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Abstract

We explore a new approach to construct zero-knowledge
proofs by combining ideas from the succinct proof system
GKR, the Fully Linear PCP (FLPCP), and MPC-in-the-Head
ZKPoK. Our discovery contributes to the state-of-the-art of
ZKP in two aspects:
(1) Methodology: We demonstrate a way to build trans-

parent ZK proofs from simplified variant of FLPCP
and KKW. The resulting proofs are practically ef-
ficient (O(|C|)-time prover, O(log(|C|)-time verifier,
O(log(|C|))-bandwidth where |C| is the number of poly-
nomial gates), and work readily for circuits defined with
polynomial gates over any finite field.

(2) Applications: We present efficient (interactive) iden-
tification schemes, ring identification schemes, (non-
interactive) digital signatures and ring signatures, all
based on the standard AES ciphersuite. We also show
the first practically efficient verifiable symmetric-key en-
cryption scheme, based on counter-mode AES.

1 Introduction

Zero-Knowledge Proofs (ZKP) allow a prover P to convince
a verifier V a valid computational relation without revealing
any extra information such as the secret witness. ZKPs en-
able a wide range of interesting applications, from building
efficient post-quantum digital signatures, to secure electronic
voting, to privacy-preserving decentralized cryptocurrency.

Many ZKP protocols followed the MPC-in-the-Head
paradigm [2, 5, 15, 20, 23, 24]. In this paradigm, the prover
divides the witness into its secret-shares, simulating the com-
putation used to check the relation using some MPC proto-
col, then commits to the transcripts of the simulated MPC
players, of which the verifier randomly select a subset to
verify prover’s behavior without learning anything about the
witness. By design, this approach can easily support circuits
over any finite field and is able to produce quantum-resistant

proofs without trusted setup. In addition, these proofs (ex-
cept Ligero [2]) are typically memory-friendly since they can
be executed using as little space as what is required to com-
pute the relation-verification circuit, rather than linear space
to remember all intermediate values produced in the circuit
evaluation. On the flip side, however, these protocols require
linear-time verifiers and linear communication,1 hence they
are not succinct.

On the other hand, GKR [21] offered an efficient protocol
that allows to verify results of delegated non-secret compu-
tation in sublinear time using purely public random-coins.
Recently, researchers have leveraged GKR to build succinct
ZKPs [31, 32, 34, 35]. However, these constructions relied
on polynomial commitments (such as Hyrax [31] and Li-
bra [32]) or Low Degree Tests (LDT) (such as Virgo [35]
and Virgo++ [34]) to make the GKR procedure fully zero-
knowledge, thus inheriting some constraints from those tech-
niques: (1) They don’t easily support computations over
many fields that are incompatible with the underlying poly-
nomial commitment or LDT schemes. E.g., Virgo/Virgo++’s
competitive performance hinges on the extended Mersenne
prime fields Fp2 (e.g., they used p = 261 − 1). So even
if AES can be more efficiently computed by a F28 circuit,
Virgo/Virgo++ have to prove it with a (much larger) Boolean
circuit while “lifting” every plaintext bit to an element in Fp2 .
(2) Adjusting the concrete security parameters of those pro-
tocols for better soundness guarantees often becomes an un-
wieldy task causing a significant performance dent. E.g., us-
ing Fp2 with p = 261− 1, Virgo/Virgo++ are conjectured to
offer ∼100-bit computational security for proving a circuit
of a single SHA256 hash, but only ∼93-bit for a circuit of
256 SHA256 hashes. Tuning the soundness even just a few
bits up would require setting p to the next Mersenne prime
289−1, which can be 2–4x more expensive based on bench-
marks on the field operations.

Hence, our work is motivated by the question: “Is it possi-
ble to construct concretely-efficient succinct zero-knowledge

1Except Ligero, which requires linear verification and square-root traffic.



proof system that can easily support computation on arbi-
trary finite fields?” In this paper, we present ZKPs built
from integrating three seminal uses of random coins: one for
sublinear proof of correctness (GKR), one for making any
computation zero-knowledge (MPC-in-the-Head), and one
for a little bit of both (Fully Linear PCP). We propose a new
method to construct succinct2 ZKPs and work out a number
of details in selecting concretely efficient component proto-
cols.
ZKP Applications. In addition to the several (somewhat)
hypothetical benchmark computations (e.g. SHA256 and
matrix multiplication) commonly used to evaluate ZKP sys-
tems, we also improve the state-of-art ZKPs for several ap-
plications more relevant to addressing real-world security
needs. These include digital identification and signature
schemes, ring identification and ring signature schemes, and,
to the best of our knowledge, the first succinct proof of
symmetric-key encryption.

The first distinction of our work across these applications
lies in a highly efficient, succinct-verifier ZKP system for the
standard AES cipher suite. Early signatures built from ZKP
of one-way functions chose MPC-friendly ciphers [1] for
better-looking performance, at some cost of security. Those
ciphers are relatively new and lack the same level of scrutiny
that standardized ciphers like AES have undergone. More-
over, AES is already widely used in many applications, often
accelerated with dedicated hardware, hence in scenarios such
as proving a plaintext-relation among ciphertexts, it is tech-
nically infeasible to replace AES with a MPC-friendly cipher
just for the sake of ZKP. Instead, more desirable would be an
efficient ZK protocol for proving standard AES.

Several recent works have considered ZKP of AES [4, 5,
18, 28]. However, they only work for a modified version of
AES where no input byte to any of the SubByte modules is
allowed to be 0-byte. Since this constitutes a non-standard
use of the standard cipher suite, it can cause security and
utility concerns similar to those coming from nonstandard
ciphers: (1) Security of the non-standard use of AES is not
well-understood — it is unclear if the modified usage would
make some (otherwise difficult on standard usage) cryptanal-
ysis easier. (2) It won’t work for situations where inputs to
AES are beyond control (e.g., when calling AES repetitively
in some modes-of-operation or for circuit garbling) since
0-byte input to SubByte is inevitable. Finally, their technique
would make the key generation more than 2× slower due to
repeated key trials.

We explore novel ways to prove a single block of AES,
many blocks of AES, private membership, as well as their
combinations. Our circuits work particularly well with our

2Here we consider on a weaker notion of succinctness as was defined
in [10,11], which only require sublinear proofs in terms of circuit size. How-
ever, we note that some protocols like Virgo++/Ligero++ support a stronger
notion of succinctness that requires proofs grow sublinearly in both circuit
size and secret input length.

Table 1: Asymptotic costs of transparent ZKP systems

KKW
[24]

Virgo
[35]

Ligero++
[9]

Virgo++
[34]

Limbo
[18] Dubhe

P C+w C+w logw (C+w) log(C+w) C+w logw C+w C+w

V C+w d logC+ log2 w C+w d logC+d2 + log2 w C+w d logC+w

|π| C+w d logC+ log2 w polylog(C+w) d logC+d2 + log2 w logC+w d logC+w

C denotes circuit size measured in the number of gates. w denotes the
length of secret witness. The big-O’s are omitted in all cells. With Virgo
and Virgo++, O(C) extra secret witnesses are often deliberately added in
practice to reduce the number of circuit layers.

methodology of building ZKPs.

Contributions. We explore a new approach, implemented
as Dubhe, to construct efficient ZKP protocols by com-
bining MPC-in-the-Head (Section 2.1), GKR (Section 2.2),
and Fully linear PCP (Section 2.3). Like all MPC-in-the-
Head ZKP protocols, Dubhe easily works for computations
over any fields. Comparing to existing MPC-in-the-Head
ZKPs, Dubhe protocols are both asymptotically and con-
cretely more efficient. We compare asymptotic costs of our
approach to some state-of-the-art transparent ZKP systems
in Table 1.

We applied our approach to develop a number of applica-
tions, including efficient identification and digital signature
schemes (Section 5.1), ring identification and ring signatures
(Section 5.2), as well as verifiable symmetric-key encryption
schemes (Section 5.3), all of which were based on the stan-
dard unmodified AES. We experimentally evaluated Dubhe
protocols and find them highly competitive compared to best
prior works in both interactive and non-interactive settings.3

2 Preliminaries

Notation. We denote the prover and verifier by P and V .
We use π to denote the proof (or communication) resulted
from running a proof system. We use d to denote the depth
of a circuit, but d for the degree of polynomial gates in the
circuit. For all positive integer n, [n] def

= {0,1, . . . ,n− 1}. If
S is a set, “a← S” means uniformly sample an element from
S and name it a. We always use “a = b” to denote equality
while “:=” to denote assignment. We model H(·) as a ran-
dom oracle. Appendix A has relevant definitions such as ZK
Proof/Argument of Knowledge, Σ-protocols, and Interactive
Oracle Proofs (IOP).

2.1 “MPC-in-the-Head” ZKP

The MPC-in-the-Head paradigm for constructing efficient
ZKP was originally proposed by Ishai et al. [23], first effi-
ciently implemented in ZKBoo [20] and improved in several

3Dubhe source code: https://github.com/zkPrfs/dubhe.

https://github.com/zkPrfs/dubhe


subsequent works [2, 9, 15, 24]. The high-level idea of this
paradigm works as follows:

(1) P divides its witness w into n shares, run an n-party se-
cure computation protocol ΠR(·,x) “in its head” to emu-
late the computation of R(w,x), and commits n views of
the parties;

(2) V picks a random subset of the n views to check;

(3) P de-commits the chosen subset of views. V accepts
if and only if every disclosed view is consistent with all
other disclosed views, the public input x, the definition
and output of R, and the specification of protocol ΠR(·,x).

Different instantiations of the MPC-in-the-Head idea differ
in their underlying MPC protocols, which affect the exact
definition of a party’s view, optimizations for committing
and de-committing the views, as well as the security and cost
of these protocols.

Our work uses a substantially simplified version of
KKW [24] as a building block that only needs to handle lin-
ear gates. In the terminology of MPC-in-the-Head protocols,
our underlying protocol ΠR(·,x) is (n−1)-private (i.e., n−1
parties’ views can be revealed without leaking the secret),
0-robust (i.e., a malicious prover needs to corrupt at least 1
party per iteration to succeed). The analysis of our MPC-in-
the-Head building block is consequently much simpler: the
soundness error of each iteration is at most 1/n; and KKW’s
5-round interactive HVZK can be naturally reduced to 3-
round since we never need to handle multiplication gates.

2.2 GKR
Originally proposed by Goldwasser et al. [21], GKR has
been significantly improved in a series of research pa-
pers [16, 17, 30, 32]. Here we just recall enough of its basics
to understand our new ZK argument system.

Multilinear Extension. Let V : {0,1}ℓ 7→ F be a func-
tion. The multilinear extension of V is the unique polynomial
Ṽ : Fℓ 7→ F defined as below

Ṽ (x0, . . . ,xℓ−1)
def
= ∑

b∈{0,1}ℓ

(
V (b)∏

i∈ℓ

(
(1− xi)(1−bi)+ xibi

))
.

It is easy to see that ∀x ∈ {0,1}ℓ,Ṽ (x) =V (x).

The Sumcheck Protocol. The goal of sumcheck pro-
tocol [25] is to efficiently verify the summation of a
polynomial f : Fℓ 7→ F on a binary hypercube, i.e.,
∑bi∈{0,1} f (b1, . . . ,bℓ). The sumcheck protocol reduces the
correctness of summation ∑bi∈{0,1} f (b1, . . . ,bℓ) to f ’s value
on a random point in Fℓ, i.e., f (r1, . . . ,rℓ) with uniform ri ∈F
selected by V . The protocol runs in ℓ rounds:

(1) In the first round, P sends the univariate polyno-
mial f1(x1)

def
= ∑b2,...,bℓ∈{0,1} f (x1,b2, . . . ,bℓ) by sending

deg( f1)+ 1 coefficients of f1 where deg( f1) is f1’s de-
gree. V verifies

S = f1(0)+ f1(1), (1)

then sends r1← F to P .

(2) In the ith (2≤ i< ℓ−1) round, P sends a univariate poly-
nomial

fi(xi)
def
= ∑

bi+1,...,bℓ∈{0,1}
f (r1, . . . ,ri−1,xi,bi+1, . . . ,bℓ)

by sending the deg( fi)+1 coefficients of fi. V verifies

fi−1(ri−1) = fi(0)+ fi(1) (2)

then sends ri← F to P .

(3) In the ℓth round, P sends a univariate polynomial
fℓ(xℓ)

def
= f (r1, . . . ,rℓ−1,xℓ), by sending deg( fℓ)+ 1 co-

efficients of fℓ. V verifies

fℓ−1(rℓ−1) = fℓ(0)+ fℓ(1) (3)

and accepts if and only if fℓ(rℓ) = f (r1, . . . ,rℓ).

Despite the O(2ℓ) time to compute the sum, the sumcheck
protocol only takes V O(ℓ) time to verify it.

The GKR Protocol. At a high level, the GKR proto-
col processes a circuit of bounded-fan-in (say, fan-in 2)
gates layer by layer. It encodes the computation on each
layer of circuit as the sum of a bounded-degree (degree-
2 for fan-in-2 circuits) multivariate polynomial over a bi-
nary hypercube. Assume circuit C has d layers of gates,
hence d + 1 layers of wires, and layer-i has 2si wires. Let
Vi : {0,1}si 7→ F be a function mapping layer i wire in-
dices to wire values, and Ṽi : Fsi 7→ F be the multilin-
ear extension of Vi. Let addi (resp. multi) be a predicate
function {0,1}si+1 ×{0,1}si+1 ×{0,1}si 7→ {0,1} such that
addi(x,y,z) = 1 (resp. multi(x,y,z) = 1) if and only if wire
indices x,y,z are respectively the left input, right input, and
output wires of an addition (resp. multiplication) gate. Thus,
for any wire index z on layer-i, Vi(z) can be formulated as

Vi(z) = ∑
x,y∈{0,1}si+1

(
addi(x,y,z)

(
Vi+1(x)+Vi+1(y)

)
+multi(x,y,z)Vi+1(x) ·Vi+1(y)

)
.

The GKR protocol begins with V picking a uniform r ∈
Fs0 and computing Ṽ0(r) (recall that Ṽ0, the multilinear ex-
tension of V0, can be computed from the final outputs of
the circuit). Then, the parties run the sumcheck protocol on
Ṽi(z) for all i ∈ [d] to reduce the validity of Ṽi(r) to that of



fi+1(ui+1,vi+1) where ui+1,vi+1 ∈ Fsi+1 are picked in sum-
check rounds and

fi(x,y)
def
= ãddi−1(x,y,r)

(
Ṽi(x)+Ṽi(y)

)
+ m̃ulti−1(x,y,z)Ṽi(x) ·Ṽi(y) (4)

P will send Ṽi+1(ui+1) and Ṽi+1(vi+1) to prove the equality.
To verify the validity of Ṽi+1(ui+1),Ṽi+1(vi+1), the two

points will be combined, using uniform random coefficients
αi+1,βi+1, into a single random point [16]:

αi+1Ṽi+1(ui+1)+βi+1Ṽi+1(vi+1)

= ∑
x,y∈{0,1}s2

[(
αi+1ãddi+2(x,y,ui+1)+

βi+1ãddi+2(x,y,vi+1)
)
·
(
Ṽi+2(x)+Ṽi+2(y)

)
+(

αi+1m̃ulti+2(x,y,ui+1)+βi+1m̃ulti+2(x,y,vi+1)
)
·(

Ṽi+2(x) ·Ṽi+2(y)
)]

(5)

Thus, the validity of Ṽi+1(ui+1),Ṽi+1(vi+1) can be further
reduced to a claim on Ṽi+2(ui+2),Ṽi+2(vi+2) for some uni-
form random ui+2,vi+2 in F, by sumchecking Equation (5).
This procedure proceeds recursively towards the initial input
layer, where Ṽd(ud),Ṽd(vd) are checked against the multilin-
ear extension polynomial defined by the inputs.

For circuits of fan-in-2 degree-d polynomial gates, the
soundness error of GKR, EGKR = 1−Πd

i=0(1− d/|F|)2si .
In Libra, Xie et al. presented an linear algorithm for the
prover [32]. Their result is later strengthened by a linear
prover for general circuits [34]. If the predicates addi,multi
can be computed in O(si) time, then complexity of the GKR
verifier is O(∑si).

2.3 Fully Linear PCP (FLPCP)
The idea of FLPCP that we use in our protocol was pro-
posed by Boneh et al. [12]. Below we first explain a non-ZK
FLPCP protocol, then shows how it can be efficiently trans-
formed to offer ZK without using any secret multiplications.

Single-polynomial FLPCP without ZK. Let G : Fℓ→ F be
an ℓ-variable degree-d polynomial over F, wi for i ∈ [ℓ] be
(potentially secret) input values, and G(w0, . . . ,wℓ−1) = 0 be
the equation to prove. ∀i ∈ [ℓ], let pi be a degree-1 polyno-
mial defined by pi(0) = wi and pi(1)← F. Define

pℓ(x)
def
= G(p0(x), . . . , pℓ−1(x)) .

Then pℓ(x) is a polynomial of degree at most d. The protocol
works as follows:

(1) ∀i ∈ [ℓ], P sends wi, pi(1) to V .

∀ j ∈ [d+ 1]\{0}, P computes q j := pℓ( j) and sends q j
to V . V sets q0 := 0.

(2) V picks and sends r← F\{0} to P .

(3) P computes and sends pi(r) for all i ∈ [ℓ+1].

For each i ∈ [ℓ], V interpolates a value, which we call
p′i(r), from points (0,wi),(1, pi(1)). Finally, V inter-
polates another value, which we call p′ℓ(r), from points
(0,q0),(1,q1), . . . ,(d,qd) and verifies that both of the
following hold:

p′i(r) = pi(r), ∀i ∈ [ℓ];
p′ℓ(r) = G(p0(r), . . . , pℓ−1(r)).

It is straightforward to verify the completeness of the
above protocol. For soundness, since G’s degree is at most
d, the protocol has soundness error d/(|F|−1).

Single-polynomial FLPCP with ZK. If w0, . . . ,wℓ−1 are se-
cret, to prove G(w0, . . . ,wℓ−1) = 0 in ZK, P and V simply
execute the red-highlighted actions above using a linear ZK
proof system. In our case, it suffices to use KKW-LO, a sim-
plified KKW that efficiently proves linear operations because

• Sending secret values (e.g., “send wi, pi(1)” and “send
q j”) now means treating the secrets as inputs of the cir-
cuit which will be proved in KKW-LO;

• Interpolating secret polynomials (e.g., p′i(·)) on a public
point only involves linear operations on secret values;

• The final equality checks on p′i(r) for all i ∈ [ℓ+ 1] can
be easily realized as checking public values of circuit
output-wires using KKW-LO.

3 Our Approach

As we show in Table 2, the GKR, KKW, and FLPCP
represent three distinct proof systems each featuring its
own pros and cons. GKR allows sublinear verification
and communication on uniform circuits but does not of-
fer zero-knowledge; KKW offers ZK and easily handles
(non-uniform) linear computations but is not succinct and
is unwieldy to prove non-linear operations; FLPCP seems
a solution lying somewhere in between: it offers a unique
way to prove multiplications with square-root proof size,
but requires linear-time verification and needs some exter-
nal mechanism to provide ZK. In this work, we propose to
combine all three protocols for the best of three worlds. The
combination is not black-box, but it turns out that we can
significantly simplify the building blocks before combining
them, making it easier to analyze and implement.

3.1 Intuition and Key Ideas

Approach Overview. We illustrate the high-level idea of our
approach in Figure 1. We assume the original computation to
prove in ZK is represented as a uniform circuit of polynomial



Table 2: Compare proposed protocol and its building blocks.

ZK Fast V Short |π| × +

GKR ⌢ ⌣ ⌣ ⌢1

KKW [24] ⌣ ⌢2 ⌢ ⌢5 ⌣

FLPCP [12] ⌣3 ⌢2 ⌣4 ⌣6 —

Proposed ⌣ ⌣ ⌣ ⌣ ⌣
1 Proving unstructured × and + is slow; 2 Linear time;
3 Need help from other ZKP systems to prove linear relations;
4 Square-root communication; 5 Extra rounds to generate and ver-

ify multip. triples; making NIZK more expensive;
6 No extra rounds, easy to compile to NIZK with Fiat-Shamir.

gates (Figure 1 (a)). We further assume the circuit has d
layers, each containing (up to) m polynomial gates, and all
final outputs are revealed.

Then we view the GKR and FLPCP protocols as two prob-
abilistic transformations that guarantee the equivalence of
computational correctness before and after the transforma-
tion, with perfect completeness and bounded soundness er-
rors. More specifically, we first apply GKR to transform
the original circuit (Figure 1 (a)) into one depicted in Fig-
ure 1 (b). As a result of this transform, the d ·m polynomial
gates are turned into O(d logm) linear gates, d polynomial
gates, and O(d logm) extra inputs. These extra inputs are
due to the univariate polynomials during sumcheck and the
d points (one per layer) sent by the GKR prover to the veri-
fier. The O(d logm) linear gates are due to the GKR verifier’s
computation to check the prover’s sumcheck responses. The
d polynomial gates come from the GKR verifier’s work to
verify

(
Ṽi(ui),Ṽi(vi)

)
and

(
Ṽi+1(ui+1),Ṽi+1(vi+1)

)
are con-

sistent as specified in Equation (4) and Equation (5). The
soundness and cost of this GKR transform will depend on
d, m, and the degree of the polynomial gates, which are
application-specific.

Next, we apply FLPCP to transform the Figure 1 (b) cir-
cuit to the one in Figure 1 (b), which contains linear gates
only. During the transformation, the d polynomial gates
in Figure 1 (b) will be turned into O(d ·deg(G)) extra inputs
(due to the variables {q j} j∈[deg(G)] as defined in Step (1) of
FLPCP) and O(d) linear gates (due to the polynomial inter-
polation work in Step (5) of FLPCP). The soundness of this
transformation is that of FLPCP. This final circuit after the
FLPCP transform only contains linear operations, thus can
be efficiently proved using a simplified KKW protocol.

Regarding the linear gates in the original circuit, we note
that sometimes it pays to transform them through GKR and
FLPCP too. If this is done, the white blocks of “Linear
Gates” in all three sub-figures will completely disappear.
Common benefits of transforming linear gates by GKR in-
clude: (1) achieving sublinear verification, even in the num-
ber of linear gates; and (2) avoiding introducing new wit-
nesses that will eventually burden the MPC-in-the-Head pro-

tocol. Our verification circuit for multiple AES blocks (Sec-
tion 4.1) serves an example where linear gates are also fully
transformed for better performance.

Zooming into the actual steps we perform when combin-
ing the three components, it would be helpful to understand
the concepts of “sending secret values in ZK” and how it al-
lows us to bring ZK to GKR.

Sending Secrets in ZK. In our protocol, both GKR and
FLPCP need some help from KKW to prove linear opera-
tions on secrets in ZK. In particular, KKW is used whenever
some sensitive values needs to flow from P to V . We treat
“sending secrets” as introducing secret inputs to a (public)
circuit whose logic is already fully specified by the computa-
tion V should run over the secrets in the respective protocols
(i.e., GKR and FLPCP). Therefore, instead of sending the se-
crets to V , P just sends the input correction records (see Fig-
ure 2) corresponding to these secrets, so that P can no longer
change them (without being caught with certain probabil-
ity) and V can run their checks in ZK using the simplified
KKW protocol. We note the difference between this treat-
ment of secrets and a commitment of secrets: unlike com-
mitments, here the secrets will never be revealed while com-
mitments are supposed to be de-committed at some point.
However, this treatment still allows computation to happen
on those secrets and finally an MPC-in-the-Head style of cut-
and-choose is used to establish the soundness guarantee.

Bring ZK to GKR.4 To turn GKR zero-knowledge, P sim-
ply applies the “send secrets in ZK” idea to all confidential
values flowing from P to V . These may include the secret in-
puts to the original computation, all of the polynomial coef-
ficients sent during the sumcheck, and the Ṽi(u),Ṽi(v) values
sent at the end of each layer’s sumcheck. Then V ’s (public)
GKR verify algorithm will be executed in KKW, allowing
V to accomplish verification with a slightly larger (but still
bounded) soundness error but without leaking the secrets.
The circuit realizing V ’s verify algorithm consists mostly
of linear operations. The only non-linear operation on secret
values is due to checking Equation (4), which occurs only
once per non-linear layer of the circuit. As an optimization,
we leveraged every linear equation between the secret values
to save transmitting one secret value in ZK, by representing
each saved secret as a linear combination of other secrets.
Use Simplified FLPCP. Thanks to GKR, only one polyno-
mial per layer needs to be proved. Thus, it suffices to invoke
single-polynomial ZK-FLPCP (see Section 2.3) for circuit-
depth number of times.

Use Simplified KKW. Since multiplications can be en-
tirely eliminated by GKR and FLPCP, we can specialize
KKW to just handle linear computations, i.e., secret addi-
tion/subtraction and constant multiplication. This can signif-

4The GKR paper [22, Section 5] was later updated with a theoretical
construction of ZK-GKR based on generic ZKP and commitment schemes.
In contrast, our construction is very different and more efficient.
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Figure 1: Approach Overview
(All inputs are secret and all outputs are public.)

icantly reduce the complexity of the original KKW: because
there is no need to generate and verify multiplication triples
via cut-and-choose, KKW’s 5-round interactive HVZK nat-
urally reduces to 3-round. Therefore, it is much cheaper
to convert the simplified KKW to an NIZK via Fiat-Shamir
transform. (In comparison, the original KKW obtained its
3-round version by paying a heavy price on the prover-side:
requiring the prover to evaluate the circuit M times and com-
mits all M transcripts even if only τ transcripts are eventu-
ally checked and M≫ τ. For 128-bit computational security,
(M = 916, τ = 20) is needed.)

Non-blackbox Combination of Three. Originally, GKR,
KKW, and FLPCP each would work with a different finite
field and has their own parameters such as the number of
iterations to achieve their respective soundness guarantees.
When combining them, we use the same finite field in all
three protocols. We then analyze the soundness of one itera-
tion of the combined protocol, and finally boost its soundness
through repetition.

3.2 The Main Protocol

KKW-LO. KKW-LO (Figure 2) is an honest-verifier ZK
(HVZK) derived by specializing KKW for only proving lin-
ear operations. In the first round, P emulates the linear op-
erations with n parties in its head, then “commits” its emu-
lation by sending ICR (the correction bits for all secret in-
puts to C) and a random string h (obtained from calling the
random oracle with all the secret-shares of the output of C).
Then, V randomly chooses n−1 parties to check. Finally, P
reveals the seeds of n−1 circuits so that V can verify that P
executed honestly in the emulation.

Completeness of KKW-LO can be easily verified from its
construction. KKW-LO has “2-special” soundness since it is
easy for V to recover P ’s witness if P had opened a sin-
gle emulation in two different but convincing ways. The
soundness error of each iteration of KKW-LO is 1/n. KKW-
LO provides honest-verify zero-knowledge because given an
honest V ’s challenge r, a simulator without the witness can
easily generate accepting transcripts indistinguishable from
those produced in real interactions between a P holding the
witness and V . A full security proof of KKW-LO can also
be specialized from the proof of original KKW.

FLPCP-KKW. FLPCP-KKW (Figure 3) efficiently proves
circuits with nonlinear computation. It combines a simplified
FLPCP for proving individual polynomial gates (Section 2.3)
with KKW-LO, assuming the simplified FLPCP and KKW-
LO use the same field F. The first three rounds of FLPCP-
KKW apply single-polynomial FLPCP to transform circuit
C into an equivalent, augmented verification circuit that con-
tains linear operations only. Then KKW-LO is invoked to
prove the augmented circuit in zero-knowledge. Unlike most
existing MPC-in-the-Head protocols such as [15, 20, 24],
FLPCP-KKW can directly work for circuits with polynomial
gates.

The verifier in FLPCP-KKW only uses public-coins. Each
iteration of FLPCP-KKW has soundness error at most 1−
(1− deg(G)

|F|−1 ) ·(1− 1
n ), because a malicious P needs to subvert

either FLPCP or KKW-LO to corrupt an iteration.

GKR-FLPCP-KKW. (Figure 4) The basic idea resembles
that of FLPCP-KKW, except that now we will apply GKR
to compile a log-space uniform circuit C into a circuit that
is statistically equivalent for the purpose of verifying the NP
relation, but only needs d (circuit-depth) polynomial gates.
All secret values of the GKR prover are augmented as ex-
tra inputs whose correction records are immediately sent to
V , and the constraints involving secrets that the GKR ver-
ifier needs to check become linear and polynomial gates in
the augmented circuit. Finally, FLPCP-KKW is invoked to
prove the augmented circuit in ZK. We stress that all three
sub-protocols will operate on the same field F, and the veri-
fier only needs public coins to derive its challenges.

Costs. GKR-FLPCP-KKW requires O(d logC) rounds for
GKR transform, 1 round for FLPCP transform to handle all d
polynomials, and 1 final round for executing KKW-LO. For
log-space uniform application circuits, the time and commu-
nication costs of GKR-FLPCP-KKW only depends on the
size of the linear circuit eventually fed into KKW-LO, which
is O(d logC).

Limitation. Since verification and communication costs of
MPC-in-the-Head protocols grow linearly with the number
of secret inputs, this is in contrast to Virgo/Virgo++ which
allow logarithmic verification and proof size thanks to the
efficient LDT. Therefore, our approach may not perform well
for computations involving large amount of secrets, or those



Security parameters: n MPC parties; H is the random oracle.
Public Input: A circuit C with just linear operations on F.
Secret Input: Only P knows the secret inputs to C.

Round 1:

(1) P samples uniform seedi and its commitment comSeedi ←
Com(seedi) for i ∈ [n];

(2) P traverses C in a topological order:

(a) For each secret input value w on a wire with id wid,

i. ∀i ∈ [n],wi := PRG(seedi,wid);
ii. ICR[wid] := w−∑ j∈[n−1] w j;

//ICR[wid] is called the input correction record of wire wid.

iii. w0 := w0− ICR[wid];

(b) For each addition gate with inputs u,v and output w, set
wi := ui + vi,∀i ∈ [n].

(c) For each constant multiplication gate with input v, public
constant a, and output w, set wi := a · vi,∀i ∈ [n].

(d) For each constant addition gate with input v, public con-

stant a, and output w, set wi :=
{

a+ vi, i = 0
vi, otherwise

.

(3) For final output w of C, P computes h := H
(
{wi}∀i∈[n]

)
.

(4) P sends ICR,h and {comSeedi}i∈[n] to V .

Round 2: V calls H to sample r← [n] and sends it to P .
Round 3:

(1) ∀i ∈ [n]\{r}, P decommits seedi. For final output w of C, V
computes wi from (seedi, ICR) as P did in Round 1.

(2) V computes wr := w−∑i∈[n]\{r}wi;

(3) V verifies the recovered wis are consistent with h.
Figure 2: KKW-LO: A 3-round HVZK for Linear Operations

using lots of secret witness to flatten the verification circuits.

Security. GKR-FLPCP-KKW, in essence, is a O(d logC)-
round, public-coin interactive oracle proof (IOP) [7, 18]
where the circuit to be proved by a classic Σ-protocol (KKW-
LO) is dynamically generated in its first O(d logC) rounds
due to GKR and FLPCP. The security of GKR-FLPCP-KKW
can be proved based on the security of KKW and the funda-
mental theorem of algebra (as was used in the security proof
of GKR and FLPCP), see Appendix C.

Theorem 3.1. Given an NP relation defined by R, τ itera-
tions of GKR-FLPCP-KKW is a public-coin, honest-verifier
zero-knowledge argument of knowledge for R, with sound-
ness error [1− (1− EGKR) · (1− EFLPCP) · (1− EKKW)]τ

where EGKR,EFLPCP,EKKW are the soundness errors due to
the GKR transform, the FLPCP transform, and the KKW-LO
proof resp. in one iteration of GKR-FLPCP-KKW.

Soundness. In the proof of the theorem (See Appendix C),
we derive the overall soundness of our protocol, expressed
as the formula of EGKR,EFLPCP,EKKW,τ. In our proto-

Security parameter: A finite field F.
Public Input: A circuit C of linear and polynomial gates on F.
Secret Input: Only P knows the secret inputs to C.

Round 1:

(1) For every polynomial gate G in C, P and V run Step (1)
of the single-polynomial FLPCP protocol (Section 2.3), aug-
menting C with additional secret input wires corresponding
to the variables {q j} j∈[d] in the FLPCP protocol.

(2) P computes and sends ICR for the augmented new inputs as
specified by Step (4) in Round 1 of KKW-LO (Figure 2).

Round 2: P and V run Step (4) of single-polynomial FLPCP.
Round 3:

(1) P and V run Step (5) of the single-polynomial FLPCP proto-
col, augmenting C with linear gates (for interpolating the se-
cret polynomials) and outputs (to reveal p′i(r) in the FLPCP
protocol).

(2) P runs Round 1 of KKW-LO for the augmented circuit C.

Round 4: P and V run Round 2 of KKW-LO for augmented C.
Round 5: P and V run Round 3 of KKW-LO for augmented C.

Figure 3: FLPCP-KKW: An HVZK from FLPCP and KKW-LO

cols, since P emulates n parties in KKW-LO, we thus have
EKKW = 1/n. EFLPCP and EGKR, however, are application-
dependent: As we’ve shown in Section 2.3, a call to FLPCP
will introduce deg(G)/(|F|−1) soundness error where G is
the polynomial gate that can vary with application; in ad-
dition to G, EGKR is also affected by the shape of the cir-
cuit, i.e., the number of gates in a circuit layer, the number
of layers, etc. We will detail the calculation of EFLPCP and
EGKR with respect to each circuit and application in Sec-
tion 4 and Section 5.

Removing Interaction. Like many existing ZKP sys-
tems [9, 18, 32, 34, 35], we can apply the Fiat-Shamir heuris-
tic [19] to obtain NIZK arguments of knowledge. Since our
protocol is a random-coin IOP, we used the same idea and
algorithm used by Banquet [5] and Limbo [18] to calculate
the number of iterations needed to achieve certain computa-
tional security. The calculation is done through plugging the
soundness errors of the rounds in our protocol into the search
algorithm as described in [5, Section 6.1] that works for any
public-coin interactive oracle proofs. Computational secu-
rity is measured by the expected number of random oracle
queries needed to break the IOP with high probability after
the Fiat-Shamir transform. Correctness of their algorithm is
proved in [5, Section 5, Lemma 2].

4 Improved Verification Circuits

In this section, we describe the design of our AES, member-
ship and SHA256 circuits.



Security parameter: A finite field F.
Public Input: A log-space uniform circuit C consisting of linear and polynomial gates over F.
Secret Input: Only P knows the secret inputs to C.

(1) P and V run the GKR protocol (see Section 2.2):

(a) In every sumcheck (called by GKR) round when P needs to send the univariate polynomial fi(·) (in any of the
three steps of sumcheck (Section 2.2)), both parties treat the coefficients of fi as secrets and augment C with secret
input wires representing these coefficients, and augment C with linear operations to check one of Equation (1),
Equation (2), Equation (3) based on the exact round of the sumcheck. P sends the ICR (defined in Figure 2) for
the augmented input wires.

(b) Every time after sumchecking a layer of C, to prove Equation (4) in ZK, P and V augment C with new secret input
wires representing Ṽi(ui),Ṽi(vi), and augment C with new linear and polynomial gates for verifying the equation
in ZK. P sends the ICR for the augmented input wires.

(2) P and V run FLPCP-KKW (of Figure 3) to prove C.
Figure 4: GKR-FLPCP-KKW: An efficient interactive HVZK via combining GKR and FLPCP-KKW

4.1 AES
AES is a NIST standard symmetric-key cipher. It allows
three configurable cipher key lengths—128, 192, or 256 bits,
hence are referred to as AES-128, AES-192, AES-256, resp.
All variants use 128-bit input blocks (or 16 bytes). Take
AES-128 as an example, it has 10 rounds and uses a Key
Expansion module to expand a 128-bit key into 11 128-bit
round-keys. Within each round, there are a sequence of
SubByte, ShiftRows, MixColumns, and AddRoundKey steps:
SubByte Each of the 16 input bytes is substituted by an-

other byte based on its value. SubByte is commonly im-
plemented by indexing a public table of 256 entries.

ShiftRows Viewing the 16 input bytes as a 4× 4 matrix,
ShiftRows cyclically shifts the last three rows by an off-
set of 1, 2, 3, resp.

MixColumns Viewing the 16 input bytes as a 4× 4 ma-
trix, MixColumns treats each column of 4 bytes as a
polynomial over F28 in the polynomial ring modulo
x4+1, and transforms each column of the matrix by ring-
multiplying it with a constant polynomial in the ring.

AddRoundKey Treating the input as 16 bytes and XOR
them with a 16-byte round-key.

The Key Expansion consists mostly of bit-XORs but also a
number of SubBytes (e.g., 40 SubByte for AES-128). The
structure of AES-192 and AES-256 are very similar to AES-
128, but run with slightly different constants in the algo-
rithms. We refer readers to the FIPS-197 [26] for detailed
description of the standard.

Using Extra-Witness. Like many useful algorithms, it is
easier to verify than to compute an AES. Note the only non-
linear part of AES computation is SubByte. Given an input
byte b ∈ F28 , SubByte consists of two steps:

(1) A special inversion: b′ :=
{

b−1 b ̸= 0;
0 b = 0

𝐺 𝐺 𝐺 𝐺……

…

…

𝑘! 𝑘"#

𝑏!$

𝑏"%%$

AES-128 Verification Circuit

0 0 0 0 0

Linear Operations

Figure 5: Our verification circuit for AES-128

(2) Treat b′ as a (column) vector of 8 bits and compute b′′ =
A ·b′+C with constant matrix A∈{0,1}8×8 and constant
vector C ∈ {0,1}8×1.

P can supply b′ as an additional witness, so correctness of
step (1) is equivalent to (b′ ·b = 1)∨ (b = 0∧b′ = 0). I.e.,(

(b′ ·b−1) ·b′ = 0
)
∧
(
(b′ ·b−1) ·b = 0

)
. (6)

As an optimization, we define G(x,y) def
= x · (xy− 1), then

each special inversion can be verified using two polynomial
gates, ensuring (G(b′,b) = 0)∧ (G(b,b′) = 0).

For step (2), note that given any secret byte represented
as additive shares in F28 (which is exactly the case using
KKW-LO), it is free to convert between a secret byte and
its 8 secret bits (in both directions) because addition in F28

happens to be bitwise-XOR hence concatenation of 8 F2-
shares is exactly an F28 -share. Therefore, that affine trans-
formation only involves linear operation, as are ShiftRows,
MixColumns, AddRoundKey steps.

Figure 5 depicts the verification circuit for AES128 before
the GKR and FLPCP transformations take place. Here we
only draw the secret inputs explicitly: k0, . . . ,k15 are the 16
bytes of secret key while b′0, . . . ,b

′
199 are the 200 bytes of wit-

ness for special inversion. Plaintext values like the 16-byte



input message are much cheaper to handle thus are omitted.
It is also assumed that all outputs of the circuit are 0. Note
that each b′i is sent to two G gates, once as the left input and
once as the right input.

Therefore, each block of AES-128 verification circuit
needs 200 bytes of secret witness, which are fed into 400
bivariate polynomial gates. By GKR, these 400 polyno-
mial gates can be transformed into checking the polynomial
V0(z) : F9

2 7→ F28 where

V0(z) = ∑
x,y∈{0,1}9

g(x,y,z) ·G(V1(x),V1(y))

where g is the predicate function for gate G. This will re-
quire 18 sumcheck rounds. As an optimization, we exploit
the pattern in predicate g and rearrange the indices x,y such
that g(x,y,z) = 1 iff x,y differ only in their last bit. So we can
rewrite V0(z) as

V0(z) = ∑
x∈{0,1}8

g′(x,z0 . . .z7) ·
(
(1− z8)G(L(x))+ z8G(R(x))

)
where zi denotes the ith bit of z and

g′(x,z) def
=

7

∏
i=0

(xizi +(1− xi)(1− zi)),

L(x) def
= (V1(x∥0),V1(x∥1))

R(x) def
= (V1(x∥1),V1(x∥0)).

Now the sumcheck can be done in 8 rounds, each of which
involves a degree-4 polynomial.

Thanks to GKR, the layer of 400 polynomial gates in
AES-128 can be transformed into 8 linear equations and 1
degree-4 polynomial equation over 4 ·8 = 32 new secret in-
puts. The single polynomial gate will then be transformed by
FLPCP into 2 additional linear equations (for interpolating 2
secret polynomials at plaintext points) over 4 new secret in-
puts. This final linear circuit will be handled by KKW-LO.

Since GKR encodes the 400 zero outputs of the G gates
with a 9-variable multi-linear polynomial and checks them
using a random point on its multilinear extension, this intro-
duces a soundness error of 9/|F|. Next, the soundness er-
ror due to sumchecking V ′0(z) is at most (1−4/|F|)8. Thus,
EGKR(AES-128) := 1− (1−9/|F|)(1−4/|F|)8. Because
FLPCP is invoked only once for checking a degree-4 poly-
nomial, EFLPCP = 4

|F|−1 .
For AES-based signatures, we opt to not use GKR but

directly verify the 400 polynomial gates with the batched
version of FLPCP (Appendix B.2) and KKW-LO, which is
concretely more efficient since those GKR rounds can be
avoided.
Without Extra-Witness. A drawback of the witness-based
AES verification circuit is that its computation and commu-
nication costs will grow linearly with the number of AES
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Figure 6: Verify m blocks of AES-128 (no extra witness)
(Plaintext inputs and the key-expansion module are omitted.)

blocks, In scenarios when many AES blocks need to be
proved, e.g., running AES in the counter-mode, its perfor-
mance doesn’t scale up well. Hence, we propose a witness-
free circuit design aiming to prove m blocks of AES using
only O(logm) verification time and bandwidth.

First, we treat each SubByte as 8 table-lookup operations
each on a constant table of 256 entries of a single bit. We
encode each of the 8 tables as an 8-variable polynomial. That
is, let {ti}i∈[256] be bits in a constant table, the multilinear
polynomial f : F8

2 7→ F2 encoding the table is

f (x0, . . . ,x7)
def
= ∑

p∈[256]

(
tp ·∏

i∈[8]
χpi(xi)

)

where pi denotes the ith bit of p and χ0 (resp. χ1) is the uni-
variate polynomial χ0(x) = 1− x (resp. χ1(x) = x). Thus,
a table lookup using an 8-bit index is essentially a poly-
nomial gate that can be handled by our protocol. This
polynomial can be realized by 3 layers of fan-in-2 multi-
plications (to compute ∏i∈[8] χpi(xi)) and 1 layer of addi-
tions (to compute the sum in f ). In addition, we apply
symbolic execution to merge all consecutive layers of lin-
ear operations (including step (2) of SubByte, and subse-
quent MixColumns, AddRoundKey, ShiftRows steps) into a
single layer. The merged layer of linear gates has 128 out-
put wires per block while the entire layer across all m blocks
can be transformed into logarithmic number of linear oper-
ations using GKR. Namely, let U,V : {0,1}7+logm 7→ {0,1}
be the input and output wire value functions of this layer,
and pred(x,z) the predicate that returns 1 if and only if
U(x) is a linear component of V (z), then it suffices to verify

V (z) def
= ∑x∈{0,1}7+logm pred(x,z)U(x) in GKR for this layer.

Thus the entire m blocks of AES can be efficiently verified
using O(logm) work (Figure 6).

This circuit has 11 linear layers and 3×10 multiplication
layers. Each linear layer has 128m linear gates. The 3 multi-
plication layers in each round have 4×256×16m, 2×256×
16m, 256× 16m multiplication gates, respectively. For the
128m output bits, checking a random point of the multilinear
extension encoding the outputs introduces a soundness error



of (7+ logm)/|F|. Hence EGKR(mAES) is

1− [1− (7+ logm)/|F|] [1−2 ·2 · (14+ logm)/|F|]10

[1−2 ·2 · (13+ logm)/|F|]10[1−2 ·2 · (12+ logm)/|F|]10

[1−2 · (7+ logm)/|F|]11.

Each multiplication layer requires checking a degree-2 poly-
nomial using FLPCP. For a total of 30 multiplications, we
have EFLPCP(mAES) := 1− (1−2/(|F|−1))30.

4.2 Membership
We define the private membership proof problem as follows:
Given a public set {IDi}i∈[m] where IDi’s are unique identi-
fiers (e.g., 16-byte long in the context of ring signatures), the
goal is for P who holds a secret certificate of its identifier
ID to convince V that its ID belongs to a public set without
leaking ID nor its certificate. In the context of designing ring
signatures, a user’s secret key can serve as the certificate.

Katz et al. [24] proposed a solution to the private member-
ship problem using Merkle trees. They assumed the public
set is publicized as the root of the Merkle tree with leafs be-
ing member IDs; then the prover presents a ZKP of a path
of hashes from the leaf of its own ID to the root. For a size-
m set, their approach requires proving logm hashes. Since
standard hashing algorithms (like SHA3 and SHA256) can
be slow to prove in ZK, they used LowMC, a non-standard
MPC-friendly cipher.

We chose a simpler polynomial-based approach to private
membership proof that exhibits significantly better perfor-
mance for small to medium size sets (e.g., set size ≤ 8192).
Let f (x) be a degree-m polynomial defined as

f (x) def
= ∏

i∈[m]

(x− IDi). (7)

The membership of a private ID ∈ {IDi}i∈[m] is essentially
a proof of f (ID) = 0. Thanks to GKR, the O(m) multipli-
cations can be verified this way using O(logm) linear oper-
ations, which are much cheaper than hashes. In practice, it
also makes sense to avoid operations on large field elements
(e.g., F2128 ) by breaking the 128-bit IDs into smaller pieces,
e.g., 8 F216 elements or 4 F232 elements, and projecting each
128-bit ID onto a F216 or F232 element using random lin-
ear combination, so Equation (7) can be proved on smaller
fields. Although this can introduce m/|F| soundness error
due to collision, we note that when m≪ |F|, the degradation
in soundness can be easily compensated by slightly increas-
ing the number of iterations.

Our circuit has logm− 1 layers where the i-th layer has
2i multiplication gates for all i ∈ [logm−1]. The circuit has
only one output. Thus, the soundness error all comes from
sumcheck: EGKR(MBRm) := 1−∏

logm−1
i=0 (1−2 ·2 · i/|F|).

Since logm − 1 multiplications are checked by FLPCP,

hence EFLPCP(MBRm) := 1−(1−2/(|F|−1))logm−1. Over-
all, we have E(MBRm) = 1 − (1 − EGKR(MBRm))(1 −
EFLPCP(MBRm))(1−m/|F|).

4.3 SHA256

We used a binary circuit from [29] for SHA256, which was
due to the improvement by [14]. The circuit contains 22573
AND gates, 110644 XORs and 1856 NOTs. To leverage the
efficiency of GKR, we augmented the circuit with 22573 se-
cret input bits, each corresponding to the output of an AND
gate, so that all AND gate can be placed in a single layer
to be batch-processed by GKR. Since every AND has 2 in-
puts and it suffices to send two secret elements per sum-
check round, GKR is able to reduce the 22573 ANDs to
⌈log22573⌉×2×2+2 = 62 new secret inputs and a number
of linear operations over them, plus a single secret multipli-
cation which can be further translated via FLPCP to 2 addi-
tional secret inputs and several linear operations over them.

This approach to obtain a circuit for SHA256 is proba-
bly less than ideal, leveraging (almost) no domain-specific
features. However, the strategy of introducing a secret bit
witness per AND gate to allow efficient batched proof of all
ANDs represents a simple, generic technique that is appli-
cable to proving any binary circuit computation using our
protocol. So the performance of our protocol on SHA256,
although not ideal, could provide some data-points about the
efficiency of our approach when little domain knowledge is
used in the circuit design. It turns out our ZKP for SHA256
is also very competitive, especially in proof size and prover’s
time (Table 8).

The GKR transform of a single layer of 22573 multi-
plications introduces 2 · 2 · ⌈log22573⌉/|F| soundness er-
ror in sumcheck and ⌈log22573⌉/|F | in checking the out-
puts. Thus, EGKR(SHA256) := 1−

(
1− 2·2·15

|F|

)(
1− 15

|F|

)
.

FLPCP only needs to handle one multiplication, hence
EFLPCP(SHA256) := 2/(|F|−1).

5 Applications and Experiments

We implemented Dubhe protocols in C++ with field oper-
ations optimized using SIMD instructions: Techniques de-
scribed in [27] allow us to perform 16 parallel F216 multipli-
cations stored in an _mm256 data using AVX2 instructions.
However, we did not use multi-threading in our implemen-
tation, which can be an interesting future work to further re-
duce time costs. We aim at achieving 128-bit computational
security in all experiments, unless explicitly specified oth-
erwise. For interactive protocols, the statistical security pa-
rameter s varies for easier comparison, and is specified per
experiment. All protocols (both ours and various baselines)
were run on the same machine with an AMD Ryzen 5800X
CPU and 32GB RAM unless noted otherwise.



Table 3: AES-based Identification (s = 100)

Protocol TP (ms) TV (ms) Comm. (KB)

QuickSilver 334 334 1644

Virgo 2265 21.4 174
Virgo++ 751 36 132
Limbo (n = 16,τ = 10) 2.7 2.5 10
Dubhe (n = 16,τ = 11) 2.8 2.0 9.2
Limbo (n = 128,τ = 6) 12 11 5.8
Dubhe (n = 128,τ = 6) 6.6 6.0 6.1

Limbo made a non-standard use of AES; others used standard AES.

5.1 Identification and Signature Schemes

Identification Schemes. An identification scheme is an in-
teractive protocol that allows a prover to prove its identity
to a verifier who knows the public key of the prover. It can
be efficiently built from any ZK argument of knowledge pro-
tocol and the standard AES ciphersuite: (1) To generate a
key pair, a user with identifier IDu ∈ {0,1}128 picks a uni-
form private key sk←{0,1}128, computes pk :=AESsk(IDu);
(2) To prove the identity, the user proves in ZK that he/she
knows the sk such that pk = AESsk(IDu).

The circuit for our AES-based identification was described
in Section 4.1, where EGKR,EFLPCP were also given. We
used the field F216 in our protocol. Table 3 compares our
signature scheme with several prior implementations includ-
ing ZKB++, KKW, Ligero++, Limbo, and Virgo/Virgo++,
where all protocols are aligned to achieving 100-bit statis-
tical security. We used the AES circuit from [29], which
contains 6400 ANDs, 28176 XORs and 2087 NOTs, to run
experiments for Virgo, Virgo++ and QuickSilver [33]. The
verification circuit for Limbo reflects a non-standard use of
AES. Our protocols are 1–2 orders-of-magnitude more effi-
cient than Virgo, Virgo++, and QuickSilver. Comparing to
Limbo, our identification schemes are still highly compet-
itive even if our AES circuit has 3× more multiplications
than theirs.
Signature Schemes. A signature scheme can be realized
using NIZK and AES:
KeyGen This is the same as that for identification.
Sign To sign a message m, a user with (IDu,sk) generates

a NIZK proof σ of the fact pk = AESsk(IDu), using ran-
domness from H(m) where H denotes a random oracle.

Verify To verify σ is a valid signature of m signed by a user
IDu with public key pk, call the NIZK verify algorithm
and accepts if and only if it accepts the proof.

Signature schemes built this way are quantum-resistant by
far, and feature smaller keys, faster key generation, and
faster signing than best cryptographic hash-based construc-
tions (e.g., XMSS [13] and SPHINCS [8]). Unlike in AES-
based identification, our proof for signatures skipped the

Table 4: AES-based Signature Schemes

k Protocol TSign
(ms)

TVerify
(ms)

|σ|
(KB)

101 Virgo (18 layers, 214 inputs) 2265 21 174
103 Virgo++ (243 layers, 28 inputs) 49 55 775
104 Virgo++ (62 layers, 211 inputs) 78 26 194
101 Virgo++ (9 layers, 214 inputs) 409 32 129
100 Virgo++ (5 layers, 215 inputs) 751 36 132

99 Virgo++ (2 layers, 216 inputs) 1554 54 140
127 Limbo (n = 16,τ = 40) 3.6 2.5 21
128 Dubhe (n = 16,τ = 58) 4.8 4.0 30
133 SPHINCS+-128 (smaller |σ|) 98 0.3 7.7
128 SPHINCS+-128 (faster sign) 4.9 0.4 17

256 ZKB++ 100 70 469
256 KKW 110 110 182
256 Ligero++ 256 56 224
253 Limbo (n = 16,τ = 82) 15 12 82
256 Dubhe (n = 16,τ = 120) 15 11 113
255 SPHINCS+-256 (smaller |σ|) 164 0.4 29
255 SPHINCS+-256 (faster sign) 17 0.7 49

Data for ZKB++, KKW, and Ligero++ are taken from [9] which used a
machine with 512GB memory, 16 times more than ours.

GKR transformation for better concrete efficiency.
We compare our signature schemes to baselines con-

structed from several state-of-the-art ZKPs (Table 4). Com-
paring to Virgo/Virgo++, our protocol significantly outper-
forms Virgo/Virgo++ based signatures in all aspects mean-
while offering higher security guarantee. The security degra-
dation in Virgo/Virgo++ is because the soundness error in-
troduced by the LDT subroutine (see [6, Theorem 3.3, For-
mula (8)]) depends on the structure of the flattened AES cir-
cuits, causing their computational security to fluctuate from
99-bit to 104-bit. Different ways to flatten the AES circuit re-
quire different number of witnesses to be added so the com-
putation can be verified in less number of layers.

ZKB++, KKW, and Ligero++ are three representative im-
plementations of MPC-in-the-Head ZKP protocols. To com-
pare with these protocols on AES-based signatures, we took
the data points from Bhadauria et al. [9, Table 2], which
was obtained on a more powerful machine (16-core 32-
thread 3.2GHz CPU, 512GB 1.6GHz DDR3 RAM), since
their source code is not available. Compared with their data,
our construction with n = 16 signs 6.6 – 17× faster, ver-
ifies 5 – 10× faster, and produces signatures 2 – 4.15×
smaller. Our protocols also perform very competitively to
Limbo’s signatures, even though the standard AES verifica-
tion circuit we used has 3x multiplication gates than theirs.
Limbo’s schemes offers 1-bit less computational security be-
cause their key space has to shrink to avoid 0-byte input to



Table 5: Security Parameters for Ring Identification

logm 4 7 10 13 16
log |F| 16 16 16 32 32

τ (n = 16) 11 11 11 11 11

Table 6: Security Parameters for Ring Signature (F216 ,n = 16
)

logm 4 6 7 8 10 12 13
τ 58 58 59 59 61 63 64

SubByte.

5.2 Ring Identification and Ring Signatures
Ring identification is an interactive protocol that allows one
to prove to another that its identity belongs to a predefined
set of identities but without leaking its identity beyond the
membership. Similarly, ring signatures, which are enhanced
signatures, allow any member of a group to independently
sign messages on behalf of the group without revealing its
identity. The notion of unforgeability and anonymity can be
formalized for these schemes [24].

Katz et al. [24] first considered combining ZKP and one-
way functions to build ring identification and ring signatures.
For performance reasons, however, their construction relied
on the non-standard cipher LowMC [1]: both as the one-way
function for signatures and in the Davies-Meyer construc-
tion of collision-resistant compression function needed in the
Merkle tree of public keys.

Ring Identification. For ring identification over a set of m
users, we combined the ZKPs of membership (Section 4.2)
and individual AES (Section 4.1) to efficiently prove

AESsk(0) = ID ∧ ID ∈ {IDi}i∈[m].

where sk and ID are the secret witness whereas {IDi}i∈[m] are
plaintext. Note that the combined circuit will guarantee that
the same ID is used in both the proofs of AES and member-
ship. Note that an attack succeeds if either the ZKP of AES
or that of membership is subverted, thus,

E(Identring) = 1− [1−E(AES)] · [1−E(MBRm)]

Then, EMainfor both schemes can be derived using Equa-
tion (8). Concrete parameters for our identification scheme
are given in Table 5. Note we switched F from F216 (for
sets whose m ≤ 1024) to F232 (for sets whose m > 1024) to
keep τ reasonably small, because when m gets close to |F|,
m/|F|, the soundness error due to element projection, will be
too close to 1. Figure 7 shows the performance of our ring
identification protocol.

Ring Signatures. Our ring signature scheme used the same
circuit design as that of our ring identification above, except
that we did not use the GKR transform but relied on FLPCP

Table 7: τ for Counter-Mode AES (interactive, F216 ,n = 16,s = 40)

Number of Blocks 1 4 16 64 256 1024

τ (no-extra-witness) 12 12 12 13 13 13
τ (extra-witness) 11 11 11 11 11 11

to process all non-linear polynomials in the private member-
ship and AES circuits. This change allows the identification
scheme to finish in just 4 rounds of challenges, thus resulting
concretely better performance when transformed into non-
interactive signatures. Further, we used degree-4 polynomi-
als to more efficiently verify the membership circuit.

To analyze the soundness of our signature scheme, we ob-
serve that the first round involves break ID into 8 16-bit ele-
ments (we used F216 ) and verify Equation (7) through a ran-
dom linear combination of the 8 elements. The soundness
error introduced by this random linear combination round
is m/|F| since Equation (7) has degree m. The next two
rounds of challenges are due to FLPCP of all polynomial
gates in the circuit. The membership (Equation (7)) can be
verified by a quadtree of 1+4+16+ · · ·+m/4 = (m−1)/3
4-variate degree-4 polynomials; while the single AES block
has 400 degree-3 polynomials. Treating all polynomials
as degree-4 ones, the two rounds of the batched variant
of FLPCP (Appendix B) have soundness errors 1/|F| and
4
√

M/(|F|−
√

M), respectively, where M = m−1
3 +400. The

final round of challenge is due to checking all-but-one of the
n MPC-in-the-Head parties, hence soundness error 1/n. We
followed the idea of Banquet [5] to calculate the number of
iterations needed to achieve k = 128-bit computational secu-
rity. The concrete parameters are shown in Table 6.

Figure 8 compares our ring signature scheme with that of
Katz et al [24]. On ring sizes ranging from 128 to 8192, our
ring signature sizes are 1.18–7.3× smaller. Regarding the
sign/verify times, Dubhe is more than 80× faster for 128 or
smaller rings and can outperform theirs when the ring has
≤ 8192 users.

5.3 ZKP for Many Blocks of AES

Efficient ZK Argument of Knowledge for many AES blocks
can be useful in building two cryptographic primitives:
(1) Given a symmetric-key encryption of a multi-block mes-
sage {Mi}i∈[ℓ], it allows to prove that {Mi}i∈[ℓ] satisfy a prop-
erty p(·) without leaking any extra information about the
message; (2) To construct a pseudorandom generator whose
honest execution can be efficiently verified without leaking
the PRG seed.

We have two protocols for proving multiple blocks of
AES. The first one consists of 41 circuit layers but does
not use extra witness, as was described in Section 4.1. The
second one uses 200 witness bytes per block but the GKR
transform is applied to each circuit layer of 400m polyno-
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Figure 7: Ring Identification (s = 40)
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Figure 8: Ring Signature (k = 128) Dubhe (AES), KKW (LowMC)

mial gates across the block boundaries.

Security parameters for our no-extra-witnesses protocol
was analyzed in Section 4.1. For the witness-based mAES
protocol, checking 400m G gates introduces soundness er-

ror EGKR = 1−
(

1− 9+logm
|F|

)(
1− 4

|F|

)8+logm
. A degree-4

polynomial will be checked by FLPCP, thus EFLPCP =
4
|F|−1 .

We used n = 16 and F216 , with τ varying with the number of
blocks to achieve s = 40 (Table 7).

Figure 9 shows the performance of the two approaches on
varying number of AES-128 blocks. Both approaches have
a linear prover but the extra-witness-based prover runs 110–
160× faster. The protocol with extra-witness also has faster
verification if m≤ 64, and use less communication when m<
16. But for larger m, the no-extra-witness protocol offers
faster verification and less communication. E.g., to prove
1024 blocks of AES, the extra-witness based protocol will
use 44× more communication than the other.

We also benchmarked Virgo/Virgo++, Limbo, and Quick-
Silver on counter-mode AES. We set the Mersenne prime
p = 231− 1 in Virgo/Virgo++ for conjectured 40-bit statis-
tical security. Virgo++’s verifier used linear time in circuit
size because it spent linear time to compute GKR’s predi-
cate function. Virgo was not able to handle more than 28

AES blocks before memory ran out. We compared Quick-
Silver and our protocol in Figure 10. QuickSilver exhibited
almost constant costs when the number of AES blocks is
≤ 1024, because the linear part of its cost is shadowed by
a relatively big constant part spent on generating the authen-
ticated triples and values. The security of LPN assumption,

Table 8: SHA256 (interactive, s = 40)

Protocol TP (ms) TV (ms) |π| (KB)

QuickSilver 358 355 1644
Virgo (F(261−1)2 ) 1158 12 154
Virgo++ (F(261−1)2 ) 255 37 123
Limbo (n = 16,τ = 11) 65 48 41
Dubhe (n = 16,τ = 11) 62 47 35
Limbo (n = 64,τ = 7) 106 98 25
Dubhe (n = 64,τ = 7) 92 89 22

which QuickSilver relies on, requires those triples and values
be generated in sufficiently large batches even if the actual
circuit is small. However, when there are more than 1024
AES blocks, the linear part of their cost regains dominance
in the overall cost and we observe the same growth rate as
our extra-witness based protocol.

5.4 Classic Benchmarks

We also tested our approach on two frequently-used bench-
mark applications, SHA256 (Table 8) and matrix multipli-
cation (Table 9). For SHA256, Dubhe consistently outper-
forms Limbo when configured with the same n. Comparing
to Virgo/Virgo++, Dubhe generally uses less communication
and prover time whereas Virgo/Virgo++ allow much faster
verification. For matrix multiplication, our protocol can out-
perform all tested prior protocols in prover time and verifier
time. Note that our protocol can be made non-interactive and
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Table 9: Matrix Multiplication (interactive, s = 40)

Matrix
Size

Appl.
Field Protocol TP

(s)
TV
(s)

|π|
(MB)

25
6
×

25
6 Z261−1

Virgo++ (F(261−1)2 ) 26 9.6 0.17
Limbo (n = 16,τ = 11) 37 29 22
Dubhe (n = 16,τ = 10) 0.29 0.22 10

F2

Virgo++ (F(261−1)2 ) 27 10 0.17
Limbo (n = 16,τ = 11) 44 33 0.28
Dubhe (n = 16,τ = 10) 0.33 0.24 0.41

20
48
×

20
48 Z261−1

QuickSilver (Circuit) 506 496 67821
QuickSilver (Polynomial) 26 11 71
Dubhe (n = 16,τ = 10) 18 13 640

F2
QuickSilver (Polynomial) 30 26 2.6
Dubhe (n = 16,τ = 10) 21 15 26

Communication costs exclude the transmission of output matrices.

publicly verifiable whereas QuickSilver couldn’t. Virgo++
couldn’t handle 2048× 2048 matrix multiplication on our
machine due to their extremely high memory demand, but
exhibits clear advantage in communication efficiency at the
scales that it can handle.

6 Conclusion

We combined specialized variants of GKR, FLPCP, and
MPC-in-the-Head to build new succinct zero-knowledge ar-

gument of knowledge protocols that enable linear prover,
logarithmic verifier, using logarithmic communication. This
asymptotically attractive approach actually yields concretely
efficient proofs that can outperform some best existing pro-
tocols in various applications.
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A Definitions

We model P and V as two interactive Turing machines. We
use ⟨P ,V ⟩(λ,x) to denote the transcript, i.e., concatenation
of all communications, of running P and V over public input
x using public security parameter λ; while (P ,V )(λ,x) de-
notes V ’s acceptance bit after interacting with P on input x
and parameter λ. We say a predicate R defines an NP relation
L if x ∈ L⇔∃w,R(w,x) = 1.

A.1 Zero-Knowledge Proof of Knowledge
(P ,V ) is a zero-knowledge proof of knowledge for R if the
following hold:

• Completeness. ∀w,x, R(w,x) = 1⇒ (P (w),V )(λ,x) = 1.

• Soundness. For any P ’, there exists an efficient extrac-
tor ε with black-box access to P ′ such that for all x,
Pr[(P ′(w),V )(λ,x) = 1∧R(w,x) ̸= 1 | w← εP ′(λ,x)] is
negligible in λ.

• Zero-knowledge. There exists an efficient simulator S
such that for all efficient V ′,

R(w,x) = 1⇒ ⟨P (w),V ′⟩(λ,x)≈ S V ′(x).

We call such a system zero-knowledge argument if the
above soundness holds only for computational efficient P ′.

A.2 Sigma Protocols
(P ,V ) is a Σ-protocol for an NP relation defined by R if the
following hold:

• 3-move transcripts. For all x, the transcript of ⟨P ,V ⟩(x)
has a 3-move pattern (a,e,z) where a,z are from P to V
and e is from V to P . The messages a,e,z are commonly
called commit, challenge, and prove messages, respec-
tively.

• Completeness. ∀w,x, if R(w,x) = 1, then
(P (w),V )(x) = 1.

• n-Special Soundness. For any x, a witness w for x ∈ L
can be efficiently computed from any n accepting tran-
scripts (a,ei,zi) (where i ∈ [n]) with distinct challenge
ei. (This implies that if a challenge e is uniformly picked
from a set of size s, then the soundness error is at most
(n−1)/s.)

• Special honest-verifier ZK. There exists an efficient sim-
ulator S such that ⟨P ,V ⟩(x) is indistinguishable from
S(x,e) where e is the message from the honest-V to P .

Σ-protocols can be efficiently transformed to full ZK and
ZK Proof of Knowledge (ZKPoK) protocols. It is also easy
to to boost the security of Σ-protocols through parallel com-
position. The Fiat-Shamir transform can be used to turn
Σ-protocols into efficient Non-Interactive ZKP (NIZKP) in
the random oracle model. Thanks to these properties, Σ-
protocols is commonly the first step in building many crypto-
graphic primitives such as identification schemes and digital
signatures.

A.3 Interactive Oracle Proofs
(P ,V ) is a k-round public-coin IOP for an NP relation de-
fined by R if the following hold:

• µ-round interactive protocol. After P creates an ini-
tial a0, each time V sends a uniform random mes-
sage ei independent of P ’s messages, P replies with
ai, ∀i ∈ {1,2, . . . ,µ}. V has oracle access to {ai : i ∈
{1,2, . . . ,µ}} and outputs 1 bit.

• Completeness. ∀w,x, if R(w,x) = 1, then
(P (w),V )(λ,x) = 1.

• Soundness. ∀x, if R(w,x) ̸= 1, Pr[(P ′(w),V )(λ,x) = 1]
is negligible in λ for any P ′.

The definition can also be extended with the following prop-
erties:

• Proof of Knowledge. There exists an efficient extrac-
tor ε such that for all efficient P ′, Pr[(P ′,V )(λ,x) =
1∧R(w,x) ̸= 1 | w← εP ′(λ,x)] is negligible in λ.



• Honest-verifier ZK. There exists an efficient simulator S
such that for all efficient honest V ′,

R(w,x) = 1⇒ ⟨P (w),V ′⟩(λ,x)≈ S V ′(x).

A.4 Tree of Transcripts
A (k1, . . . ,kµ)-tree of transcripts for a µ-round public-coin
interactive oracle protocol, is a set of Π

µ
i=1ki transcripts or-

ganized in a tree structure:

• Each edge in the tree corresponds to a challenge message
from V .

• Each node at depth i in the tree corresponds to a response
message from P to answer V ’s ith challenge. This node
has exactly ki children, corresponding to ki distinct chal-
lenges from V .

• Each transcript consists of one path of messages from
the root to a leaf node.

A.5 (k1, . . . ,kµ)-Special Soundness
A µ-round public-coin protocol is (k1, . . . ,kµ)-special sound
if there exists an efficient algorithm that on input a
(k1, . . . ,kµ)-tree of accepting transcripts outputs a witness w
for R(w,x) = 1.

B FLPCP for m ·n Polynomial Equations

Let G : Fℓ → F be an ℓ-variable degree-d polynomial over
F. Let wi, j where i ∈ [ℓ], j ∈ [mn] be ℓmn (possibly secret)
values, and

G(w0, j, . . . ,wℓ−1, j) = 0,∀ j ∈ [mn]

be m ·n equations to be proved.
∀i ∈ [ℓ], j ∈ [m], let pi, j be degree-n polynomials such that

pi, j(k) = wi, j·n+k,∀k ∈ [n]

pi, j(n)← F

Define pℓ, j(x)
def
= G

(
p0, j(x), . . . , pℓ−1, j(x)

)
,∀ j ∈ [m]. Then

pℓ, j(x) is a polynomial of degree at most n ·d.

B.1 FLPCP with Linear Bandwidth
The linear bandwidth FLPCP protocol works as follows:

(1) ∀i ∈ [ℓ], j ∈ [m],k ∈ [mn], P sends wi,k, pi, j(n) to V .

∀h ∈ [n · d+ 1]\[n], j ∈ [m], P computes qh, j := pℓ, j(h)
and sends qh, j to V . V sets qh, j := 0 for all j ∈ [m],h ∈
[n].

(2) V picks and sends r← F\{0,1, . . . ,n−1} to P .

(3) P computes and sends pi, j(r) for all i ∈ [ℓ+ 1], j ∈ [m].
Then, ∀i ∈ [ℓ], j ∈ [m], V interpolates a value, which we
call p′i, j(r), from points

(0,wi, jn),(1,wi, jn+1), . . . ,(n−1,wi, jn+(n−1)),(n, pi, j(n)).

Finally, for every j ∈ [m], V interpolates an-
other value that we call p′ℓ, j(r), from points
(0,q0, j),(1,q1, j), . . . ,(n ·d,qn·d, j) and verifies that
both of the following hold for all j ∈ [m]:

p′i, j(r) = pi, j(r), ∀i ∈ [ℓ];

p′ℓ, j(r) = G
(

p0, j(r), . . . , pℓ−1, j(r)
)
.

This protocol only has 3 rounds and the bandwidth com-
plexity is O(mnd+ℓm). Its soundness error is d ·n/(|F|−n).

By checking a random linear combination of pℓ, j(r), one
can reduce the bandwidth cost to O(nd + ℓm), as we will
describe next.

B.2 FLPCP with Sub-linear Bandwidth

The sub-linear bandwidth FLPCP protocol works as follows:

(1) ∀i ∈ [ℓ], j ∈ [m],k ∈ [mn], P sends wi,k, pi, j(n) to V .

(2) V sends random coefficients c j ∈ F where j ∈ [m].

(3) ∀h ∈ [nd + 1]\[n], P computes qh := ∑ j∈[m] c j · pℓ, j(h)
and sends qh to V . V sets qh := 0 for all h ∈ [n].

(4) V picks and sends r← F\{0,1, . . . ,n−1} to P .

(5) P computes and sends pi, j(r) for all i ∈ [ℓ+ 1], j ∈ [m].
Then, ∀i ∈ [ℓ], j ∈ [m], V interpolates a value, which we
call p′i, j(r), from points

(0,wi, jn),(1,wi, jn+1), . . . ,(n, pi, jn+n(n)).

For every j ∈ [m], V interpolates another value that we
call p′ℓ(r), from points (0,q0),(1,q1), . . . ,(nd,qnd) and
verifies that both of the following hold for all j ∈ [m]:

p′i, j(r) = pi, j(r), ∀i ∈ [ℓ];

p′ℓ(r) = ∑
j∈[m]

c j ·G
(

p0, j(r), . . . , pℓ−1, j(r)
)
.

Therefore, the verifier will send two challenges through-
out the protocol. The soundness error due to the first chal-
lenge is 1/|F|, and that of the second challenge is nd

|F|−n . The
bandwidth cost, excluding the ZK transmission of wi, j, is
O(nd+ ℓm)).



C Proof of Theorem 3.1

Proof. Recall that our protocol is a public-coin, interac-
tive oracle proof system. It starts with a random first mes-
sage from P to V , which is followed by µGKR challenge-
response rounds according to the GKR protocol, then
one challenge-response round of FLPCP, and finally one
challenge-response round of KKW-LO. Each challenge-
response round consists of one uniform random challenge
message from V and one response message from P .

Completeness. Thanks to the completeness of GKR,
FLPCP, and KKW-LO, it is easy to verify that an honest V
will always output 1 when interacting with an honest P who
knows the witness w.

Soundness. We will start with one iteration of our proto-
col and show that its soundness error is 1−(1−EGKR) ·(1−
EFLPCP) · (1−EKKW). In each of the (µGKR + 2) rounds,
we note that a malicious prover who doesn’t know the wit-
ness has a fixed probability to guess the round challenge, and
knows immediately whether the guess is correct or not when
the challenge is received. The malicious prover only needs
to guess correctly a single challenge in order to corrupt the
whole (µGKR +2) rounds of interaction.

Let d be the degree of the polynomial gates in the cir-
cuit. In each of the first µGKR rounds, the soundness of GKR
guarantees that the malicious prover can correctly guess the
challenge with probability at most d/|F|. In the FLPCP
round, the soundness of FLPCP guarantees that the mali-
cious prover can only pass the challenge with probability
d/(|F| − 1). In the final round of KKW-LO, soundness of
KKW-LO guarantees that the malicious prover can only pass
the uniform random challenge with probability 1/n where n
is the number of parties used in KKW-LO. Thus, with prob-
ability (1−d/|F|)µGKR · (1−d/(|F|−1)) · (1−1/n), a mali-
cious prover has to fail in answering all (µGKR + 2) rounds
of challenges. Therefore, its soundness error is 1− (1−
d/|F|)µGKR ·(1−d/(|F|−1)) ·(1−1/n). Combining with the
facts that µGKR = ∑

d
i=1 2si, EGKR = 1−Πd

i=1(1− d/|F|)si ,
EFLPCP = 1− d/(|F| − 1), and EKKW = 1− 1/n, it is easy
to see that soundness error of one iteration of the combined
protocol can also be written as

EMain
def
= 1− (1−EGKR) · (1−EFLPCP) · (1−EKKW). (8)

Our protocol offers knowledge soundness, because it is
(d+1, . . . ,d+1︸ ︷︷ ︸

µGKR

,d+1,2)-special sound:

• For every node corresponding to the state of a sum-check
round in the GKR phase, d+ 1 distinct valid challenge-
response pairs allow to efficiently recover all secret co-
efficients of the degree-d polynomial in the sum-check
round;

• For every node corresponding to the state of the FLPCP
round, d+1 distinct valid challenge-response pairs allow

to recover all secret inputs to the FLPCP protocol, which
are encoded by a degree-d polynomial;

• For every node corresponding to the state of the KKW-
LO round, 2 distinct valid challenge-response pairs allow
to recover all secret inputs to the KKW-LO circuit.

Following a proved property of (k1, . . . ,kµ)-special sound
IOP [3, Theorem 1], let Ni be the size of the sampling space
of the ith round, the knowledge error of our protocol is

Π
µGKR+2
i=1 Ni−Π

µGKR+1
i=1 (Ni−d)(NµGKR+2−1)

Π
µGKR+2
i=1 Ni

=1−Π
µGKR+1
i=1 (1−d/Ni)(1−1/NµGKR+2)

where Ni = |F| for i ∈ {1, . . . ,µGKR}, NµGKR+1 = |F|−1, and
NµGKR+2 = n. This knowledge error is precisely EMain that
was shown above.

Finally, τ iterations of the protocol allow to bound the
soundness error to E τ

Main.
Honest-Verifier Zero-Knowledge. The HVZK property

of our protocol stems from that of KKW-LO. An honest-
verifier V ′ follows the protocol and always derives its chal-
lenge message from the random oracle H. So we can con-
struct the simulator S as below:

(1) S runs our protocol with the verifier invoked as a sub-
routine. Since S does not know the secret witness, it
randomly selects one of the n parties and corrupts that
party’s internal state so that the interaction convinces a
verifier who never sees the internal state of the corrupted
party.

(2) In the final KKW-LO round, if the verifier indeed
chooses not to check the corrupted party, S saves the
transcript; otherwise, S discard the transcript and restart
from Step (1).

Because S used the same steps as specified in the protocol
to generate the transcript except the internal state of the cor-
rupted party (which is not included in the transcript), the gen-
erated transcript is identically distributed as that between an
honest prover and an honest verifier. In addition, it takes S
expected time O(n) to terminate with a transcript. Hence by
repeating it τ times, an identically distributed full transcript
of ⟨P (w),V ′⟩(λ,x) can be efficiently generated.
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