD in total). However, we note this needs to be done only once
for all instances of the PVC protocol and all users in the world.

8 CONCLUSION
We improved the art of designing two-party PVC protocols. Most

importantly, our protocol allows an efficient, practically affordable,

decentralized judge. We propose the concept of financial security,

which brings up the performance of 2PC by weighing the assessed

values of secrets against the amount of money a potential adversary

has deposited. We hope our approach would popularize MPC for

business applications.

ACKNOWLEDGMENTS
We thank Google for the generous free credits for Google Cloud

Platform used in our experiments. This work is partly supported

by NIH award 1U01EB023685-01.

REFERENCES
[1] (accessed May 11, 2019). Bitcoin.org. https://bitcoin.org/.

[2] (accessed May 11, 2019). Ethereum.org. https://ethereum.org/.

[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz

Mazurek. 2014. Secure multiparty computations on bitcoin. In IEEE Symposium
on S&P.

[4] Gilad Asharov, Ran Canetti, and Carmit Hazay. 2011. Towards a game theoretic

view of secure computation. In EUROCRYPT.
[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2015.

More efficient oblivious transfer extensions with security for malicious adver-

saries. In EUROCRYPT.
[6] Gilad Asharov and Claudio Orlandi. 2012. Calling out cheaters: Covert security

with public verifiability. In ASIACRYPT.
[7] Yonatan Aumann and Yehuda Lindell. 2010. Security against covert adversaries:

Efficient protocols for realistic adversaries. Journal of Cryptology (2010).

[8] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1994. Incremental cryptog-

raphy: The case of hashing and signing. In CRYPTO.
[9] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient garbling from a fixed-key blockcipher. In IEEE Symposium on S&P.
[10] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In ACM CCS.
[11] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design fair

protocols. In CRYPTO.
[12] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. 2017. Instantaneous decen-

tralized poker. In ASIACRYPT.
[13] Ran Canetti and Rafail Ostrovsky. 1999. Secure computation with honest-looking

parties: What if nobody is truly honest?. In ACM STOC.
[14] Ran Canetti, Ben Riva, and Guy N Rothblum. 2011. Practical delegation of

computation using multiple servers. In ACM CCS.
[15] Bernardo David, Rafael Dowsley, and Mario Larangeira. 2017. Kaleidoscope: An

Efficient Poker Protocol with Payment Distribution and Penalty Enforcement.

IACR Cryptology ePrint Archive (2017).
[16] Tore Frederiksen, Jesper Nielsen, and Claudio Orlandi. 2015. Privacy-free garbled

circuits with applications to efficient zero-knowledge. In EUROCRYPT.
[17] Georg Fuchsbauer, Jonathan Katz, and David Naccache. 2010. Efficient rational

secret sharing in standard communication networks. In TCC.
[18] Juan Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013.

Rational protocol design: Cryptography against incentive-driven adversaries. In

IEEE FOCS.
[19] Vipul Goyal, Payman Mohassel, and Adam Smith. 2008. Efficient two party and

multi party computation against covert adversaries. In EUROCRYPT.
[20] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. 2015. Fast garbling

of circuits under standard assumptions. In ACM CCS.
[21] Joseph Halpern and Vanessa Teague. 2004. Rational secret sharing and multiparty

computation. In ACM STOC.

https://bitcoin.org/
https://ethereum.org/

[22] Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, and Xiao Wang.

2019. Covert Security with Public Verifiability: Faster, Leaner, and Simpler. In

EUROCRYPT.
[23] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious

transfers efficiently. In CRYPTO.
[24] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-

ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security Symposium.

[25] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. 2018. Optimiz-

ing authenticated garbling for faster secure two-party computation. In CRYPTO.
[26] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively secure OT

extension with optimal overhead. In CRYPTO.
[27] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and robust

multi-party computation using a global transaction ledger. In EUROCRYPT.
[28] Gillat Kol and Moni Naor. 2008. Games for exchanging information.. In ACM

STOC.
[29] Vladimir Kolesnikov and Alex J Malozemoff. 2015. Public verifiability in the

covert model (almost) for free. In ASIACRYPT.
[30] Vladimir Kolesnikov, Jesper Buus Nielsen, Mike Rosulek, Ni Trieu, and Roberto

Trifiletti. 2017. DUPLO: unifying cut-and-choose for garbled circuits. In ACM
CCS.

[31] Ranjit Kumaresan and Iddo Bentov. 2014. How to use bitcoin to incentivize

correct computations. In ACM CCS.
[32] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing secure computation with

penalties. In ACM CCS.
[33] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. 2015. How to use bitcoin to play

decentralized poker. In ACM CCS.

[34] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).

[35] Jesper Nielsen, Thomas Schneider, and Roberto Trifiletti. 2017. Constant-Round

Maliciously Secure 2PC with Function-Independent Preprocessing Using LEGO.

In NDSS.
[36] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. 2008. A framework for

efficient and composable oblivious transfer. In CRYPTO.
[37] Stefan Tillich and Nigel Smart. 2016 (accessed May 11, 2019). Circuits of Basic

Functions Suitable For MPC and FHE. https://homes.esat.kuleuven.be/~nsmart/

MPC/.

[38] Jelle van den Hooff, M Frans Kaashoek, and Nickolai Zeldovich. 2014. Versum:

Verifiable computations over large public logs. In ACM CCS.
[39] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Authenticated garbling

and efficient maliciously secure two-party computation. In ACM CCS.
[40] GavinWood et al. 2019. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper Byzantium Version (2019).

[41] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two halves make a whole.

In EUROCRYPT.
[42] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. 2018. NANOPI: extreme-

scale actively-secure multi-party computation. In ACM CCS.
[43] Ruiyu Zhu and Yan Huang. 2017. JIMU: faster LEGO-based secure computation

using additive homomorphic hashes. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 529–572.

[44] Ruiyu Zhu, Yan Huang, and Darion Cassel. 2017. Pool: scalable on-demand secure

computation service against malicious adversaries. In ACM CCS.
[45] Ruiyu Zhu, Yan Huang, Jonathan Katz, and Abhi Shelat. 2016. The cut-and-choose

game and its application to cryptographic protocols. In USENIX Security.

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Incremental Collision-Resistant Hash
	2.2 Blockchain and Smart-Contracts
	2.3 Garbled Circuits
	2.4 Oblivious Transfer

	3 Approach Overview
	3.1 Publicly Verifiable Covert 2PC
	3.2 Affordable Judge and Succinct Proofs
	3.3 Financially-Secure 2PC

	4 Secure Publicly-Verifiable 2PC
	4.1 Sender Non-repudiable OT
	4.2 The Two-Party PVC Protocol

	5 Automated Decentralized Judge
	5.1 Search Short Proofs of Peer's Misbehavior
	5.2 Warmup: Proofs from Disagreeing Hashes
	5.3 Proofs from Disagreeing Claims on Ve
	5.4 Judge as a Smart-Contract

	6 Application: Financially-Secure 2PC
	7 Implementation and Evaluation
	7.1 PVC 2PC
	7.2 Decentralized Judge

	8 Conclusion
	Acknowledgments
	References

