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Tiago Manuel Louro Machado De Simas

Stochastic Models and Transitivity in Complex Networks

Networks are typically described as graphs: a set of nodes (vertices) re-

lated by links (edges), where a link can either represent the presence of a

connection or the strength of the connection. When the connection between

vertices is weighted we call these networks weighted graphs. Graphs are a

useful abstraction for representing social connections, structural brain con-

nections, functional brain connections, and others. The first contribution is

a novel stochastic model that explains analytically, the cut-off behavior of

real-world scale-free networks previously modeled computationally by Ama-

ral et al. and others. This new mathematical model explains several existing

computational scale-free network generation models, and yields a novel the-

oretical basis for understanding cut-off behavior in complex networks, previ-

ously only analyzed with simulations using distinct models - this contribution

unifies the existing literature on cut-off behavior in scale-free networks. Fur-

ther, as an analytical mathematical model, it allows us to study properties of

the growth of scale-free networks that are not possible to study with current

computational models. The second contribution is related to the transitive

closure of fuzzy graphs, which is used to calculate the strongest connection

between vertices via indirect paths, when edges weights denote proximity

or similarity. In the field of complex networks, the Dijkstra algorithm is a

vii



well-established algorithm to calculate the shortest path between any two

vertices, where edge weights denote distance. Here, the transitive closure in

fuzzy graphs is shown to be a generalization of Dijkstra algorithm in distance.

This result bridges the theory of fuzzy graphs and the theory of complex net-

works. Finally, we propose a new methodology to analyze complex networks,

based on the semi-metric behavior. We apply this methodology to the anal-

ysis of the small-world phenomenon in real-world complex networks.

The case studies included the US Airport Network, the Human Cortex

Network, fMRI Human Brain network, the Scientific Collaboration Network,

Astrophysics Collaborations Network and the High-Energy Theory Collabo-

rations Network.

Luis Mateus Rocha - Chair, Ph.D.

Olaf Sporns - Co-Chair, Ph.D.

Alessandro Flammini

Johan Bollen
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Chapter 1

Introduction and Motivation

1.1 Towards Improving Mathematical Repre-

sentations of Complex Networks

The main motivation for this thesis is improving current mathematical de-

scriptions of real-world complex networks. Complex networks are often mod-

eled using the theory of graphs 1 and graphs are based on binary relations.

These can be undirected, directed and weighted, as presented in figures 1.1,

1.2 and 1.3. Graphs are the easiest way to model organization amongst

elements of a set; for instance, they can model interactions, associations,

similarity, distance, etc. Indeed, the binary relation (graph) is the simplest

form of a general system in the effort to model the organization of complex

systems [52].

1From now on we will describe networks as graphs
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Figure 1.1: Undirected crisp graph.

Figure 1.2: Directed crisp graph.

The first question we approach deals with models that explain the cut-off

patterns found in the power-law degree2 distribution of real-world networks.

There are several models to explain how networks grow with a power law

degree distribution, such as the seminal work of Barabasi and Albert [11].

Barabasi and Albert showed that many real world networks have a degree

distribution which follows approximately a power-law, mathematically de-

2Degree is the number of edges (links) to and out of a given vertex (node) in a graph.
Chapter 2 provides the necessary mathematical background for the treatment of networks.
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Figure 1.3: Weighted undirected graph.

scribed by

P (k) = ak−γ

where k is the degree of a given vertex, a a constant and γ the characteristic

distribution exponent. A probability distribution of this form is also known

in Statistics as the Pareto distribution [65]. Graphs characterized by power-

law degree distributions have a completely different topology than what is

expected of random graphs. The latter have a Poisson degree distribution,

thus there is a mean value for the degree distribution that is characteristic of

this kind of graphs. In contrast, studies of real-world networks observed that

they follow power-law degree distributions, and thus have no characteristic

mean value degree and the variance converges to infinity with the size of

the network. In other ways, graphs which are characterized by a power-

law degree distribution have no scale. In networks that grow according to a

power-law distribution we will always observe that most of the vertices have

a small degree and there will be only a few with a high degree, while the
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connectivity/degree of the network has no characteristic average degree.

The Barabasi and Albert model is concerned with the mechanisms be-

hind the ubiquitous organization of complex networks. They proposed two

simple mechanisms or axioms to generate scale-free behavior: Growth and

Preferential Attachment. Together, they give rise to networks with power

law degree distribution, particularly with the power law exponent equal to

γ = 3. This mathematical model (described in chapter 2), is also known as

”the rich get richer”.

Many extensions of the work of Barabasi and Albert have been proposed,

among them the work of Amaral et al. [6]. In this work real-world networks,

which do not have a perfect power-law degree distribution, as they present

a truncation or a cut-off for large degree vertices, are more accurately de-

scribed. These truncations were identified as an exponential decay associated

with the power-law. This is important because it allows the statistical mo-

ments to converge with the size of the network. Amaral et al. proposed an

extended model of the Barabasi and Albert model by adding a third axiom;

the Aging of Vertices. This axiom assumes that in the growing process the

vertices of the network have a probability p of becoming inactive. The inac-

tive vertices remain in the network but no longer accept new links from new

vertices . With this new axiom, network organization exhibits an exponential

decay or power law truncation of the degree distribution – which is a more

realistic characterization of real networks.. Moreover, this truncation can be

adjusted by setting the parameter p.
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One issue with the work of Amaral et al. is that it was based only

on simulations. Similarly, other works give an alternative explanation for

the cut-offs in power law degree distributions. But these models, which are

reviewed in chapters 2 and 3 explain the cut-off behavior of scale free networks

without providing a mathematical explanation. My first motivation was to

create an analytical explanation, which unifies all these contributions.

Another open question concerns the calculation of shortest paths in weighted

graphs, where weights represent distances. To calculate shortest paths in a

distance graph it is usual to use the Dijkstra algorithm [29] integrated in

the All Pairs Shortest Paths (APSP) Johnson’s algorithm [27]. Weighted

graphs are equivalent to fuzzy graphs [53], for which there are many ways

to calculate transitive closure (TC) [53], which is a means to calculate the

strongest indirect associations between edges, where weights denote proxim-

ity or similarity. In the fuzzy graph literature transitive closure is computed

using t-norm and t-conorm operators [53]. Here an open question arises as

to how is the Dijkstra algorithm related to the transitive closure in fuzzy

graphs? More generally, is it useful to transfer broadly known mathematical

methods from the fuzzy graphs to the complex networks field? We show that

this transfer is fruitful for both fields. First, we relate fuzzy transitive closure

to the Dijkstra algorithm via two theorems, and derive some practical advice

for choosing appropriate closure and shortest path algorithms. Second, we

use this knowledge to study the small-world phenomenon in weighted graphs,

an open question in complex networks.
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In 1998, Watts and Strogatz published ground breaking work on the Small

World phenomena in social networks [97]. Watts and Strogatz had as an ini-

tial goal the study of firefly synchronization. In their research they found a

very interesting experiment of a sociologist, Milgram, who studied the small

world phenomenon in 1963 [90]. Stanley Milgram was interested in the fol-

lowing problem: if we imagine a population as a social network, what is the

average path length between any two random selected vertices, or people, in

this network? To answer this question he performed the following experi-

ment: selecting people or individuals from cities, which were geographically

and socially distant he sent, from the original city a letter addressed to a

target individual in the distant city. These letters contained only the basic

information of the contact person in the target city, without providing any

address. The idea was whether the individuals who received such letters

knew the target persons or not; if yes they were instructed to send the letter

directly to the target, otherwise to another person who, they thought would,

probably know the target. With this, Milgram wanted to assess the average

path length between the origin and the target. The cities chosen were Omaha

and Wichita as origin and Boston as target, in the United States of America.

Stanley Milgram found the surprising fact that an average path length of

six individuals between the origin and the target, which we now colloquially

call the six degrees of separation. This means that between any two random

vertices in a social network such as the US population, on average, we know

a person who knows a person, ..., who knows the target person, with six peo-
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ple in between. Watts and Strogatz noticed that in a general description of

networks, random networks and lattice networks were two extreme positions

on organization defined by two parameters: shortest path and clustering co-

efficient. Random graphs, were well established by the work of Erdos and

Reyni [21], two mathematicians who created the field. In this kind of network

representations, the edges between any two vertices are chosen randomly, so

that the degree distribution follows a Poisson distribution and the average

path length is relatively small, compared with the size of the network. On the

other extreme we have lattice networks, which are extremely well organized;

that is, each vertex is connected only to a subset of nearest neighbors. Such

networks have a relatively large average path length compared with the size

of the network. Watts and Strogatz realized that in addition to the average

path length, there is another important property behind these two kinds of

networks: the clustering coefficient, which gives us a measure of the struc-

ture , or more precisely, the (immediate) level of transitivity in a network. In

other words, the clustering coefficient is one means to describe communities

in these networks. The clustering coefficient (or immediate transitivity) for

a given vertex is measured as the the proportion of observed triangles with

the direct neighbors, given the total possible number of such triangles. The

clustering coefficient for random graphs is minimum, i.e. too small, showing

non existing community structure. On the other extreme the clustering co-

efficient is maximum for lattice networks. Watts and Strogatz, found that

many real networks such as the Milgram network fall somewhere in between
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these two extremes. They have a relatively small average path length but

a relatively high clustering coefficient. Watts and Strogatz, categorized this

type of networks as small world networks.

The clustering coefficient for weighted networks has been generalized and

analyzed (see Chapter 2 for an overview). However, the characteristic path

length of weighted graphs is not well understood, because we can define many

(infinite) different measures of shortest path or transitive closures in weighted

graphs. This poses us the question: is there a preferred way to measure short-

est paths in weighted graphs as models of real complex networks? By using

some concepts from fuzzy graph theory, we produce a more comprehensive

understanding of possible closures and consequently understand better the

small-world phenomena in weighted networks.

Related to shortest path length is the notion of semi-metric behavior,

which measures the violations of transitivity in a weighted graph, Rocha [72]

defined and described several measures to measure semi-metric behavior.

One of our motivations is to analyze the semi-metric behavior of weighted

graphs with the semi-metric ratios (see Chapter 2 for an overview) to uncover

which edges are more semi-metric. Highly semi-metric edges identify vertices

(nodes) that are more indirectly (by some path) related than expected from

a metric relationship on the original network.

One common approach when analyzing weighted networks is the applica-

tion of a specific threshold to the edge weights of the graph resulting a binary

(crisp) subgraph retaining only the edges above the threshold. The analysis
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consists then of applying well known techniques from binary graphs to the

resulting subgraph. This approach does not consider the semi-metricity of

the weighted graph which is a problem we explore in this dissertation.

An alternative way to study weighted networks is proposed in this thesis.

We introduce the semi-metric behavior to weighted graphs, by establishing

a semi-metric threshold to the weighted graph. This semi-metric threshold

is set based on the shortest paths between vertices. We calculate the short-

est paths between any two vertices, then we set the semi-metric threshold

and apply it to all direct connections of the original weighted graph. If the

shortest path between two vertices that have a directed connection is bellow

the semi-metric threshold the corresponding direct edge weight is removed

otherwise is preserved with the original weight. We end up with a weighted

subgraph of the original weighted graph. With this approach we preserve

all weak edges, which have a strong indirect path but remove all weak edges

that also have a weak indirect path.

With the approach described above and the generalization of the cluster-

ing coefficient and average path length we are able to introduce a new way

to characterize the small-world phenomenon in weighted networks.

To support the theoretical results we analyzed six real networks: the US

Airport network, the Human Cortex network, the fMRI Human Brain net-

work, the Scientific Collaboration network, the Astrophysics Collaborations

network and the High-Energy Theory Collaborations network. This analysis

consists of the study of shortest paths, clustering coefficients and semi-metric

9



behavior in real and random networks.

1.2 Summary of Contributions

The contributions in this thesis are:

(a) Produce an analytical solution and integrative model of cut-offs in the

power-law degree distribution , which gives us the ability to better predict

the organization of complex networks.

(b) Relate a mathematical treatment of transitive closure in fuzzy graphs

to the Dijkstra algorithm [29] in weighted graphs. This result bridges the

gap between complex networks and fuzzy graphs and gives an insight about

how we measure the shortest paths between any two vertices in a weighted

graph, since there are no unique way to perform this measurement.

(c) Propose a new methodology to analyze complex networks and study

properties such as: the average path length, semi-metric behavior and clus-

tering coefficient in weighted graphs. This helps us to characterize more

effectively the small-world phenomena in weighted networks.

1.3 Dissertation Outline

Chapter 2 provides the relevant necessary formal background on complex

networks and fuzzy graphs. In Chapter 3 we propose a stochastic model

for cut-offs in complex networks. In chapters 4, we relate weighted graphs
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with fuzzy graphs, and generalize Transitive Closure to complex networks.

Chapter 5 we discussed the performance of metric closure on recommender

systems. Chapter 6 we discuss the small-world phenomena in weighted com-

plex networks as a model of real networks. Finally, in chapter 7 we discuss

the implications of this work and propose future work. Figure 1.4 summarizes

the dissertation outline.
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Chapter 2

Complex Networks:

Background

In this chapter we present the relevant background to this thesis. The ba-

sic concepts of complex networks and the recents advances in theory and

applications.

2.1 Introduction

In the last decade, much work has been done to understand the general mech-

anisms that influence the growth dynamics of complex networks. Complex

networks have been studied by mathematicians, social scientists, physicists

and others. Perhaps the two most influential contributions to this field are:

small world phenomenon introduced by Watts and Strogatz [97] and the
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preferential attachment mechanism behind scale-free networks, proposed by

Barabasi and Albert [11]. Because of the pervasiveness of both the small-

world phenomenon and scale-free networks in nature and society, there is an

intense interest in the study of their structure and dynamics [68] [32][22].

Applications of complex networks can be found across disparate fields: un-

derstanding the Internet[68], the World Wide Web [71], protein-protein inter-

action networks[26], metabolic networks[45][94] and other natural networks.

Amaral et al. [6] proposed a computational model that explains the

cut-offs in power-law degree distributions of real-world scale-free networks.

Other models such as [20], [42], [61], based on finite size effects, have been

proposed as well. However, the Amaral et al. model is among the simplest

and therefore amenable to analysis.

In these studies, networks were described by graphs. A (crisp1) graph

G = (V,E) is characterized by a set of vertices (nodes) and a set of edges

(links) E. A graph is defined by its connectivity matrix E, where elements

ei,j ∈ {0, 1} denote the existence or abcence of an edge between vertex vi and

vj. Recently, weighted graphs, have received much interest in the literature

of complex networks [67] [14] [13] [7]. Weighted graph is a graph where the

edges are characterized by having real values: ei,j ∈ <. A good overview on

the latest developments on complex networks can be found in [19]. To under-

stand the small-world phenomena and the scale-free properties of complex

networks represented as weighted graphs. We have to generalize concepts

1in the terminology of Fuzzy Graphs.
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such as clustering coefficient, average path length, and node degree. Several

definitions have been proposed in order to generalize the clustering coeffi-

cient to weighted networks [67][14]. Also the degree distribution has been

generalized to the strength degree of a node and well studied in [14]. How-

ever, an important property, the average path length, has still not been well

studied for weighted networks, but it plays an important role in classifying,

for example, a small-world network.

2.2 Relations, graphs and weighted graphs

2.2.1 Relations

In the mathematical formalization of nature, relations play an important role

by allowing us to associate objects of the same or different nature. Relations

can give us insights about the structure of problems we intend to explore.

Binary relations, which associate elements of set X with itself R(X,X), can

be seen as graphs, where R characterizes the nature of edges (e.g. weights).

Crisp relations represent a crisp association or interaction between the

elements of two or more sets of objects. These associations or interactions

are either present or absent, that is, the relation assumes values on the set

{0, 1}.

A crisp relation among sets X1, X2, ..., Xn is a subset of the cartesian

product X1 × X2×, ...,×Xn and is represented by R(X1, X2, ..., Xn). More

specifically we can define a characteristic function which assigns to each tuple
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in the relation a value of 1.

R(x1, x2, ..., xn) =

 1 iff < x1, x2, ..., xn >∈ E

0 otherwise
(2.1)

The elements of the relation are n-tuples < x1, x2, ..., xn >. Another

way to define: it is as a n-dimensional membership array (or tensor) R =

[ri1,i2,...,in ],

ri1,i2,...,in =

 1 iff < r1, r2, ..., rn >∈ R

0 otherwise
(2.2)

A fuzzy relation is when ri1,i2,...,in ∈ [0, 1], where the values typically

denote strength of the association. In this case, ri1,i2,...,in is known as a

membership degree.

A graph is a special type of a binary relation E on the same set V . It

is a subset of the cartesian product V × V and is represented by the set of

pairs (2-tuples) < vi, vj >, which can be denoted on ei,j. In this case the

membership array is the same E, whose elements ei,j denote the presence or

strength of edges between vertices vi and vj ∈ V , and where i, j ∈ 1, ..., |V |.

A binary relation on 2 distinct sets, V1, V2 is a bipartite graph.

A graph E(V, V ) is null iff E(v, v) = 0, for all v ∈ V . A graph E(V, V )

is reflexive iff E(v, v) = 1, for all v ∈ V , otherwise, E(V, V ) is irreflexive. If

E(v, v) = 0, for all v ∈ V the graph is called antireflexive. Moreover E(V, V )

is symmetric iff E(vi, vj) = E(vj, vi) for all vi, vj ∈ V , otherwise, the graph
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is asymmetric. A fuzzy relation that is reflexive and symmetric is denoted

as a proximity, compatibility or tolerance relation.

Graphs are special case of relations. The concepts derived for graphs can

be generalized for relations, see [47] [60][53].

2.2.2 Graphs

A relation E(V, V ) among entities in the set V , more specifically ei,j, can

represent: association or interaction, proximity or similarity, dissimilarity,

and distance between entities. In the first case we have a crisp relation

with values in {0, 1}, which we denote as crisp graph or simply, graph. In

the second and third cases we have a weighted relation which takes values

between ei,j ∈ [a, b], where a and b are real values (Weighted Graph). In the

fourth case our relation ei,j ∈ [0,∞] has values in the extended positive real

set [0,∞] (Distance Graph).Moreover, we can transform a dissimilarity into

a similarity and vice versa, by means of linear functions, as well as normalize

the values [a, b] into the unit interval [0, 1]; i.e., after normalization we can use

the linear function S = 1 −D to transform a dissimilarity into a similarity,

or vice versa. Similarity or dissimilary graphs normalized in the unit interval

[0, 1] are called Fuzzy Graphs [47] [60][53]. From all of the above we can

conclude that fuzzy graphs and weighted graphs are equivalent; we overview

fuzzy graphs below. Nonetheless, it is important to point out that a distance

graph cannot be normalized into a fuzzy graph by means of a linear function.

This conversion, is the study of the present work.
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2.2.3 Fuzzy Graphs

Since the seminal paper of Zadeh [99] the Theory of Fuzzy Sets has expanded

into several fields in Mathematics. Graph Theory is one of the fields where

the concepts of Fuzzy Sets can be applied.

Definition 2.1. (Fuzzy Set) Given a relevant universal set X of elements x,

a fuzzy set A is defined by a membership function:

µ : X → [0, 1]

We can see from this definition that a fuzzy set generalizes crisp set by

endowing each element, with a degree of membership in a set.

Example 1 (Fuzzy sets versus Crisp sets) Consider the universal set

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. An example of a crisp set is the set

H = {1, 2, 3, 4}

using the fuzzy set notation, all members on this set have membership one

and the members {0, 5, 6, 7, 8, 9} have membership zero.

An example of a fuzzy set is the set

A = {(1, 0.5), (2, 1.0), (5, 0.1)}
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in this example 1 belongs to the fuzzy set A with a membership of 0.5, 2

with membership 1.0 and 5 with membership 0.1. The remaining elements

from X have membership zero.

Definition 2.2. (t-norm) A triangular norm (t-norm for short) is a binary

operation T on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1],

such that for all x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) T (x, y) = T (y, x).

(T2) T (x, T (y, z)) = T (T (x, y), z).

(T3) T (x, y) ≤ T (x, z) wherever y ≤ z.

(T4) T (x, 1) = x.

A t-norm is a generalization of intersection in set theory and conjunction

in logic. It was first defined in the context of probabilistic metric spaces [80].

Definition 2.3. (t-conorm) A triangular conorm (t-conorm for short) is a

binary operation S on the unit interval [0, 1], i.e., a function S : [0, 1]2 →

[0, 1], such that for all x, y, z ∈ [0, 1], satisfies (T1)-(T3) and

(S4) S(x, 0) = x.

A t-conorm is a generalization of union in set theory and disjunction in

logic.

There is an innumerable number of t-norms and t-conorms. In the fol-

lowing examples [51] we present the four basic t-norms and t-conorms.

Example 2 (t-norms) The following are the four basic t-norms TM , TP , TL

and TD given by, respectively:
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TM(x, y) = min(x, y) (minimum),

TP (x, y) = x · y (product),

TL(x, y) = max(x+ y − 1, 0) (Lukasiewicz t-norm),

TD(x, y) =

 0, if (x, y) ∈ [0, 1[2;

min(x, y), otherwise.

(drastic product)

These t-norms cover the range for t-norms, from the strongest t-norm TM

to the weakest t-norm TD. There are other t-norms, namely parametric t-

norms, which range the spectrum of all possible t-norms. Examples of these

t-norms are the Dombi and Hammaker t-norms, which we are going to use

in this dissertation.

Definition 2.4. (Dombi)(t-norm) The definition of Dombi t-norm is the

following:

DT λ∧ (a, b) =

1 +

[(
1

a
− 1

)λ
+

(
1

b
− 1

)λ] 1
λ


−1

Where the parameter λ ∈ ]0,+∞[.

Definition 2.5. (Hamacher)(t-norm) The definition of Hamacher t-norm is

the following:

Hr
∧(a, b) =

ab

r + (1− r)(a+ b− ab)

Where the parameter r ∈ ]0,+∞[.
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Example 3(t-conorms) The following are the four basic t-conorms

SM , SP , SL and SD given by, respectively:

SM(x, y) = max(x, y) (maximum),

SP (x, y) = x+ y − x · y (probabilistic sum),

SL(x, y) = min(x+ y, 1) (Lukasiewicz t-conorm),

SD(x, y) =

 1, if (x, y) ∈ [0, 1[2;

max(x, y), otherwise.

(drastic sum)

These t-conorms define the specific range of t-conorms, from the strongest

t-conorm SD to the weakest t-norm SM .

Definition 2.6. (Dombi)(t-conorm) The definition of Dombi t-conorm is

the following:

DT λ∨ (a, b) =

1 +

[(
1

a
− 1

)λ
+

(
1

b
− 1

)λ]− 1
λ


−1

Where the parameter λ ∈ ]0,+∞[.

Definition 2.7. (Hamacher)(t-conorm) The definition of Hamacher t-conorm

is the following:

Hr
∨(a, b) =

a+ b+ (r − 2)ab

r + (r − 1)ab

Where the parameter r ∈ ]0,+∞[.

Now we are able to define the transitivity property of a fuzzy relation.
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Definition 2.8. (Transitivity) A fuzzy relation R(X,X) is transitive if

R(x, y) ≥ t− norm(R(x, z), R(z, y))

is satisfied ∀x, y, z ∈ X.

Definition 2.8 entails that transitivity depends on the pairs t-norm cho-

sen.

Definition 2.9. (Fuzzy Complement) A complement c of a fuzzy set satisfies

the following axioms:

(c1) c(0) = 1 c(1) = 0 (boundary conditions).

(c2) ∀a, b ∈ [0, 1] if a ≤ b, then c(a) ≥ c(b) (monotonicity).

The Complement of a fuzzy set measures the degree to which a given

element of the fuzzy set does not belong to the fuzzy set. Two most desirable

requirements, which are usually among of fuzzy complements are:

Definition 2.10. (Fuzzy Complement)(cont) A complement c of a fuzzy set

satisfies the following axioms:

(c3) c is a continuous function.

(c4) c is involutive, which means that c(c(a)) = a for each a ∈ [0, 1].

In classical set theory, the operations of intersection and union are dual

with respect to the complement in the sense that they satisfy the De Morgan

laws. It is desirable that this duality be satified for fuzzy set as well. We
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say that a t-norm T and a t-conorm S are dual with respect to a fuzzy

complement c if and only if

c(T (a, b)) = S(c(a), c(b))

and

c(S(a, b)) = T (c(a), c(b)).

Examples of dual t-norms and t-conorms with respect to the complement

cs(a) = (1− a)s are:

< min(a, b),max(a, b), cs >

< DT (a, b), DS(a, b), cs >

< HT (a, b), HS(a, b), cs > .

We can have weaker complements, which only obey to the first two axioms

in definition 4.8 to allow other t-norm and t-conorm operators.

Next we follow with composition of fuzzy relations.

Definition 2.11. (Relation Composition) Consider two binary fuzzy rela-

tions, P (X,Z) and Q(Z, Y ) with a common set of Z. The standard compo-

sition of these relations, which is denoted by P (X,Z) ◦ Q(Z, Y ) produces a
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binary fuzzy relation R(X, Y ) on X × Y defined by

R(X, Y ) = [P ◦Q] = t− conorm(t− norm[P (x, z), Q(z, y)]),

∀x ∈ X and ∀y ∈ Y and ∀z ∈ Z .

Algorithm 2.1. (Transitive Closure) Given a binary fuzzy relation R(X,X),

its transitive closure RT (X,X) can be determined by a simple algorithm that

consists of the following three steps:

(1) R
′
= R ∪ (R ◦R).

(2) if R
′ 6= R, make R = R

′
and go to Step 1.

(3) Stop: RT = R′.

The union in step 1 must be in accordance with the t-conorm defined

in the relation composition. The resulting relation in step 3 is transitive

with respect to the t-norm, t-conorm operations used. Moreover, given the

last algorithm, a fuzzy graph is transitive if the algorithm stops at the first

step. A reflexive, symmetric and transitive fuzzy relation is denominated as

a Similarity or Equivalence relation.

As mentioned before, a graph can be defined as a relation E(V, V ) where

V represents the set of vertices and E a relation among vertices on V . A

Fuzzy graph, or weighted graph, can also be defined as a fuzzy relation

E : (vi, vj) → [0, 1] of a fuzzy set V with it self. If the vertex set V of a

fuzzy graph G = (V,E) is a fuzzy set, then the vertices are also weighted

with a membership function µ : V → [0, 1]. If V is a crisp set, then the
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vertices are not weighted, and are simply present or not, i.e. µ : V → {0, 1}.

In either case, the edges E of G are weighted with the relation weights

E : (vi, vj) → [0, 1]. In this dissertation we work with a crisp vertex set V

without loss of generality. In summary a fuzzy graph G = (V,E) is defined

by a fuzzy set or a crisp set of vertices V , and a fuzzy set of edges given by

the relation E.

2.2.4 More about t-norms and t-conorms

In this subsection we give a more detailed description of t-norms and t-

conorms, fundamental to this thesis.

t-norms

The intersection of two fuzzy sets A and B is performed by a binary operation

closed on the unit interval. There are an infinite number of t-norms from

definition 2.2. One important class is that of Archimedean t-norms, see

[53]. Before we introduce one of the fundamental theorems of t-norms, which

provides us a method for generating Archimedean t-norms we introduce the

following definitions:

Definition 2.12. A decreasing generator ϕ is a continuous decreasing func-

tion from the unit interval [0, 1] into the real extended interval [−∞,+∞].

Definition 2.13. The pseudo-inverse of a decreasing generator ϕ is defined
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by

ϕ(−1)(a) =


1 for a ∈ (−∞, 0)

ϕ−1(a) for a ∈ [0, ϕ(0)]

0 for a ∈ (ϕ(0),∞)

Where ϕ−1 is the inverse function of ϕ.

Theorem 2.1. (Characterization Theorem of t-norms) Let i be a binary op-

eration closed on the unit interval. Then, i is an Archimidean t-norm iff

there exists a decreasing generator ϕ such

i(a, b) = ϕ(−1)(ϕ(a) + ϕ(b))

for all a, b ∈ [0, 1].

With this last theorem we can generate an infinite class of t-norms. Among

many decreasing generators is the Dombi t-norm generator, (see definition

2.4):

ϕ(x) =

(
1− x
x

)λ
Parameter λ allow us to obtain the range from the TD t-norm (λ → 0) to

the TM t-norm (λ→ +∞). For many other decreasing generators, see [51].

t-conorms

Set unions are generalized by the t-conorms in definition 2.3. There are

an infinite number of t-conorms and ways to generate new t-conorms. One
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important class of t-conorms is the Archimedean t-conorms, see [53].

Definition 2.14. A increasing generator θ is a continuous increasing func-

tion from the unit interval [0, 1] into the real extended interval [−∞,+∞].

Definition 2.15. The pseudo-inverse of a increasing generator θ is defined

by

θ(−1)(a) =


0 for a ∈ (−∞, 0)

θ−1(a) for a ∈ [0, θ(0)]

1 for a ∈ (θ(0),∞)

Where θ−1 is the inverse function of θ.

Theorem 2.2. (Characterization Theorem of t-conorms) Let u be a binary

operation closed on the unit interval. Then, u is an Archimidean t-conorm

iff there exists an increasing generator θ such

u(a, b) = θ(−1)(θ(a) + θ(b))

for all a, b ∈ [0, 1].

With this last theorem we can generate an infinite class of t-conorms. Among

many increasing generators is the Dombi t-conorm generator:

θ(x) =

(
x

1− x

)λ

Parameter λ allow us to obtain the range from the SM t-conorm (λ→ 0) to

SD t-conorm (λ → +∞). For many other decreasing generators the reader
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can see, [51].

2.2.5 Distance Graphs

A distance graph is a particular kind of weighted graph defined on the ex-

tended real line. In other words, the relation which defines the edge weights

is a distance function

d : (X,X)→ [0,∞]

such that

d(x, x) = 0

d(x, y) = d(y, x).

Distance graphs are very intuitive formalism to optimize associations among

entities. Indeed, modelers who work with weighted graphs (dissimilarity or

proximity) usually calculate distances between vertices. However, to convert

a dissimilarity or proximity graph, where the edge weight are defined in the

unit interval, into a distance graph, where the edge weight are defined in the

real line, they have to apply a nonlinear function. Then to get the shortest

distance between any two vertices in the weighted graph they typically, apply

the All-Pairs Shortest Paths (APSP) Johnson’s algorithm [23] by calling

the Dijkstra algorithm n times (for simplicity of language we will call this

algorithm the APSP Dijkstra algorithm), we will introduce this later in this

chapter.
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In general, distance graphs obtained from real-world data violate the tri-

angle inequality, and therefore, are semi-metric. That is, the binary relation

which defines the distance graph is symmetric and anti-reflexive but, there

are indirect edges that breaks the triangle inequality, see [72] for more details.

In order to extract some properties from these graphs we have to embed the

semi-metric graph in a metric space using the APSP Dijkstra algorithm so as

to close all transitivities in the graph. This procedure causes some distortion

to the original semi-metric graph; which can be problematic because it has

strong effects in the topology of these graphs.

In summary, we can always use a linear function to convert a fuzzy

graph into another, e.g. a proximity to a dissimilarity graph. Same for

any weighted graph where edge weights are bounded by finite limits, can

be linearly mapped onto [0, 1]. But because distance graphs rely on edges

defined on the extended positive real line, the conversion to a fuzzy graph

and vice versa, must rely on a nonlinear function.

2.2.6 Properties of Fuzzy Graphs

The order or size of a graph G = (V,E) is equal to the number of vertices

vi ∈ V in the graph and it is written as |V |, the number of edges is written as

‖E‖. A graph G = (V,E) is finite or infinite according to its order. Unless

otherwise stated, the graphs or weighted graphs we consider are all finite.

Two vertices vi and vj are adjacent or neighbors, if ei,j or ej,i is an edge of

G. Two edges ei,j 6= ek,l are adjacent if they have a vertex in common j = l
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or i = k, but not both conditions simultaneously.

Two G1 = {V1, E1} and G2 = {V2, E2} are isomorphic if there is an

edge-preserving bijective vertex mapping ϕ : V1 → V2, i.e. a bijection ϕ with

∀u, v ∈ V1 : eu,v ∈ E1 ⇔ eϕ(u),ϕ(v) ∈ E2.

If V1 ⊆ V2 and E1 ⊆ E2, then G1 is a subgraph of G2 (and G2 is a

supergraph of G1), written as G1 ⊆ G2.

The vertex strength si is defined by:

si =
∑
j∈ν(i)

ei,j (2.3)

where ν(i) is the set of neighbors of vertex i, and ei,j is the weight of edge

between vertex i and vertex j.

A path in a Graph G = (V,E) is a sequence of distinct adjacent edges

P = e0,1, ..., en,m. The length of the path is given to be the sum of all edges

on the path, and makes more sense in the context of distance graphs.

The path length can be defined in various ways, such as the sum of all

weights in path or the smallest weight in the path. In many applications we

are interested in determining the shortest path between any two vertices in

a fuzzy graph.
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2.3 Complex Networks

We conceptualize a network as a graph G = (V,E) where V is a set of vertices

(or nodes) vi and E is a set of edges ei,j which represent a connection or

association between vertices vi and vj; If the graph is directed ej,i is not

necessary equal to ei,j. The degree (or valency) ki of a vertex vi is the

number of connected vertices (incident edges) to vi. In a directed graph, the

indegree k+i of a vertex vi is the number of edges ej,i terminating at vi, and

the outdegree k−i of a vertex vi is the number of edges ei,j originating at vi.

From this point on, unless otherwise specified, in the case of directed graphs,

we will use degree (ki) to mean indegree (k+i ).

It is useful to characterize large graphs by their degree distribution, which

is the distribution of the probability that the degree of a randomly chosen

vertex is k [68]. A power law distribution is a distribution that follows the

relation

P (k) ' ak−γ

where γ and a are constants. Newman [64] defines a scale-free network as a

graph whose degree distribution follows a power law.

2.3.1 The Barabasi-Albert Model

Given an initial connected network (or graph) G with n0 vertices, generally

a small network, the Barabasi-Albert model (BAM) [11] is based on the

following axioms:
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Axiom 1 (Growth). A new vertex vg is added to G at each time step;

Axiom 2 (Preferential attachment). An edge eg,i between vg and m ≤

n0 vertices vi is created at each time step with probability:

Π(eg,i) =
ki∑
j kj

,

where ki is the degree of vertex vi in the previous time step and
∑

j kj is

the total sum of the degree of every vertex in the network in the previous

time step. In other words, the preferential attachment axiom, biases the

generation of new edges towards vertices with higher degree. With these

considerations and the evolution equation,

∂ki
∂t

= m · Π(eg,i) (2.4)

where, in our case, the constant m is the rate of edges we are introducing each

time step, Barabasi and Albert [11] have shown that the model generates a

power law distribution, which is independent of time:

P (k) ∝ k−3

The growth and preferential attachment axioms implement the mecha-

nism known as “the rich gets richer”. This mechanism can be generalized in

many ways, which are beyond the scope of this thesis, for an overview see

[68].
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2.3.2 The Amaral et al. cut-offs Model

Amaral et al [6] noticed that in several real networks the power law describ-

ing the degree distribution is truncated (or cut-off) for vertices with large

degrees. In other words, the number of highly connected vertices is smaller

than expected from the preferential attachment model. Several mechanisms

can be behind this behavior. Strictly speaking, Amaral et al proposed two

alternative mechanisms, which interact with the two axioms of the BAM:

aging of the vertices and cost of adding edges to vertices. Both mechanisms

produce a power law truncation, i.e., a cut-off in the power law degree distri-

bution. Each alternative mechanism proposed by Amaral et al. [6] is defined

by an additional axiom to the BAM axioms:

Axiom 3a 1 (Aging of the vertices). at each time step every vertex may

become inactive with a constant probability of aging p.

An inactive vertex and its edges are still present in the network but it

is not allowed to receive more edges. The other mechanism, cost of adding

edges to vertices, is similarly implemented by an alternative third axiom:

Axiom 3b 1 (Cost of adding edges to vertices). each vertex has a limit

capacity kc of edges that it can support. After this threshold a vertex becomes

inactive.

Axiom 3b leads to networks whose degree distribution follows the power

laws obtain via BAM, except that it observes a spike at kc, followed by an
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abrupt and unrealistic cut-off. Therefore, the model obtained by axiom 3b

is not as realistic and interesting as the one obtained via axiom 3a aging of

the vertices, which is the only one we will discuss from now on.

Amaral et al. [6] have shown, with simulations that the BAM with ax-

iom 3a leads to a truncation or a cut-off of the expected power law degree

distribution for several probabilities p—the behavior observed in many real

networks. This truncation is more prominent with higher values of p. How-

ever, the simulations of Amaral et al. do not allow us to determine precisely

the ranges of values of p which allow the network to grow. We also, for

instance,do not have a precise notion of how the vertices become inactive,

or how many vertices are expected to be active in the network at a given

time for various values of p. The model we propose in Chapter 3 proposes

an analytical solution to these questions.

2.3.3 Small-World

Watts and Strogatz [97] introduced a model to describe the Small-World

phenomena in complex networks. Small-World networks are characterized

by a high clustering coefficient and a short average path length.

The Clustering Coefficient measures the local group cohesiveness [97].

According to Watts the clustering coefficient C(i) for a given vertex i is

defined by the following equation:

34



C(i) =
ei

ki(ki − 1)/2
(2.5)

where ki is the degree of vertex i and ei the edges between vertex i and

the neighbors of vertex i. The average clustering coefficient is defined by the

equation:

< C >=
1

N

∑
i

C(i) (2.6)

There are other definitions of the clustering coefficient such the one by

Wasserman and Faust [96], where the clustering coefficient measures the

number of local transitivities in the graph. In this manner the clustering

coefficient is defined in the following equation:

C =
3× numberoffullyconnectedtriples

numberoftriples
(2.7)

The average shortest path is the average of all shortest paths between all

vertices in the graph.

Watts and Strogatz [97] studied several real networks and found they have

a high clustering coefficient and a low average path length. In contrast, ran-

dom networks studied by Erdos and Renyi [21], have a small average path

length but low clustering coefficient and circular regular lattice networks,

have a high average path length and a high clustering coefficient. Watts

and Strogatz showed that real networks are in between these two kinds of

networks. Watts and Strogatz classify the networks which have small av-
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erage path length and high clustering coefficient as Small-Word networks.

The average path length of small-world networks are characterized by small

diameters, small average path lengths, which scale with the logarithm of the

size of the network < l >≈ log(N).

Watts and Strogatz [97] also proposed a generative model to explain the

apperance of Small-World networks. This model starts with a circular regular

lattice, then we start rewiring the network by rewiring one random edge to a

random vertex in the network until we reach a completely random networks,

figure 2.1. With this model we obtain all kinds of networks from regular

lattice, small-world to random, according to the degree of rewirement.

Figure 2.1: Regular Lattice (left), Small-World (midd), Random (right) Net-
works.
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2.3.4 Clustering Coefficient in weighted graphs

There are many generalizations of clustering coefficients for weighted graphs

[12][15] [86][67]. According to Barrat et al. [12] the weighted clustering

coefficient for a given vertex i in a undirected graph is defined as:

Cw(i) =
1

si(ki − 1)

∑
j,h

ei,j + ei,h
2

aijaihajh (2.8)

The term
∑

j,h aijaihajh counts the number of triples in the neighborhood

of vertex i.
ei,j+ei,h

2
is the weight of two participant edges of vertex i for each

triple in the neighborhood of vertex i. si(ki − 1) is a normalization factor

to ensure that Cw(i) is between 0 and 1, where si is the strength of vertex i

and ki the degree.

A definition for direct and undirected graphs is proposed by Onnela et al.

[67]. They renormalize the clustering coefficient of equation 2.6 of the equiv-

alent crisp network. The renormalization factors, intensity and coherence

are defined in the following way:

I(h) =

 ∏
(i,j)∈lh

ei,j

 1

|lh|

(2.9)

Q(h) =
I(h)× |lh|∑

(i,j)∈lh ei,j
(2.10)

where I(h) is the Intensity for vertex h, ei,j the weight between vertex i and

j, lh is the number of edges for vertex h and Q(h) is the coherence for vertex
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h. The average intensity and the average coherence are defined as:

< I(h) >=
1

eh

∑
i∈N(h)

I(i) (2.11)

< Q(h) >=
1

eh

∑
i∈N(h)

Q(i) (2.12)

where N(h) denotes the neighborhood of vertex h and eh the edges among

vertex h neighbors. The clustering coefficient for vertex h in a weighted

network is now defined as:

Cw(h) =< I(h) > ×C(h) (2.13)

Cw(h) =< Q(h) > ×C(h) (2.14)

where C(h) is the clustering coefficient defined in equation 2.6 for the binary

contra-part of the weighted graph. The clustering coefficient for the network

is now defined by the renormalization as:

< Cw >=

∑
i< I(i) > ×C(i)∑

i< I(i) >
(2.15)

< Cw >=

∑
i< Q(i) > ×C(i)∑

i< Q(i) >
(2.16)
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2.3.5 Statistical properties of networks

Besides the characteristic average path length, clustering coefficient and de-

gree distribution, there are other important statistical properties to charac-

terize networks such as the betweenness distribution and degree correlations.

Betweenness is a centrality measure. The shortest path betweenness cen-

trality of a vertex v or edge e between two vertices s and t is based on the

proportion of shortest paths that contain the vertex v or edge e and the

number of shortest paths between s and t [23].

δst(v) =
σst(v)

σst

Then the total betweenness centrality cB(v) of a vertex v is given by [23]:

cB(v) =
∑
s 6=v∈V

∑
t6=v∈V

δst(v)

For edge betweenness we substitute in formulas above v for e.

Betweenness centrality gives us the importance of a given vertex or edge

in a network. It became popular with the work of Girvan and Newman [38]

on community detection.

The betweenness distribution is the probability distribution PcB(cB) that

a vertex has betweenness cB [15].

Another statistical property of complex networks is the degree correlations
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[15]:

knn(k) =
∑
k′

k′P (k′|k)

If the degrees of neighboring vertices are uncorrelated then knn(k) is a

constant. If there are correlations and if we can identify correlations increas-

ing or decreasing with k, they are Assortative or Disassortative, respectively.

Assortative networks, i.e., vertices with high degree have a larger probability

of being connected with large degree vertices. Disassortative networks, high

degree vertices, have a majority of neighbors with low degree vertices [15].

2.4 Shortest Paths and the APSP Dijkstra

algorithm

The computation of the shortest-path distances between one specific vertex,

called the source, and all other vertices is a classical algorithmic problem,

known as Single Source Shortest Path (SSSP) problem [23]. The problem

of computing the shortest path distances between all vertex pairs is called

All-Pairs Shortest Paths problem (APSP) [23].

Dijkstra [29] [23] provided the first polynomial-time algorithm for SSSP

for graphs with non-negative edge weights. Figure 2.2 presents the SSSP

Dijkstra algorithm.

The APSP on a weighted graph is achieved by the Johnson’s algorithm

[23]. It first calculates the distances from an artificial source to all vertices
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Figure 2.2: SSSP Dijkstra Algorithm from [23]

in the graph using the Bellman-Ford algorithm [23] and then determines

the distances of all pairs by calling the Dijkstra algorithm n times. This

algorithm of APSP has a runtime of ◦(n2log(n) +nm) [23]. In this thesis we

call the Johnson’s algorithm or the APSP Dijkstra algorithm.

2.5 Semi-metric behavior and closures

A distance function is a non-negative function that obeys the following

axioms and defines a distance between elements of a given set X, where

d : X ×X → <.

1. d(x, y) = 0 if and only if x = y (anti-reflexive)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
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We say that a distance function is metric iff obeys axioms 1-3.

We further say that a distance function is ultra-metric iff follows axioms

1-2 and stronger triangle inequality:

4. d(x, z) ≤ max(d(x, y), d(y, z)) (ultra-metric inequality)

which is a stronger restriction than 3. Naturally, if a distance function is

ultra-metric is also metric.

A distance function is semi-metric if it follows axioms 1 and 2, but violates

the triangle inequality (axiom 3). We can generalize the triangle inequality:

5. d(x, z) ≤ ρ(d(x, y) + d(y, z)) (ρ-relaxed triangle inequality)

A distance graph is semi-metric if the distances defined by its edges obey

axioms (1 and 2) but there is at least one edge, for some indirect path that

violates the triangle inequality. More specifically, semi-metric behavior [72],

arises when we measure the lengths of indirect paths between vertices in a

distance graph and these are smaller than the direct edges length. The direct

and indirect distance between two vertices vx and vz is given by d(x, z) and

dshortest(x, z) = d(x, y1) + d(y1, y2) + ... + d(yn, z) respectively, and from the

ρ-relaxed triangle inequality we have:

d(x, z)

dshortest(x, z)
≤ ρ

where, if ρ ≤ 1 for all pairs of vertices, the weighted graph is metric. If ρ > 1

than the weighted graph is semi-metric.
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Rocha [72] defines several coefficients to measure the semi-metric behavior

in a distance graph.

The semi-metric ratio is defined by:

s(vi, vj) =
ddirect(vi, vj)

dshortest(vi, vj)
(2.17)

Where dshortest is the shortest distance between vertices in the distance graph,

and s is positive ≥ 1 for semi-metric pairs.

The relative semi-metric ratio is defined by:

rs(vi, vj) =
ddirect(vi, vj)− dshortest(vi, vj)

dmax − dmin
(2.18)

rs compares the semi-metric distance reduction to the maximum possible

distance reduction in the distance graph, dmax is the largest distance in the

graph, and dmin = 0 is the shortest distance in the entire graph. This ratio

varies between 0 and 1 for semi-metric pairs, and negative for metric pairs.

The semi-metric below ratio is defined by:

b(vi, vj) =
< dvi >

dshortest(vi, vj)
(2.19)

where < dvi > represents the average direct distance from vi to all vj for edges

where ddirect(vi, vj) > 0. b is only applied to semi-metric pairs of vertices

(vi, vj) where dshortest(vi, vj) < ddirect(vi, vj) and it measures how much the

shortest indirect distance between vi and vj falls bellow the average distance

of all vertices vi directly connects vj.
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We define the semi-metric percentage (SM), as,

SM =

∑
i,j (s(vi, vj) > 1)

|E|
(2.20)

where |E| is the total number of direct edges.

2.6 Community detection in graphs

In this section we will give a brief overview on community detection in com-

plex networks, since this dissertation does not make any contribution or

development into community detection.

Community detection or clustering in graphs or weighted graphs mean

the same. It was introduced in 2002 by Girvan and Newman [38] as the term

community detection in graphs, however the term clustering in graphs and

weighted graphs were already used for graph partitioning [23].

There are several clustering algorithms for graphs and weighted graphs

[23]. Most of these algorithms are based on the intra-cluster density in the

cluster versus the inter-cluster sparsity between clusters. There are algo-

rithms such the one by Girvan and Newman [38], which partitioning the

graph by the use of centrality measure (edge betweenness).

In order to see if a given graph partition is good most of the time it is used

an optimization process is applied using a utility function that maximize the

intra-cluster density and the inter-cluster sparsity, so as to reach a better

clustering or graph partition.
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In Brandes et al [23] there is a good overview of the clustering algorithms

until the year 2005 and the Fortunato review paper [35] (to be appear in

Physics Reports) complements this overview.

2.7 Dynamics in Complex networks

In this section we just have made only some brief comments on the dynamics

in complex networks, since this is not the subject of this dissertation.

Dynamics in complex networks is a vast area. Using techniques from Sta-

tistical Physics, Critical Phenomena and Mean-Field approximation solves

several problems such as Phase Transitions. Resilience and robustness as

well as Epidemic spreading in complex networks, etc. Most of this can be

found in the book of Barrat et al. [15].
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Chapter 3

Stochastic model for cut-offs in

complex networks

We propose and analyze a novel stochastic model which explains, analyt-

ically, the cut-off behavior of real scale-free networks previously modeled

computationally by Amaral et al. [6] and others. We present a mathemati-

cal model that can explain several existing computational scale-free network

generation models. This yields a novel theoretical basis to understand cut-off

behavior in complex networks, previously treated only with simulations using

distinct models. Therefore, ours is an integrative approach that unifies the

existing literature on cut-off behavior in scale-free networks. Furthermore,

our mathematical model allows us to reach conclusions not hitherto possible

with computational models: the ability to predict the equilibrium point of

active vertices and to relate the growth of networks with the probability of
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aging. We also discuss how our model introduces a novel and useful way to

classify scale free behavior of complex networks.

3.1 Preferential Attachment with Vertex Ag-

ing

3.1.1 Stochastic Model

As we discussed in the previous section, the Preferential Attachment with

Vertex Aging (PAVA) model of Amaral’s et al. [6], is based on three axioms:

growth, preferential attachment and aging of the vertices. In this section we

propose a novel Stochastic Theoretical Model (STM) to study PAVA analyt-

ically.

Let us first analyze how the vertices (nodes) become inactive. This is

a fundamental piece of the analysis. We start with a core, fully connected

network of x0 vertices. Notice that at each time step, axiom 3a, is equivalent

to computing x(t) Bernoulli trials, one for each vertex, where x(t) is the

number of vertices at time t, and p is the probability that a vertex becomes

inactive. The probability of l vertices remaining active after x(t) independent

Bernoulli trials is given by the binomial probability distribution:

P (l, t) =

 x(t)

l

 · (1− p)l · p(x(t)−l) (3.1)
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Therefore, the dynamics of a network can be expressed by the following

stochastic map, where for convenience x(t) = xt now represents the mean

number of vertices at time t:

xt+1 = xt + α− pxt (3.2)

where α the number of vertices we introduce at each time step. Because at

each time step we perform xt Bernoulli trials, and introduce α new vertices,

there are xt + α vertices in the next time step minus the ones that become

inactive; the mean value of which for the binomial distribution is pxt [92].

We can rearrange the terms and write the map in the following way:

xt+1 = (1− p)xt + α (3.3)

The equilibrium points for this map, which refer to the situations when

the network retains the same mean number of vertices from iteration to

iteration, can be identified by solving the equation:

(1− p)xt + α = xt (3.4)

which results in the unique equilibrium point x̄t = α
p
, that is asymptotically

stable when ‖f ′(x̄)‖ < 1, where the first derivative of the map is given by
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f(x) = (1− p)x+ α⇒ f ′(x) = 1− p

Therefore, the unique equilibrium point x̄t = α
p

is asymptotically stable

for p > 0. Interestingly, when p = 0 our stochastic map yields the pure

BAM of section 2.3.1. In this case the dynamical system does not have an

equilibrium point and it diverges, i.e. the network keeps growing in size.

When p = 1 the system, of course, does not grow since all vertices become

immediately inactive. Finally, when 0 < p < 1 the system observes the single

asymptotically stable equilibrium point x̄t = α
p
, which depends on the value

of p.

The equilibrium behavior of our STM can be better appreciated when we

look at the solution of our stochastic map (eq. 3.2) [55].

xt =

 x0 + αt if p = 0(
x0 − α

p

)
· (1− p)t + α

p
if p 6= 0

(3.5)

t = 0, 1, 2, . . .

Because (1− p) < 1 for the second condition (p 6= 0) we can see that the

dynamical system converges to the asymptotically stable equilibrium point

x̄ = α
p
. In other words, after a transient the dynamical system converges

to a network with a fixed mean number of active vertices and the system
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remains in that state forever. This transient can be estimated as the time it

takes for
(
x0 − α

p

)
· (1−p)t to become sufficiently small, which can be better

appreciated with a little manipulation of this expression:

(
x0 −

α

p

)
· (1− p)t = A · et ln(1−p) = A · e−

t
t0 (3.6)

where,

A ≡
(
x0 −

α

p

)
t0 ≡ −

1

ln(1− p)

Now, because the map in our model is stochastic there is variation about

the equilibrium point. In our model (equation 3.2), xt is a binomial variable

and for large enough t we can approximate it by a normal distribution [92]

and study its variation. We assume the ergodic hypothesis is true, therefore

the statistical mean of xt, which we denote as < xt > is equal to x̄t = α
p
,

the equilibrium point given by equation 3.5. In our simulation section we

validate this assumption. The variations can then be studied by solving the

equation for variance:

σ2 =< x2t > − < xt >
2 (3.7)

From equation 3.2 and 3.5 and from the ergodic hypothesis we have for
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the statistical mean

µ =< xt+1 >=< xt >=
α

p
(3.8)

Extending xt in equation 3.2 to real values to make the approximation to

the normal distribution feasible, and substituting this equation and 4.9 into

3.7,

σ2 =< ((1− p)x+ α)2 > −α
2

p2
(3.9)

and assuming a normal distribution as discussed above we reach the following

expression:

σ2 =
1

σ
√

2π

∫ ∞
−∞

((1− p)x+ α)2e
−(x−µ)2

2σ2 dx− α2

p2
(3.10)

solving equation 3.10 in order of σ for t > t0 (equation 3.6) we obtain,

σ =

√
1

1− (1− p)2
(3.11)

For large t equations 4.9 and 3.11 define our stochastic variable xt, as a

normal variable.

3.1.2 Exponential decay

Let’s now take a closer look at axiom 3a. According to this axiom a vertex

at each time step may become inactive with a constant probability p. Each
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vertex follows a binomial distribution which is equivalent to a random walk

process. In this case, it is as if each vertex is trying to give z steps in a max-

imum of r steps all in the same direction—where r can be interpreted as the

maximum iterations t. If a vertex changes the direction of its step it becomes

inactive. This can be expressed by the following probability function,

P (Z = z) =

 r − z

qr − z


 r

qr


(3.12)

where q = 1−p is the probability that the vertex succeeds and remains active

for the next step. This equation can be simplified in the following form:

P (Z = z) =
(r − z)!(qr)!(r − qr)!
(qr − z)!(r − qr)!r!

P (Z = z) =

z−1∏
k=0

(qr − k)

z−1∏
k=0

(r − k)

(3.13)

For a given r = 10, 000 and p = 0.1, we obtain the following distribution

presented in figure 3.1.

We can see that the respective exponential decay is independent of r, by

taking the limit when r � 1.
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Figure 3.1: P (Z = z) distribution

P (Z = z) =

z−1∏
k=0

(qr − k)

z−1∏
k=0

(r − k)

∼=
r�1

(qr)z−1

rz−1
= qz−1 (3.14)

In this last equation we can see that the binomial experiment of a vertex

gets inactive is an exponential decay.

3.1.3 Exponential decay for the degree distribution

It was found in [87] that for networks where the number of active vertices

is a subset of the total of vertices in the network, the power law degree

distribution presents a truncation,

P (K = k) = C(am + bm)k−(am+1)e−bmk (3.15)
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Where m is the number of active vertices and am, bm are parameters in

function of m, and k the degree.

In our case we are in that situation, where the mean value of vertices

active can be represented by m. In the next subsection we show how the

STM can be validated by simulations of the PAVA model.

3.1.4 Network stop growing estimation

Because the STM is stochastic there is a probability that a network even-

tually will stop growing. From the results in sections; Stochastic Model and

Exponential decay, we can estimate the probability for which a network will

not grow. We have seen that we can approximate xt as a normal distribution

with mean and standard deviation given respectively by equations 4.9, 3.11.

The next equation estimates the probability of variations (fluctuations) on x

such that the network stops growing.

P (x ≤ 0.5) = Φ

(
0.5− µ
σ

)
. (3.16)

Where Φ is the cumulative probability function of a normal variable with

mean µ and standard deviation σ—which depends exclusively on the values

of α and p. We have chosen x ≤ 0.5 in order to compensate the discrete

extension of xt to real values x. Moreover, this probability is the probability

that a given network will die in tdie steps. This is exactly the idea behind

equation 3.14, but now instead of a given vertex survival probability, we are
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considering the probability of the network survival given by w = 1− P (x ≤

0.5), after t time steps and s trials, and for large s we have as before;

P (T = t) =

t−1∏
k=0

(ws− k)

t−1∏
k=0

(s− k)

∼=
r�1

(ws)t−1

st−1
= wt−1 = Be−

t
kc (3.17)

with,

B ≡
(

1

w

)
kc ≡ −

1

ln(w)

In figure 3.2 we plot the probability for which a network will stop growing

after t steps versus the probability of a vertex getting inactive. Most of

network trials will stop growing after kc. With this we can estimate the

number of steps tdie for which the network stop growing. For example, for

a probability of inactiveness p = 0.2 we have P (x ≤ 0.5) = 0.0035, which

means we will have kc = 288. In this case with p = 0.2 most of the networks

will stop growing after t > 288.

3.1.5 Simulations

In table 3.1, we can see the results that we have obtained comparing PAVA

simulations with our analytic STM. First a confirmation of the system’s
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Figure 3.2: P (x ≤ 0.5) versus p (probability of a vertex getting inactive) for
α = 1.

Table 3.1: Comparison between PAVA and STM models for α = 1 and
t = 10, 000. (*) measured after a transient period t0 calculated after 11
simulations

PAVA (*) STM
p x̄± σ x̄± σ

0.1 10.01± 2.18 10.00± 2.29
0.08 12.49± 2.47 12.50± 2.55
0.06 16.62± 2.84 16.67± 2.93
0.05 19.50± 3.10 20.00± 3.20
0.03 33.56± 4.07 33.33± 4.11
0.01 99.75± 7.01 100.00± 7.09

stable equilibrium point for each p. For the PAVA model we performed

eleven simulations for each probability p, from p = 0.1 to = 0.01, for a

network with 10, 000 vertices and an α = 1 — eleven simulations is usually

considered the minimum experiments. In any case as it can be seen in table

3.1 eleven simulation yielded quite accurate results. The choice for p was

based on results obtained in figure 3.2, where we can see for values of p ≤ 0.1

the probability of the network not growing is essential null.
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In table 3.1 we see that x̄ is extremely well predicted by the STM, since

values follow the same tendency as well as the standard deviation obtained

by the PAVA simulations.

In figure 3.3 we can see that the standard deviation stabilizes after a

transient period of time as was predicted by equation 3.6.

0 1000 2000 3000 4000 50000

0.5

1

1.5

2

2.5

time

!

Figure 3.3: Evolution of the standard deviation of xt for p = 0.1 and α = 1
with time

In table 3.2 we compare the number of iterations for which most of the

networks stop growing for both PAVA simulations and the STM. The choice

for p was based on results obtained in figure 3.2. The STM values were

estimated by using equation 3.17. To estimate the cut-off point of the ex-

ponential decay in PAVA we have fit with a 95% confidence an exponential

function ae−bt, to the experimental data. The estimated parameter b, allow

us to compute tc = 1
b
, which is the exponential cut-off. The comparison

between PAVA and STM is made between tc and kc. There are some fluctu-

ations but both follow the same tendency, which shows that eventually the
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network will stop growing after tc or kc iterations.

From the results summarized in table 3.1 and table 3.2 it can be concluded

that the number of active vertices observed by PAVA simulations follows the

process described by the dynamic map inherent in the STM; in another words

the aging of vertices process is a Binomial random process.

The PAVA and STM probability distribution P (Z = z) for the number

of steps a vertex succeeds without getting inactive is shown in figure 3.4 for

r = 10, 000 vertices and p = 0.1. In these figures we see the experimental

probability distribution (dots) and the STM distribution fits well the equa-

tion 3.14, qz−1, where q = 1 − p = 0.9. The results of the regression are an

estimated q = 0.89 for 95% of confidence with SSE = 0.04 and R2 = 0.99

and RMSE = 0.02.

In figure 3.5 we see that the degree distribution cut-off of the PAVA

simulations does not change with the size as already observed by Amaral et.

al. [6]. Similar results are observed for other p. The power law exponent

γ does not change significantly; in the case of figure 3.5, the γ values are

Table 3.2: All vertex getting inactive after t iterations according to the prob-
ability p with α = 1. tc is the time step for which the PAVA network stop
growing, kc = − 1

log(1−P (x≤0.5)) is the cut-off point and P (x ≤ 0.5) the theo-
retical probability for which a network will stop growing

PAV A STM
p tc kc

0.2 374 288
0.3 33 46
0.4 11 18
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Figure 3.4: The simulation results for P (Z = z) and curve fitting with and
exponetial aqz−1

around 2.6.

In figure 3.6, also as expected, the degree distribution cut-off point of the

PAVA simulations decreases inversely with the probability of inactiveness p

as already observed by Amaral et al. [6]. Also, the the power law exponent

γ does not change significantly with p.

These results show that: (a) the network after a transient period of time

t0 reaches an equilibrium number of active vertices; (b) the network will

eventually stop growing after t iterations according to the probability of

inactiveness. According to all these results we can conclude that our STM

is a good analytical model of the generation processes of PAVA, namely the

aging of vertices process.
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Figure 3.5: Cumulative degree distribution for network sizes: 1000, 10000
and 100000, with α = 1 and p = 0.05. Also in solid we plot the BAM.

3.2 Discussion

We have seen in the previous sections that the PAVA model, follows a Bi-

nomial distribution and can be described by a discrete dynamical system.

This dynamical system has an stable equilibrium point and two extreme be-

haviors, the pure random walk, when there is only one active vertex, and at

the other extreme the Barabasi-Albert behavior, when we have all vertices

active. Moreover, besides the simulations results made by Amaral et al. [6]

(PAVA) our STM was also able to: (a) predict the equilibrium point of active

vertices; (b) relate the growth of the network (size) with the probability of

aging.

The PAVA simulations are an extension of the BAM and is useful for the

study of several real complex networks, such the Actor network, Scientific

Citations networks [24]. These networks are characterized by vertex dying

60



100 101 10210−5

10−4

10−3

10−2

10−1

100

degree

P c

 

 

p=0.01
p=0.05
p=0.1
BAM
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Also in solid we plot the BAM.

over time. In the case of the actors network, an actor during a period of

time plays in several movies with other actors and then they become inactive

(die or retired). However, the influence of inactive actors still participates on

the statistics of the network without removing the actor from the network.

The same kind of reasoning can be applied to the network of citations, where

a given paper becomes inactive (obsolete) after a given period of time but

remains on the network.

Another way of interpreting Amaral’s et al. PAVA simulations [6] and

observe the relation between this generation process with other in the liter-

ature, is if we look at the network from the perspective of a new vertex. In

PAVA a vertex gets inactive with a probability p as a result of a binomial

process. Probabilistically equivalent to this is if a new vertex, at each time

step, just sees a limited number of random vertices, the active vertices, which
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are themselves limited by the equilibrium point reached by the network after

a transient period of time. This can be seen as an information filtering done

by each new vertex regarding the whole network. It is not possible for a new

vertex to have a full knowledge of the entire network, it just has a partial

knowledge. Therefore we can say the stochastic map defined in equation 3.5,

represents the knowledge that a new vertex has about the entire network.

If p = 0 a new vertex has full knowledge of the network and in this

case we are in one extreme, the purely Barabasi-Albert model. In the other

extreme if we have a certain maximum pmax < 1 where the equilibrium point

is x̄ = 1, only one vertex is active. In this case the new vertex does not have

any knowledge at all; it just connects to the other vertices in a random way.

The intermediate case happens when, p < pmax and x̄ > 1. In this case each

new vertex has partial knowledge of the network. Therefore, some scale-free

networks range between two situations; absolute knowledge of the network,

Barabasi-Albert model [11], and complete ignorance of the network, pure

random process. The Amaral’s et al. PAVA simulations [6] and obviously its

STM formalization, seems to be a simpler model that could explain, as a first

approximation, the general dynamic mechanisms behind scale-free networks

between these two extremes. The parameter p measures how each vertex has

complete knowledge of the network or complete ignorance.
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3.3 Conclusions

In this work we have presented a stochastic theoretical model as a mathe-

matical explanation of the Amaral’s et al. PAVA model [6].

We believe this work can provide a simple explanation for the dynamics

of some scale-free networks and through this knowledge, obtain a better

understanding of how these scale-free networks can emerge. As we have

seen at the introduction, the field of complex networks is an interdisciplinary

field. Therefore a better understanding of the mechanisms behind complex

networks can improve the understanding behind certain problems in areas

like the Internet, World Wide Web, Neural Networks, Chemical Networks,

Social Networks and so on.
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Chapter 4

Generalized transitive closures

on complex networks

Part of the work described in this chapter was published in [93], [76] and

submitted for publication [84].

4.1 Introduction

Humans are unique in their ability to generate and utilize knowledge. In a

nutshell, knowledge is valuable because it gives us ways to access new re-

sources and to obtain them from others. Given the ubiquitous presence of

the Web in our lives, much of our knowledge and social foraging is done on-

line. Recently, thanks to computers and the Web infrastructure of systems

for massive knowledge storage and distribution, we have crossed an impor-
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tant threshold in our ability to collect, process and interpret quantitative

data about the way knowledge and social interaction are organized [46]. We

have just started to construct quantitative, large-scale characterizations of

the geometry and dynamics of information exchanges and social interactions

in human societies, but already there has been a breakthrough in our un-

derstanding of these interactions. Indeed, most interactions in knowledge

and social space, as in other technological and biological systems, can be

well described in terms of complex networks [5]. These windows into human

organization are based on quantitative empirical observations that allow hy-

potheses to be better tested and falsified. This constitutes enormous progress

relative to past standards.

The majority of research on complex networks treats interactions as bi-

nary edges in graphs, even though interactions in real networks exhibit a wide

range of intensities or strengths. The varying strength nature of many, if not

most, real networks has lead towards a more recent drive to study complex

networks as weighted graphs [63, 14, 95, 39]. Certainly this shift towards

weighted graphs as models of complex networks is welcomed. However, there

is still much to do to bring decades of research on weighted graphs to bear on

the field of complex networks. One field, in particular, that has accumulated

substantial knowledge about weighted graphs is the field of Fuzzy Set Theory

[53].

While the Fuzzy Set community has focused extensively on the mathe-

matical characteristics of weighted graphs and how to compute them [60], it
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has not focused much on the structure and dynamics of real networks ob-

tained from and tested on empirical data. For instance, we show that the

most common form of transitive closure in Fuzzy Graphs destroys the scale-

free structure of complex networks for all networks we treated (see chapter

6). Conversely, the complex networks community has paid relatively little

attention to the mathematics of weighted graphs. For instance, the very intu-

itive metric closure of distance graphs, related to the shortest-path Dijkstra’s

algorithm [29], has undesirable axiomatic features (see below).

We argue that in the field of complex networks there is still much to

do to understand the axiomatic characteristics of various ways to compute

transitive closures of weighted graphs obtained from real data. There is also

ample need to study the effect of various forms of transitivity not only on the

structure but also on the dynamics of complex networks modeled as weighted

graphs. This is all the more relevant, as we discuss below, when we use as-

sociative networks as knowledge representations in social data mining, text

mining and information retrieval. Indeed, the concept of transitive closure

is important because it allows us to identify indirectly related items–which

are potentially relevant and may possess an higher probability of direct co-

occurrence in the future [72][76]. This has useful applications in recommender

systems, text and literature mining, information retrieval, prediction of on-

line social behavior, and social network modeling at large. However, unlike

standard crisp graphs, in weighted graphs there is an infinite number of ways

to compute transitive closures. Therefore, we need to understand which ones
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preserve important characteristics of real networks as well as observe good

axiomatic requirements. We show in this chapter that for a specific family

of parametric logical connectives (the Dombi t-norm and co-norm family),

it is possible to choose a transitive closure with optimal axiomatic and in-

tuitive characteristics. However, there is a need to test which ones lead to

better performance in information retrieval and recommender systems tasks

(see chapter 5). Our mathematical insights lead to useful applications for

extracting information from real knowledge, biological and social networks.

Our methodology is based on the extraction of networks (as weighted

graphs) from large collections of documents, such as repositories of scientific

articles. These networks have been used to build recommender systems for

digital libraries [75, 72, 77, 78, 76], as we will see later in chapter 5.

4.2 Proximity Networks

Our approach is typically based on a specific proximity measure computed

from fuzzy binary relations between any two sets of items (e.g. keywords

and documents). This measure is a natural weighted extension [73] [75] [69]

of the Jaccard similarity measure [40], which has been used extensively in

computational intelligence [62] [74] [72] [76]. Given a generic binary relation

R between sets X (of n elements x) and Y (of m elements y), we extract

two complementary proximity graphs: XY P and Y XP . xyp(xi, xj) is the

probability that both xi and xj are related via R to the same elements y ∈ Y
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(and only those). Conversely, yxp(yi, yj) is the probability that both yi and

yj are related via R to the same elements x ∈ X (and only those). In short,

these measures equate proximity with co-occurrence; the respective formulas

are:

xyp(xi, xj) =

m∑
k=1

(rik ∧ rkj)

m∑
k=1

(rik ∨ rkj)
; yxp(yi, yj) =

n∑
k=1

(rki ∧ rkj)

n∑
k=1

(rki ∨ rkj)
(4.1)

Other co-occurrence measures can be used to capture a degree of asso-

ciation or closeness between elements of two sets in a binary relation. In

information retrieval, in addition to variations of the Jaccard measure, it

is common to use the cosine [9], Euclidean [89] and even mutual informa-

tion measures [91]. For characterizing closeness in relations, we prefer our

weighted Jaccard proximity measure because it possesses several desirable

characteristics. The Euclidean measure is a similarity measure in the sense

defined above (it is transitive for most commonly used criteria), but it gen-

erates non-sparse matrices, since all finite elements of the relation R lead to

similarity greater than zero. This makes it impractical for very large data

sets. The cosine proximity measure (which is not transitive for most com-

monly used criteria) is scale-invariant which makes it very appealing for text

documents of varying size, but may be problematic in other domains. The

weighted Jaccard measure has aspects of both the Euclidean and the cosine
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measures [89], and leads to sparse matrices. We use our weighted extension

of Jaccard proximity measure (eq. 4.1) in several applications. However, all

of the theoretical work we propose below applies to any proximity graph (as

defined above), independently of the measure used to obtain it from specific

data sets.

4.3 Representing Knowledge in proximity net-

works

Proximity relations are fuzzy graphs which represent the closeness of ele-

ments in associative networks (e.g. terms extracted from documents, or

users of a social networking web site). We derive our proximity networks us-

ing the proximity measures of formulae 4.1 computed from binary relations

extracted from large collections of documents, websites, or records stored in

databases. Such proximity graphs should be seen as associative knowledge

networks that represent how often elements co-occur in a large set of doc-

uments [72, 78]. As with any other co-occurrence method, the assumption

is that items that frequently co-occur are associated with a common con-

cept, theme, or social community understood by the community of users and

writers of the documents.

Notice that a proximity graph allows us to capture network associations

rather than just pair-wise co-occurrence. In other words, we expect concepts

or social communities to be organized in more interconnected sub-graphs, or
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Figure 4.1: Social communities discovered in the proximity network of journals
accessed by users of the MyLibrary@LANL recommender system [76]. In this
proximity network, journals are closer to one another, if they tend to co-occur in
the same user profile, and only in those. Drawn using the Fruchterman-Reingold
algorithm in Pajek [16]. Figure reprinted from [76].

clusters of items in the proximity networks. Indeed, our group has success-

fully used proximity networks in several knowledge extraction and literature

mining applications, such as several BioCreAtIvE Text Mining competition

(Critical Assessment of Information Extraction in Biology) [93] [4] [54], as

well as working recommender systems we have produced [77, 78, 76]. Figure

4.1 depicts a proximity network extracted from the recommender system we

developed for the MyLibrary service of the digital library at the Los Alamos

National Laboratory (LANL)[76]. The elements in this network are scientific
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journals, and the proximity weights computed from co-occurrence of journals

in user profiles. The figure clearly shows two main clusters of journals in the

network. The Principal Component Analysis (PCA) analysis of this network

revealed that the two first eigen-vectors (components) are very correlated

with the two main clusters identified. The first component refers to a set of

journals related to “Chemistry, Materials science and Physics” (left, blue).

The second component refers to a set of journals related to “Computer Sci-

ence and Applied Mathematics” (right, organge). However, these groups are

further separated and refined into more specific clusters as we consider more

components. A smaller third cluster in the figure refers to “Bioinformatics

and Computational Biology” (top, yellow) [76].

The main clusters discovered in this network highlight the reality of the

research pursued at LANL. Indeed, being a nuclear weapons laboratory, much

of its research is concerned with Materials Science and Physics on the one

hand, and Simulation and Computer Science on the other. Thus, the journal

proximity network, produced from user profiles, captured the main commu-

nities of scientists (the users of MyLibray) at Los Alamos, as well as the

knowledge associated with these communities (characterized by the journals

in the respective components). Our user tests of the quality of recommenda-

tion based on this network were quite good [76]. Furthermore, the results of

our proximity network approach on the Biocreative text mining competition

[43], [70], [1], were among the very best results in the tasks we participated

in [93]. This exemplifies how proximity networks can be seen as effective,
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knowledge and social structure representations.

4.4 Semi-metric networks

A high value of proximity means that two items from one set (e.g. words)

tend to co-occur frequently in another set of objects (e.g. web pages). But

what about items that do not co-occur frequently with one another, but do

occur frequently with the same other elements? In other words, even if two

items do not co-occur much, they may occur very frequently with a third

item (or more). Should we infer that the two items are related via indirect

associations, that is, from transitivity?

In this work we study transitivity as a general topological phenomenon in

weighted graphs such as proximity networks—where it can be computed in

different ways. While the Fuzzy Set community has focused extensively on

the mathematical characteristics of various possible conjunction/disjunction

(T-Norm/T-Conorm) pairs to compute transitivity [48, 50, 58], it has not

focused much on the structure and dynamics of real networks obtained from

empirical data. Indeed, there is very little work on the identification of the

most intuitive and appropriate forms of transitivity for information retrieval,

text mining, or network analysis in general. Conversely, while the last decade

witnessed a tremendous amount of scientific production towards understand-

ing the structure of complex networks, including weighted networks to model

Web processes (e.g. [12]), the complex networks community has paid little
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attention to the effect of various forms of transitivity on network structure

and dynamics.

To build up a more intuitive understanding of transitivity in weighted

graphs, we convert our proximity graphs to distance graphs. Distance can

be seen intuitively as the opposite of proximity. Various functions can be

used to convert one into the other. Perhaps the most common way is to use

a proximity-to-distance conversion function ϕ: distance = 1
proximity

− 1 [89],

which is the Dombi t-norm generator with λ = 1 (see [51]). From the generic

proximity measures XY P and Y XP , obtained from a relation R between

sets X and Y using formulae 4.1, we can compute generic distance functions

among the elements of X or Y :

dX(xi, xj) =
1

xyp(xi, xj)
− 1, dY (yi, yj) =

1

yxp(yi, yj)
− 1 (4.2)

where dX and dY are distance functions because they are nonnegative, sym-

metric, real-valued functions such that d(x, x) = 0 (anti-reflexive) [37]. They

define weighted graphs DX and DY , which we refer to as distance graphs,

whose vertices xi or yi are the elements of X or Y , and the edges are the val-

ues dX(xi, xj) and dY (yi, yj), respectively. A small distance between elements

implies a strong association between them.

In general, these distance graphs are not metric because, for some pair

of elements x1 and x2, the triangle inequality may be violated: d(x1, x2) ≥
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d(x1, x3) + d(x3, x2) for some element x3. This means that the shortest dis-

tance between two elements in DX is not necessarily the direct edge but

rather an indirect path. Distance functions that violate the triangle inequal-

ity are referred to as semi-metrics [37].

Rocha has compiled evidence [72] that pairs of elements with larger semi-

metric behavior (those which possess at least one indirect path between them

whose distance is much shorter than the direct link) denote a type of la-

tent association. That is, an association which is not grounded on direct

evidence provided by the relation R, but rather indirectly implied by the

overall network of associations extracted from this relation. More formally,

when d(xi, xj) � d(xi, xk) + · · · + d(xl, xm) + · · · + d(xp, xj), then the edge

(xi, xj) possesses a strong semi-metric or latent association in distance graph

DX . Clearly, semi-metric behavior is a question of degree: some semi-metric

shortcuts are much shorter than others depending on how much the triangle

inequality is violated. Thus, to measure a degree of semi-metric behavior we

can use the semi-metric and below average ratios [72]:

s(xi, xj) =
d(xi, xj)

d(xi, xj)
, b(xi, xj) =

dxi
d(xi, xj)

(4.3)

where d(xi, xj) is the shortest indirect distance between xi and xj in distance

graph DX , and dxi is the mean direct distance from xi to all other xk ∈ X

such that d(xi, xk) is finite. s > 1 for semi-metric pair of elements. b is only

applicable to semi-metric pairs of elements (xi, xj) where 0 < d(xi, xj) <
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d(xi, xj) and it measures how much the shortest indirect distance between

xi and xj falls below the average distance of xi to all its directly associated

elements xk. The below average ratio is designed to capture semi-metric

behavior of pairs (xi, xj) which do not have a finite direct distance d(xi, xj).

Note that b(xi, xj) 6= b(xj, xi). b > 1 denotes a below average distance

reduction (see [72] for more details).

Rocha has proposed that in proximity graphs of keywords extracted from

documents, a latent association identified by large values of s and b (eq.

4.3), implies novelty and can be used to identify trends [72]. We have also

used and tested this idea, with good results, in a recommender system that

was implemented at LANL’s digital library [76]. In the case of this service,

a strong semi-metric association in the journal network (figure 4.1) identi-

fies a pair of journals that hardly co-occur in user profiles, but which are

nonetheless very strongly implied via other journals which do co-occur with

the pair.

Rocha in collaboration with Luis Bettencourt at LANL, have also tested

our method on social networks of scientists, they started working with net-

work of collaboration of scientists working on the field of Feynman diagrams

from 1949 to 1956 [18]. While this is a very small network, it is validated by

historical evidence compiled by David Kaiser at MIT. In ongoing, yet unpub-

lished work, they have computed co-collaboration and co-acknowledgement

networks using our proximity measure of eq. 4.1. The first network asso-

ciates authors who tend to write papers with many of the same other au-
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Figure 4.2: Terrorist proximity network obtained from intelligence data related to
the 9/11 terrorist attacks on New York city and Washington DC [74]; strongly semi-
metric edges, computed with parameter s in formulae (4.3), shown with thicker
lines. The node for Mohammed Atta is highlighted. The strong links out of this
node, denote potential terrorist associations not identified in intelligence data, but
highly possible. Drawn using the Fruchterman-Reingold algorithm in Pajek [16]

thors, whereas the second associates authors who tend to acknowledge many

of the same other authors. This preliminary study shows that a strong semi-

metric behavior in the co-acknowledgement network, is highly correlated with

a future association in the co-collaboration network and is also a very good

predictor of a future direct collaboration. Figure 4.3 depicts a subset of the
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Figure 4.3: subset of the co-collaboration network (red edges) near Feyn-
man, with superposed edges discovered with the semi-metric analysis of the co-
acknowledgment network: green edges discovered with parameter s and yellow
with parameter b of formulae (4.3).

co-collaboration network (red edges) near Feynman, with superposed edges

discovered with the semi-metric analysis of the co-acknowledgment network:

green edges discovered with parameter s and yellow with parameter b of for-

mulae 4.3. All the superposed semi-metric edges, were found to indicate a

future collaboration. We will see later in chapter 5 some evidence between

highly semi-metric pairs and causality.

4.5 Computing Semi-metric pairs: metric clo-

sure

From a practical standpoint, one is naturally interested in identifying the

specific pairs of elements that are most semi-metric. These pairs are useful
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to issue recommendations in web services [76, 88, 59], to identify keywords

appropriate to classify biological entities [93, 4], or social interactions that

have a higher chance of occurring [74]. These pairs of items are associated

not by direct co-occurrence in the data, but are rather implied (as a global

property) by the transitivity of the proximity networks obtained from the

same data. To obtain these pairs, we compute the metric closure of the

relevant distance graph. By metric closure we mean that we calculate the

shortest distance between any pair of elements in a distance graph D. To

do this we compute a (min,+) matrix composition of D with itself (distance

product [100]) until closure is achieved—until the composition does not yield

any changes. The final matrix obtained with this process (which, as discussed

below, is related to Dijkstra’s method [29]) is the metric closure Dmc of graph

D:

Algorithm 4.1. Metric Closure (AKA distance product [100])

1. D′ = (D ◦D)

2. If D′ 6= D, make D = D′ and go back to step 1.

3. Stop: Dmc = D′

where [D ◦D]i,j = mink(dik + dkj) = d′ij is the distance product (see below).

Using D and Dmc, we identify all semi-metric pairs (edges) in D, which

are the edges for which dij > dmcij . Further, we choose the most semi-metric

pairs (edges) in D, using the semi-metric ratios of formulae 4.3, see figure
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Figure 4.4: Computing semi-metric behavior. From a relation R between sets X
and Y , keywords and documents in the example, two proximity matrices/graphs
are produced: XY P (keywords) and Y XP (documents). Distance closure is ex-
emplified for XY P only. First, a distance matrix/graph DX is computed using
formulae 4.2. Then, the metric closure of this matrix, Dmc, is computed using
(min,+) composition. Semi-metric pairs are then identified via formulae 4.3.

4.2 for an example with terrorist networks. Figure 4.4, depicts the general

process of computing semi-metric behavior given the proximity-to-distance

isomorphism of formulae 4.2.

The All Pairs Shortest Paths (APSP) problem is one of the most funda-

mental algorithmic graph problems for computing shortest paths (distances)
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among all pairs of vertices in (weighted) distance graphs [100]: it is equiv-

alent to the metric closure of such graphs. The complexity faced by the

fastest known algorithm for solving the APSP problem for weighted graphs

is O(mn + n2log n), where n and m are respectively the number of vertices

and edges [23]. The APSP uses the Bellman-Ford algorithm for removing all

negative cycles and then determines the distances of all pairs by calling the

Single-Source Shortest-Path (SSSP) Dijkstra algorithm n times, [23]. How-

ever, for positive sparse weighted graphs the Johnson algorithm reduces to

a time complexity O(n2log n), [83]. In this work we refer to this algorithm

as the APSP Dijkstra algorithm. There are other approaches to solving the

APSP problem, such as Floyd-Warshall algorithm [23][83], but all of them

fall in the O(n3) complexity range [100].

The Distance Product, or metric closure (Algorithm 4.1) has complexity

O(n2.575), and it is another approach to solving the APSP problem [100].

The distance product algorithm is based on matrix operations as we can

see in algorithm 4.1 is a special case of transitive closure on Fuzzy graphs

as we will see in the next sections. In the following sections, we define a

general Distance Closure, which is a generalization of the metric closure and

is equivalent to the transitive closure in Fuzzy, Proximity graphs.
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4.6 Fuzzy Shortest paths

A generalization of shortest paths was first introduced by Dubois and Prade

in [33] and studied in the last years among the Fuzzy Sets community,

[10, 28, 57, 17]. Two main approaches have been proposed to give a de-

gree of fuzziness to the graph edges, [57] [28]. The classical fuzzy shortest

path problem the length of a given edge in the graph is attributed a fuzzy

number. The second approach the length of a given path is a fuzzy number

and each edge in the graph has a membership value. The search for the

fuzzy shortest path in the graph can be done using several approaches such

as: using a dynamic programming formulation, [57], methods based on the

defuzzification of the fuzzy weights [57] and others [33, 10, 17].

In this work we tackle a slightly different problem, related of course to

fuzzy shortest path. We study the shortest path problem in weighted graphs

(Fuzzy graphs) as been classically studied. We relate it with the various pos-

sibilities of transitive closure, and look into the impact of different closures,

have in the complex networks analysis.

4.7 General distance closure

Transitive Closure is a well established algorithm in the theory of Fuzzy

Graphs, and used to calculate a transitive graph, whose edge weights are not

smaller than every indirect path between the same edge vertices. Transitive

closure is also behind many definitions and theorems in the theory of Fuzzy
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Graphs [60]. All theories based on weighted graphs, such as the small-world

phenomena, can profit from concepts already stablished in Fuzzy Graph The-

ory, such as transitive closure and its relation to the All Pairs Shortest Paths

(APSP) problem, typically based on the Dijkstra algorithm [29].

The relation between Transitive Closure and Distance Closure can be

seen in the mathematical framework of algebraic structures [44, 8, 3]. In

fact the transitive closure can be seen as a closed semi-ring I = {S =

[0, 1],∨,∧, tc, 0, 1} 1, where ∨,∧ : S × S → S are two binary operations

and tc : S → [0, 1] is the closure. Likewise, the distance closure can be

seen as a closed semi-ring, II = {S ′ = [0,+∞], f, g, dc, 0,+∞}, where

f, g : S ′ × S ′ → S ′ are two binary operations and dc : S ′ → [0,+∞] is

the closure. Here, we relate the set of conditions (ϕ,∧,∨, f, g) for the equiv-

alence of transitive closure with a pair of t-norm ∧, t-conorm ∨ in semi-ring

I and it distance closure with a pair of binary operations f and g in semi-ring

II, as constrained on isomorphism ϕ that maps between S and S ′.

Of particular interest is the relationship between the metric closure (spe-

cial case of distance closure, typically obtain via APSP Dijkstra algorithm

or the distance product) and the transitive closure of Fuzzy Graphs. We

provide a general mathematical framework to this problem, which is particu-

larly targeted to the practice of complex networks and information retrieval

from empirical data. In summary, if we have a proximity graph we use the

1A closed semi-ring is a semi-ring with two additional properties: (1) if a1, a2, ..., an, . . .
is a countable sequence of elements of S then a1 ∨ a2 ∨ ... ∨ an ∨ . . . exists and is unique;
(2) the operation ∧ distributes over countably infinite ∨’s as well as finite ∨’s.
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transitive closure to calculate a similarity graph, which is transitive [53]. If,

instead, we have a distance graph, we can use the distance closure to com-

pute the smallest possible distance between vertices. There are isomorphisms

that map proximity graphs, (edges in [0, 1]), into distance graphs (edges in

[0,+∞]), such as the function of formula 4.2. However, there are no linear

functions for this map, even though there is an infinity of non-linear functions

that instantiate; this poses us with a problem of degeneracy of solutions to

the metric closure in weighted graphs. Therefore, if we want to understand

and make appropriate inferences from the metric or distance closure for a

given weighted graph, we have to take a closer look at the space of non-

linear functions that instantiate this isomorphism, which we do below. In

fact, this non-linear isomorphism enforces a particular topological distortion

of the original proximity graph used to construct the distance graph, which

ultimately determines the way we compute shortest paths.

We also show that the isomorphism chosen is a generator of a t-norm, (see

[51]). The concept of t-norms was introduced by Karl Menger to generalize

transitivity in probabilistic metric spaces [80]. The results of Menger and

his followers were then applied to the theory of Fuzzy Sets to generalize

the concept of Conjunctions (Unions) and Disjunctions (Intersections) in

Fuzzy logic (Sets) [53]. Transitive closure is a generalization of the APSP

problem, and, as it is well known in the fuzzy set community, there are infinite

solutions to this problem, [53]. Nonetheless, different t-norms provide lower

and upper bounds of the strength of transitivity, where the strongest t-norm
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is the minimum function and the weakest t-norm is the drastic product [51]

[53]. The ability to sweep the transitivity space that results from the t −

norm bounds allows us to control and understand the topological distortion

imposed on proximity graphs when, via a non-linear isomorphism, we convert

to a distance graph to be fed to the APSP or metric closure.

We now determine the general constrains on closure imposed by the non-

linear isomorphism between the space of proximity graphs and the space of

distance graphs. Figure 4.5 shows the general picture of the problem. Sup-

pose we have a proximity graph GP (a fuzzy symmetric and reflexive graph),

a t-norm ∧, a t-conorm ∨, both acting on GP , and two binary operations

f , g acting on GD (a distance symmetric and anti-reflexive graph), and on

isomorphism ϕ (our distance function). We want to characterize what are

the constrains that ϕ imposes on the closures computed from these graphs,

under various algebraic operators. This isomorphism ϕ can only be a non-

linear function because it maps the unit interval [0, 1] into the positive real

line [0,+∞].

Definition 4.1. Two undirected weighted graphs G1 = (V,E1) and G2 =

(V,E2) are isomorphic if there is a vertex-preserving bijective edge mapping

ϕ : E1 → E2, i.e. a bijection ϕ with

∀u, v ∈ V : eu,v ∈ E1 ⇔ ϕ(eu,v) ∈ E2

Let X be the set of vertices and P be the connectivity matrix of the
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Figure 4.5: Transitive and Distance Closure space.

proximity edges of GP = (X,P ). Let D be the connectivity matrix of the

distance edges of GD = (X,D). P is reflexive, i.e. px,x = 1, and D is

anti-reflexive, i.e. dx,x = 0, ∀x ∈ X.

Definition 4.2. Let ϕ : [0, 1] → [0,+∞], dx,y = ϕ(px,y), be a function that

maps the edge weights px,y ∈ [0, 1] of a fuzzy proximity graph GP = (X,P )

into the edge weights dx,y ∈ [0,+∞] of a distance graph GD = (X,D),

∀x, y ∈ X, let also Φ : [0, 1] × [0, 1] → [0,+∞] × [0,+∞] be the graph

function that maps the proximity connectivity matrix into the distance con-

nectivity matrix, D = Φ(P ). We define ϕ and Φ in the following way:

(1) ϕ is strictly monotonic decreasing, ∀a, b ∈ [0, 1] : a > b⇒ ϕ(a) < ϕ(b);

(2) ϕ(0) =∞ and ϕ(1) = 0;

(3) Φ(P ) = [ϕ(px,y)], ∀x, y ∈ X.

Because ϕ is a real valued function and it is strictly monotonic it is also
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bijective, therefore the graphs GP and GD are isomorphic with Φ, with the

same set of vertices X.

Theorem 4.1. Let GP = (X,P ) be a proximity (symmetric and reflexive)

graph and Φ the graph distance function in definition 4.2, then GD = (X,D),

where D = Φ(P ) is symmetric and anti-reflexive.

Next we define a set of binary operators, which operate on distance

graphs.

Definition 4.3. (TD-norms and TD-conorms) Let f, g : [0,+∞]×[0,+∞]→

[0,+∞], such that for all a, b, c ∈ [0,+∞] the following four axioms are sat-

isfied:

(1) f(a, b) = f(b, a), g(a, b) = g(b, a) (commutativity).

(2) f(a, f(b, c)) = f(f(a, b), c), g(a, g(b, c)) = g(g(a, b), c) (associativity).

(3) f(a, b) ≤ f(a, c), g(a, b) ≤ g(a, c), whenever b ≤ c (monotonicity).

(4) f(a,∞) = a, g(a, 0) = a, with a ≤ ∞ (boundary conditions).

We call g a TD-norm and f a TD-conorm.

Theorem 4.2. If ϕ is a distance function as in definition 4.2 and ∧, ∨

a t-norm, t-conorm pair and f and g a TD-conorm and TD-norm pair as

defined in 4.3, the following statements are true:

(1) ϕ(a ∧ b) = g(ϕ(a), ϕ(b));

(2) ϕ(a ∨ b) = f(ϕ(a), ϕ(b)).
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Where a, b ∈ [0, 1].

Definition 4.4. Let GP = (X,P ) be a fuzzy proximity graph, with edges

px,y ∈ [0, 1] ∀x, y ∈ X. We define the n-power of P as

P n = P ◦ P ◦ · · · ◦ P︸ ︷︷ ︸
n

,

where (P ◦ P )(x, y) = ∨
z
(∧(px,z, pz,y)), ∀x, y, z ∈ X.

Definition 4.5. The transitive closure of a fuzzy proximity graph is com-

puted as:

P∞ = P ∪ P 2 ∪ P 3 ∪ · · ·

Where ∪ is some fuzzy union (t-conorm) of two sets. It is computed via

Algorithm 2.1.

Theorem 4.3. If the graph is finite then, the power of P converges for a

certain k (largest path in the graph), the transitive closure of GP , is the

graph GP ≡ (X,P tc), obtained by:

P∞ = P ∪ P 2 ∪ P 3 ∪ · · · ∪ P k = P tc.

The proof of this theorem can be found in [53] [60].
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Definition 4.6. (Distance Composition) Let GD = (X,D) be the dis-

tance graph where edges are dx,y ∈ [0,+∞], ∀x, y ∈ X . We define the

n-power of D by

Dn = D ◦D ◦ · · · ◦D︸ ︷︷ ︸
n

where (D ◦D)(x, y) = f
z
{g(dx,z, dz,y)} : ∀x, y, z ∈ X. Where f and g are two

binary functions defined in 4.3.

Definition 4.7. (Distance Closure) The distance closure is given by:

D∞ = D∩̇D2∩̇D3∩̇ · · ·

Where (A∩̇B)(x, y) = f(axy, bxy), ∀x, y ∈ A,B, where f is a TD-conorm.

Theorem 4.4. If the graph is finite then the power of D converges for a

certain k, thus, the distance closure of GD, is the graph GD ≡ (X,Ddc),

obtained by:

D∞ = D∩̇D2∩̇D3∩̇ · · · ∩̇Dk ≡ Ddc.

This theorem can be easily proven from theorems 4.3, 4.5 and 4.6 (see

below). Next we give a more general definition of the metric closure computed

with algorithm 4.1.

Definition 4.8. (Metric Composition) Same as definition 4.6, with f ≡

min and g ≡ +.
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Definition 4.9. (Metric Closure) Same as definition 4.7 with f ≡ min

and g ≡ +. The metric closure of GD is the graph Gmc
D ≡ (X,Dmc). It is

computed via Algorithm 4.1 (AKA distance product).

Theorem 4.5. if GP = (X,P ) is a fuzzy proximity graph, ϕ the isomor-

phism (distance function) in definition 4.2 and GD = (X,D) is the respec-

tive distance graph, where D = Φ(P ). The following is true with the distance

composition:

1) Φ(P )⊇̇Φ(P 2)⊇̇Φ(P 3)⊇̇ · · · ⊇ Φ(P∞) ;

2) D⊇̇D2⊇̇D3⊇̇ · · · ⊇̇D∞.

where Φ(P i)⊇̇Φ(P i+1) means that: ∀x, y ∈ X : ϕ(pix,y) ≥ ϕ(pi+1
x,y ).

Theorem 4.6. Given a proximity graph GP = (X,P ), a distance graph

GD = (X,D), and isomorphism ϕ, Φ as defined in 4.2. For a t-norm ∧

and t-conorm ∨ used to compute the transitive closure of P, then there exists

a TD-conorm/TD-norm pairs f and g, to compute the distance closure of D,

Φ(P tc) = Ddc, which obey the condition:

∀x, y ∈ X : f
z
{g(ϕ(px,z), ϕ(pz,y)} = ϕ(∨

z
{∧(px,z, pz,y)})

(where Φ−1 is the inverse of Φ and ϕ−1 is the inverse function of ϕ). The

same is true if we fix f (TD-conorm), g (TD-norm) and isomorphism ϕ, Φ,

to obtain a pair of t-conorm, t-norm ∨ and ∧.
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The conditions of this theorem leads to the equations of theorem 4.2:

g(dx,z, dz,y) = ϕ(∧(ϕ−1(dx,z), ϕ
−1(dz,y)))

f(dx,z, dz,y) ≡ ϕ(∨(ϕ−1(dx,z), ϕ
−1(dz,y)))

.

From these last equations we can also find ∨ and ∧ given f , g and the

isomorphism ϕ:

∨(px,z, pz,y) = ϕ−1(f(ϕ(px,z), ϕ(pz,y)))

∧(px,z, pz,y) = ϕ−1(g(ϕ(px,z), ϕ(pz,y)))

4.8 Exploring the Proximity/Distance isomor-

phism space

The conditions of theorem 4.6, allows us to compute f , g given ∨, ∧, and ϕ,

as well as ∨ and ∧ given f , g, and ϕ. This allows us to study several closure

scenarios (e.g., Metric, Ultra-metric, dombi conjugate t-norm/t-conorm for

λ = 1), which lead to different distortion of the original graphs.

Given this space of possible transitivity criteria, it is reasonable to ask

several questions: for a given proximity-to-distance isomorphism ϕ, what is

the equivalent of the fuzzy (max,min) closure for a distance graph? Per-
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haps more interestingly, what is the fuzzy equivalent of the metric closure of

a distance graph? Which closures preserve important characteristics of real

complex networks and observe good axiomatic requirements? These ques-

tions are important because all the applications of complex networks that

use transitivity produce different results depending on the connectives em-

ployed. Not only do we want intuitive connectives (e.g. leading to a metric

closure), we want those that lead to best results in specific applications.

Example 4.1 (Ultra-Metric Closure) Let ϕ be any t-norm generator (see

[53]), and f(x, y) ≡ min(x, y) the min TD-conorm and g(x, y) ≡ max(x, y)

the max TD-norm. Where a, b ∈ [0, 1]2, a = ϕ−1(x) and b = ϕ−1(y).

We know from theorem 4.6:

∨(a, b) = ϕ−1(f(ϕ(a), ϕ(b)))

it easy to show that

∨(a, b) = max(a, b)

since ϕ is strictly monotonic decreasing.

We apply the same reasoning to ∧:

∧(a, b) ≡ ϕ−1(g(ϕ(a), ϕ(b)))
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it is easy to show that,

∧(a, b) = min(a, b)

since ϕ is strictly monotonic decreasing. Therefore, the ultra-metric closure

(g, f) ≡ (max,min) become in the proximity space (∧,∨) ≡ (min,max).

Ding et al [30] have previously shown this relationship, which derives eas-

ily for any ϕ in our framework. In this case, the (∨ ≡ max,∧ ≡ min) closure

of a fuzzy graph is equivalent to the ultra-metric closure of a distance graph

(f ≡ min, g ≡ max), where instead of the triangle inequality, a stronger in-

equality is enforced: dij ≥ max(dik, dkj). Ding et al further used this closure

to compute cliques in protein interaction networks—a problem relevant for

computational Biology.

Example 4.2 (Metric Closure) Let ϕ(x) = 1
x
− 1 (formula 4.2), which

is also the Dombi t-norm generator with λ = 1 (see [53]), and f(x, y) ≡

min(x, y) the TD-conorm and g(x, y) ≡ +(x, y). Where a, b ∈ [0, 1]2, a =

ϕ−1(x) and b = ϕ−1(y).

We know from theorem 4.6:

∨(a, b) = ϕ−1(f(ϕ(a), ϕ(b)))

if a ≤ b then,

∨(a, b) = ϕ−1(min(ϕ(a), ϕ(b))) = b = max(a, b)
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therefore,

∨(a, b) = max(a, b)

We apply the same reasoning to ∧:

∧(a, b) = ϕ−1(g(ϕ(a), ϕ(b)))

∧(a, b) = ϕ−1(ϕ(a) + ϕ(b)) = ϕ−1(
a+ b− 2ab

ab
)

and since ϕ−1(x) = 1
x+1

we obtain,

∧(a, b) =

 0 for (a, b) = (0, 0)

ab
a+b−ab for (a, b) ∈]0, 1]2

Therefore, the metric closure (g, f) ≡ (+,min) in the proximity space is

(∧,∨) = (DT 1
∧,max).

Figure 4.6 depicts the two examples 1 and 2 closures related to the ques-

tions above, for the proximity-to-distance isomorphism ϕ of formulae 4.2.

We will see below from an applied viewpoint, that the (max,min) closure

of proximity graphs (or ultra-metric closure in distance graphs) is quite de-

structive, this means that every item becomes highly related to every other

indirectly linked item, however far, resulting in very low performance in in-

formation retrieval applications, for instance. We already knew from our

recommender systems [77, 76], as well as from Rocha’s analysis of social and

knowledge networks [72, 74, 93, 4], that the metric closure of distance graphs
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Figure 4.6: Metric and ultra-metric distance closures, and their fuzzy proximity
graph counterparts for ϕ : distance = 1

proximity − 1. The ultra-metric distance
closure is equivalent to the (max,min) closure of a fuzzy graph. The metric
closure is equivalent to the (max,H∧) closure of a fuzzy graph, where H∧ is the
base Hammacher conjunction [53].

produced better and more intuitive results than the (max,min) closure of

proximity graphs—insofar as the search for relevant indirect associations is

concerned. The metric closure is a weaker constraint than the ultra-metric

(or max − min of fuzzy graphs), which results in significantly fewer edges

being altered in the original graph: only those indirect paths where every

edge is very short.

Now let us go in the other direction, and start from a well-known ∧ and

∨ in Fuzzy graphs.

Example 4.3 (Dombi Closure λ = 1) Let ϕ(x) = 1−x
x

be the Dombi
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t-norm generator with λ = 1 (see [53]), and ∧ ≡ DT 1
∧(a, b) = ab

a+b−ab the

Dombi t-norm with λ = 1 (see [53]) and ∨ ≡ DT 1
∨(a, b) = a+b−2ab

1−ab . Where

a, b ∈ [0, 1], a = ϕ−1(x) and b = ϕ−1(y).

We know from theorem 4.6:

g(x, y) = ϕ(∧(ϕ−1(x), ϕ−1(y)))

It is easy to show that ϕ−1(x) = 1
x+1

, thus from example 4.2:

g(x, y) ≡ x+ y

.

We apply the same reasoning to f :

f(x, y) ≡ ϕ(∨(ϕ−1(x), ϕ−1(y)))

f(x, y) =
1−DT 1

∨(ϕ−1(x), ϕ−1(y))

DT 1
∨(ϕ−1(x), ϕ−1(y))

f(x, y) =
1−DT 1

∨( 1
x+1

, 1
y+1

)

DT 1
∨( 1

x+1
, 1
y+1

)

we have,
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f(x, y) =



y for x = +∞

x for y = +∞
xy
x+y

for (x, y) ∈]0,+∞[2

0 for (x, y) = (0, 0)

The three examples above, are three well-known cases of closure. But let

us pursue a more comprehensive explanation of possible closures.

One way to explore the isomorphism space is to constrain f ≡ min and

g ≡ + to compute the metric closure of distance graph D.

Definition 4.10. The pseudo-inverse of a decreasing generator ϕ is defined

by

ϕ(−1)(a) =


1 for a ∈ (−∞, 0)

ϕ−1(a) for a ∈ [0, ϕ(0)]

0 for a ∈ (ϕ(0),∞)

Theorem 4.7. (Characterization Theorem of t-norms) Let ∧ be a binary

operation on the unit interval. Then, ∧ is an Archimedean t-norm iff there

exist a decreasing generator ϕ such

∧(a, b) = ϕ(−1)(ϕ(a) + ϕ(b))

for all a, b ∈ [0, 1].

Both definition 4.10 and theorem 4.7 are from [53]. The next corollary
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follows from theorem 4.6 and generalizes the Metric Closure as we vary t-

norm generator varphi (isomorphism).

Corollary 4.1. According to the formulation of theorem 4.6, let f ≡ min()

, g ≡ +() and ϕ a distance function, as defined in 4.2. If ∨ = max() as

t-conorm, then the t-norm operator ∧ exists and ϕ is its generator function.

Corollary 4.1 states that in the formulation of theorem 4.6, when we

fix t-conorm ∨ = max() and (f, g) = (min,+) operators, there exists a t-

norm ∧, which preserves the isomorphism between proximity and distance

graphs, as well as their closures with the respective operators. Moreover, the

isomorphism function ϕ is in fact the t-norm generator. This corollary has

a strong impact when we convert a proximity graph into a distance graph

and then calculate a distance closure. The specific isomorphism function

we choose defines a t-norm, in the proximity graph space, which ultimately

influences how we measure distances in the distance graphs. Sweeping the

space of ϕ functions allows us to study their topological effects on measuring

distance,that can be easily computed via APSP or distance product.

We can see from theorem 4.6 and corollary 4.1 that the transitive closure

of weighted graphs entails a very wide space of possibilities. Each one leads

to a distinct way of computing the distance closure or the APSP Dijkstra

algorithm. Consequently these closures are not unique as already known in

the theory of fuzzy graphs: for a given application, it is important to pay

attention to the distortion created by the distance closure or transitive closure
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chosen on the original proximity information extracted from relational data

[53].

We define distortion, ∆ (see below), as the difference between the edges

in the original graph (proximity) and the edges obtained by a given closure.

We show that the distortion is smaller with a metric closure than with a

ultra-metric closure.

∆(P ) =
∑
x

∑
y

|pcxy − pxy| (4.4)

Theorem 4.8. Given the isomorphism ϕ, if Dmc is the metric closure with

f ≡ min and g1 ≡ +, and Dum is the ultra-metric closure with f ≡ min and

g2 ≡ max then Dmc⊇̇Dum is equivalent to Pmc ⊆ P um, where Dmc = Φ(Pmc)

and Dum = Φ(P um).

Theorem 4.7 shows that the transitive closure with (max,min), which is

the ultra-metric distance closure, produces a larger distortion of the original

graph, than what we get from the metric closure of the distance graph ∆um ≥

∆mc. These results are also shown in Figure 4.6.

In the next section we search for distance closures with good axiomatics,

close to metric closure. Afterwards, using corollary 4.1, we proceed to study

the range of t-norms generated by ϕ, a range bounded by the drastic product

and the minimum t-norms: ∧ ∈ [drastic product TD, min].
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4.9 Axiomatic characteristics of Distance Clo-

sure

In the Fuzzy logic community, considerable work has been produced to iden-

tify pairs of logical connectives and complements that satisfy desirable ax-

iomatic characteristics (e.g. De Morgan’s laws [31])2. These pairs of general

(fuzzy) logic conjunction and disjunction operations are known as conjugate

t-norms and t-conorms respectively [53, 49]. As discussed above in this work,

each distinct conjunction/disjunction pair leads to a specific transitive closure

of an initial proximity graph. Therefore, transitivity in weighted graphs de-

pends on the particular logical connectives used. However, only some of these

entail intuitive logical connectives: ∧ and ∨. For instance, the (max,min)

logical connectives, with the standard fuzzy complement (x̄ = 1− x), follow

De Morgan’s laws. So do many other logical connectives and complements,

see [53] for a good overview.

The metric closure of a distance graph, in answer to the second ques-

tion above, corresponds to an interesting fuzzy logic conjunction/disjunction

pair—in the case of the isomorphism ϕ of formulae 4.2 as shown in example

4.2. In the proximity space, the summation operation used in the distance

graph metric closure becomes a bounded sum operation, which is a special

case of the Hamacher [41] and the Dombi [31] conjunctions (or intersections

or T-Norms) [53]:

2This section was done in collaboration of Bharat Dravid
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H∧ ≡ DT 1
∧(a, b) =

ab

a+ b− ab
(4.5)

for any real a, b. Thus, the metric closure of distance graphs, corresponds

to the (max,DT∧) transitive closure of a fuzzy graph for the most common

isomorphism defined in formula 4.2. Unfortunately, this pair of fuzzy logic

connectives, with any complement function, leads to a fuzzy algebra with

very poor axiomatic characteristics. It can be easily seen that this pair of

connectives does not satisfy De Morgan’s laws, for instance (see proof in

appendix). One could seek a different isomorphism ϕ to generate a t-norm

with better logical characteristics, or we could seek a different fuzzy t-norm/t-

conorm pair, in some sense close to the metric closure pair (max,DT∧), but

with better axiomatics. However, these avenues need to be pursued with care

since our choice of the proximity-to-distance isomorphism and the concept

of metric closure (related to Dijkstra’s algorithm) are quite intuitive, and

indeed used ubiquitously.

Furthermore, the space of possible transitive closures leads to quite dis-

tinct results in performance of information retrieval systems and in the anal-

ysis of complex social and knowledge networks. For instance, in the recom-

mendation system for the MyLibrary@LANL system (see section §4.3) we

used the proximity network of scientific journals depicted in Figure 4.1. To

recommend items that users might be interested in, we computed the met-

ric closure of this network and identified the highly semi-metric edges (see
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§4.5), which lead to very good performance in user tests [76]. When we used

the more traditional (max,min) (ultra-metric) closure of fuzzy proximity

graphs, many more irrelevant items are picked up, lowering the informa-

tion retrieval measures of performance. The use of an appropriate closure

is important for all other applications of weighted networks, be it for social

analysis, literature mining of biological entities, or information retrieval and

recommendation systems based on knowledge and social networks.

The field of fuzzy sets has been very concerned with studying conjunc-

tion/disjunction pairs that lead to good logical axiomatic constraints. For

instance, it is reasonable to expect a complement to be involutive, so that

¯̄x = x. It is also reasonable that disjunction, conjunction and complement

follow De Morgan’s laws: a ∨ b = ā ∧ b̄, a ∧ b = ā ∨ b̄. Such good axiomatic

characteristics are also important for fuzzy graphs, especially when we use

them to model knowledge networks. Indeed, when we use proximity networks

as knowledge representations (§4.3), it may be useful to have an intuitive un-

derstanding of what is the complement of a given network, or better, be able

to compute the conjunction and disjunctions of various networks obtained

from distinct data sources. For instance, in the recommender system devel-

oped for MyLibrary@LANL [76], it may be useful to issue recommendations

on a aggregate journal network built from a conjunction of two constituent

networks (e.g. journal proximity obtained from user access data and journal

proximity obtained from citation data). If, as we have shown (§4.3), proxim-

ity networks are good knowledge representations for many applications, we
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need to be able to combine networks obtained from different data sources, to

compute compound logical statements from the knowledge they store.

As we discussed above, the metric closure of distance graphs becomes

the (max,DT 1
∧) transitive closure in fuzzy graphs, using the isomorphism

of formula 4.2. Since no involutive complement exists that can satisfy De

Morgan’s laws with the (max,DT 1
∧) conjunction/disjunction pair, we now

ask what are the closest conjunction/disjunction pairs to the metric closure,

that with an involutive complement obey De Morgan’s laws. This search

is pursued here by inspecting the space of known t-norm/t-conorm families

[53], using the Dombi family [31] for the simplest isomorphism ϕ of formula

4.2.

DT λ∨ (a, b) =
1

1 +
[(

1
a
− 1
)−λ

+
(
1
b
− 1
)−λ]− 1

λ

(4.6)

From this general Dombi t-conorm formula we can find a parameter value

for it which will lead to obeying De-Morgan’s laws when using the Dombi

t-norm used in the metric closure (λ = 1).

Let us investigate if De-Morgan’s Laws work with complement C1(x) =

1− x;

ā ∨ b̄|∨ ≡ Dλ
∨(a, b) =

1

1 +
[(

1
a
− 1
)λ

+
(
1
b
− 1
)λ]− 1

λ

a ∧ b|∧ ≡ D
1

∧(a, b) = 1− ab

a+ b− ab
=
a+ b− 2ab

a+ b− ab
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For De-Morgan’s Law to hold, a ∧ b = a ∨ b:

−ab

[(
1

a
− 1

)λ
+

(
1

b
− 1

)λ] 1
λ

+ a+ b− 2ab = 0

This equation has λ = 1 as a straightforward solution which is not sur-

prising because for λ, the triple satisfies De-Morgan’s Laws [53]. We can say

that the left side of the equation is the error or deviation from a t-norm/t-

conorm pair that obeys De-Morgans laws with standard complement. An

integral of the left side of the above equation gives an estimate of the total

deviation from ideal axiomatics over the entire domain of the function.Thus

we can define the error function, F(λ) as:

F (λ) =

∫ 1

0

∫ 1

0

−xy [(1

x
− 1

)λ
+

(
1

y
− 1

)λ] 1
λ

+ x+ y − 2xy

dxdy

Figure 4.7: Error between the surface established by the desired axiomatic con-
straints, and (DT λ∨ , DT

1
∧) as λ varies.

Figure 4.7 shows the error (computed as the double integral, above) be-
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tween the surface established by the desired axiomatic constraints.

While (DT 1
∧, max) does not possess good axiomatic characteristics, it not

deviates too much from the axiomatically desirable (DT 1
∨, DT

1
∧). Nonethe-

less, if one intends to use proximity or distance graphs as knowledge graphs,

i.e., as representations of knowledge extracted from relational data, the (DT 1
∨, DT

1
∧)

t-norm/t-conorm pair is the only that preserves desirable characteristics with

the most intuitive and simple isomorphism. It allows De Morgan and invo-

lution rules to be systematically applied without concern. In contrast, the

t-norm/t-conorm pair used in metric closure (max,DT 1
∧) will result in the

accumulation of errors. However,the relatively small error of the metric clo-

sure space (λ → +∞) may be acceptable in certain circumstances3. There

are many other conjunction/disjunction families to explore, which can be

studied as future work.

4.10 Exploring the isomorphism with the Dombi

t-norm

In the previous section, we fixed the isomorphism ϕ to the simplest and most

common distance function given by formula 4.2. This allowed us to search the

t-norm/t-conorm pairs that better preserve logical axiomatics and are closed

to our intuitive metric closure operator. Here, we fix the metric closure

operators instead, and search the space of possible functions ϕ.

3The curve in Figure 4.7 asymptotically approaches 0.1 when λ→ +∞
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We have seen that we can apply an infinity of pairs of t-norms and t-

conorms to calculate distance closure, and compute shortest paths in dis-

tance graphs. In this formulation (see corollary 4.1), we fix the t-conorm

with ∨ ≡ max, allowing us to explore many options for the t-norm ∧. The

t-norm is defined via the t-norm generator isomorphism ϕ (corollary 4.1).

Then, using (f ≡ min, g ≡ +) binary operations for computing the met-

ric closure, via the APSP Dijkstra, distance product or equivalent, we can

sweep the space of possible t-norms, thus simultaneity exploring the range

of possible isomorphisms. This poses us the following question: which t-

norm/isomorphism is optimal, given a set of assumptions, for the shortest

paths calculation? We answer this question here for the Dombi t-norm fam-

ily, which provides the range of t-norms between the lower and upper bounds

through the λ parameter. Recall that the Dombi t-norm generator is:

ϕ(x) =

(
1

x
− 1

)λ
(4.7)

where λ is the sweeping parameter. The parameter λ in the t-norm generator

takes values in ]0,+∞[: λ→ 0 lower bound (drastic product) and λ→∞ is

the upper bound (minimum). The reason we choose this t-norm generator

is because it yields the more commonly used isomorphism from proximity to

distance; when λ = 1, [2] [89], the function 4.7, becomes isomorphism 4.2,
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which we have used in the previous section:

ϕ(x) =
1

x
− 1.

We have seen that when t-norm and t-conorm (∨,∧) are fixed the tran-

sitive closure and the distance closure are equivalent via isomorphism ϕ.

For empirical analysis of complex networks it is desirable that properties

of the graphs obtained via specific closures, such as average shortest path, be

simultaneously characteristic in both spaces (proximity and distance). That

is, the fluctuations of the mean, must be constrained on both spaces (average

shortest path and average strongest path). In order to have a characteristic

average path length, the shortest paths distribution must follow approxi-

mately a normal distribution. We want to find the best λ, using the Dombi

t-norm generator, which guarantees these assumptions.

Assuming that the shortest path distribution of a distance graph follows

a normal distribution, the probability density function for a normal random

variable X here, the shortest path, is given by:

hX(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 (4.8)

where µ and σ are the mean and standard deviation of the normal distribu-

tion.

The mean of a random variable Y = j(X), which is a monotonic function

of X, where X is the random variable representing shortest path in a distance
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graph, and Y the random variable representing the strongest path in the

isomorphic distance graph, is given by:

< Y >=

∫ ∞
0

j(x)hX(x)dx (4.9)

In our case,

j(x) = ϕ−1(x) =
1

x
1
λ + 1

Therefore, the fluctuations to the mean, in the proximity space are given by:

CVp =
σp
µp

=

√
< Y 2 > − < Y >2

< Y >
(4.10)

where CVp is the coefficient of variability4, and σp and µp are the standard

deviation and mean of the strongest path in the proximity space and < Y 2 >

is given by:

< Y 2 >=

∫ ∞
0

j2(x)hX(x)dx (4.11)

The fluctuations in the distance space of the shortest path, are given by

the coefficient of variability, CVd:

CVd =
σ

µ
(4.12)

The dependence of CVp on CVd comes from equations 4.8, 4.9 and 4.11.

In figure 4.8 we plot the theoretical relation between λ and CVp for µ = 10

4The coefficient of variability is scale invariant.
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(average shortest path in distance space is normally distributed) and CVd =

0.2, using equation 4.10; the shape is preserved for different parameter values.

We can see from this figure that the coefficient of variability in the proximity

space is minimum when λ converges to the min t-norm (λ → +∞); the

ultra-metric closure. However, from our assumptions we require that CVp ≈

CVd = 0.2, in this case. The marked point in the figure 4.8 shows the point

where the assumptions are met. We observe that λ ≈ 1 in this scenario.

Figure 4.8: Study of the fluctuations in proximity space, CVp as function of
λ for µ = 10 (average path length in distance space) with CVd = 0.2.

To inspect in more detail the best value or values for λ, using the met-

ric closure we plot, in figure 4.9 the theoretical λ versus µ (average shortest

path), for several acceptable coefficients of variability in both spaces, assum-

ing that the optimal value should share a controlled CVd ≈ CVp ≤ 0.6. The

108



results from this figure are obtained by finding the root (λ) of the equation:

CV theoretical
p (λ)− CVp = 0

CV theoretical
p (λ) =

√
< Y 2 > − < Y >2

< Y >

Where < Y 2 > and < Y > are given by equations 4.8, 4.9 and 4.11

with j(x) = 1

x
1
λ+1

and we assume hX(µ, σ) is normally distributed with

σ = µ× CVd (µ is the average shortest path) with CVd ≈ CVp the real data

fluctuations. We use Mathematica 7 to find the roots of this equation. From

this figure we can see that when we increase the coefficients of variability, λ

also increases. However, λ remains contained in the interval [0.8, 1.9]. For

small average shortest paths the best λ ∈ [0.8, 1.2], where after a transient

(µ ≈ 25), λ reaches an equilibrium, independent of scale factors (λ becomes

invariant). The scale factor associated to the average shortest path length

(characteristic for each network), depends mainly on the weights distribution.

We can also observe that for very small fluctuations (CVd = CVp = 0.1), λ

becomes invariant for values ≈ 1. λ = 1 is an optimal asymptotic value

for small fluctuations, since CV ≥ 0. In real data in order to guarantee a

characteristic mean (average strongest path and average shortest path), in

both spaces (proximity and distance), the fluctuations should be as small as

possible. However in real data the shortest paths distribution only approxi-

mates to the normal distribution, which is one of our assumptions, resulting

in higher fluctuations, for both spaces. For fluctuations CVd ≈ CVp ∈ [0, 0.4]
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we should use an isomorphism with λ ∈ [0.8, 1.9]. For CV ≈ 0 the asymp-

totical optimal value is λ = 1 (see figure 4.9). This gives us a lower bound

to calculate the desired metric closure in a distance graph to minimize fluc-

tuations, λ should be larger or equal than 1 (λ ≥ 1). To control fluctuations

in both spaces (proximity, distance) we should choose λ according to the

fluctuations obtained in the distance or proximity spaces (this can be seen

as an optimization problem).
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Figure 4.9: λ versus µ for several coefficients of variability CVd and CVp

In most computing applications, including the Complex Networks com-

munity researchers use mappings between proximity and distance spaces sim-
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ilar to λ = 1, using isomorphisms ϕ = 1
x

or ϕ = 1
x
− 1. We have to alert

that the first choice ϕ = 1
x

is not mathematically correct, since it maps

ϕ : [0, 1] → [1,+∞], which is not a distance space. λ = 1 leads to the

more common ϕ and asymptotical optimal value, assuming small fluctua-

tions. However, to constrain fluctuations we may want to use other values of

λ ≥ 1, depending on the level real data fluctuations.

4.11 Conclusions

In this thesis we have studied a theoretical framework to measure distances

in weighted complex networks. From this study we reached the following

conclusions:

First we formalized the relation between Transitive Closure in Fuzzy Sets

and the Distance Closure through an isomorphism which maps a proximity

graph into a distance graph. APSP Dijkstra algorithm or the Metric Closure

in Computer Science is only one of the possible ways to calculate the distance

closure. We saw, that it is possible to sweep different isomorphisms t-norm

in the proximity space, given a fixed t-conorm (e.g., ∨ ≡ max).

We also have studied the axiomatics that characterize this isomorphism

we identified the prefered t-norm/t-conorm operations, which are closest to

the APSP on metric closure in distance space, but are logically, consistent:

(DT 1
∧, DT 1

∨) this allows us to perform logical operations on distance graphs

(via isomorphism to Fuzzy graphs), which can be useful in many areas of
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research.

We explored the isomorphism with the Dombi t-norm generator. We

estimated the best λ parameter in order to reduce fluctuations on the average

shortest path and average strongest path. We saw that the asymptotical

optimal λ occurs at λ = 1 assuming small fluctuations in real data, which is

a lower bound and therefore λ must be λ ≥ 1. It was observed also that λ

is a scale invariant of the network. This scale depends mainly on the edge

weights type of distribution.

While Complex Networks community have been suggesting the use of

ϕ = 1
x
≈ 1

x
− 1 (Dombi generator with λ = 1) to perform the mapping be-

tween proximity and distance graphs, we have seen that this setting assumes

fluctuations (average shortest path and average strongest path) close to zero

in both spaces, which is not valid in real networks. However, λ = 1 is the

asymptotical optimal value, which can justify this setting.
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4.12 Appendix - Proofs of the Theorems

Theorem 4.1. Let GP = (X,P ) be a proximity (symmetric and reflexive)

graph and Φ the graph distance function in definition 4.2, then GD = (X,D),

where D = Φ(P ) is symmetric and anti-reflexive.

Proof. Since GP is reflexive then px,x = 1 and from definition 4.2 we have

dx,x = ϕ(px,x) = ϕ(1) = 0, therefore GD is anti-reflexive. Let x and y

be two vertices of GP , because a proximity graph is symmetric we have

px,y = py,x, since ϕ is bijective dx,y = ϕ(px,y) = ϕ(py,x) = dy,x, therefore GD

is symmetric.

Theorem 4.2. If ϕ is a distance function as in definition 4.2 and ∧, ∨

a t-norm, t-conorm pair and f and g a TD-conorm and TD-norm pair as

defined in 4.3, the following statements are true:

(1) ϕ(a ∧ b) = g(ϕ(a), ϕ(b));

(2) ϕ(a ∨ b) = f(ϕ(a), ϕ(b)).

Where a, b ∈ [0, 1].

Proof. Let us assume a ≤ b.

(1) Suppose ϕ(a∧b) > g(ϕ(a), ϕ(b)), thus the inequality is true if the maxima

of ϕ(a∧ b) (must be maximum) is bigger than the minimum of g(ϕ(a), ϕ(b))

(must be minimum). ϕ(a ∧ b) is maximum for ∧ ≡ TD (drastic product, see
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[51] [53]) and g(ϕ(a), ϕ(b)) is minimum for ϕ(b) = 0, thus for ϕ(b) = 0 we

obtain, ϕ(a) ≤ g(ϕ(a), ϕ(b)), from the other side ϕ(a ∧ b) ≤ ϕ(min(a, b)) =

ϕ(a). Therefore, ϕ(a ∧ b) ≤ g(ϕ(a), ϕ(b)).

Suppose ϕ(a ∧ b) < g(ϕ(a), ϕ(b)), thus ϕ(a ∧ b) must be minimum and

g(ϕ(a), ϕ(b)) must be maximum. ϕ(a ∧ b) is minimum for ∧ ≡ min and

g(ϕ(a), ϕ(b)) is maximum for a = 0, thus for a = 0 we obtain, g(ϕ(a), ϕ(b)) ≤

ϕ(a), from the other side ϕ(a ∧ b) ≥ ϕ(min(a, b)) = ϕ(a). Therefore,

ϕ(a∧b) ≥ g(ϕ(a), ϕ(b)), and from above this implies ϕ(a∧b) = g(ϕ(a), ϕ(b)),

which proves statement (1).

(2) Suppose ϕ(a ∨ b) > f(ϕ(a), ϕ(b)), thus ϕ(a ∨ b) must be maximum

and f(ϕ(a), ϕ(b)) must be minimum. ϕ(a ∨ b) is maximum for ∨ ≡ max

and f(ϕ(a), ϕ(b)) is minimum for ϕ(a) = 0, thus for ϕ(a) = 0 we obtain,

f(ϕ(a), ϕ(b)) ≥ 0, from the other side ϕ(a ∨ b) ≤ ϕ(max(1, b)) = ϕ(1) = 0.

Therefore, ϕ(a ∨ b) ≤ f(ϕ(a), ϕ(b)).

Suppose ϕ(a ∨ b) < f(ϕ(a), ϕ(b)), thus ϕ(a ∨ b) must be minimum and

f(ϕ(a), ϕ(b)) must be maximum. ϕ(a ∨ b) is minimum for ∨ ≡ SD (drastic

sum, see [51] [53]) and f(ϕ(a), ϕ(b)) is maximum for b = 0, thus for b = 0 we

obtain, f(ϕ(a), ϕ(b)) ≤ ϕ(a), from the other side ϕ(a ∨ b) ≥ ϕ(max(a, b)) =

ϕ(a). Therefore, ϕ(a∨ b) ≥ f(ϕ(a), ϕ(b)), and from above this implies ϕ(a∨

b) = f(ϕ(a), ϕ(b)), which proves statement (2).

Theorem 4.5. if GP = (X,P ) is a fuzzy proximity graph, ϕ the isomor-

phism (distance function) in definition 4.2 and GD = (X,D) is the respec-

tive distance graph, where D = Φ(P ). The following is true with the distance

114



composition:

1) Φ(P )⊇̇Φ(P 2)⊇̇Φ(P 3)⊇̇ · · · ⊇ Φ(P∞) ;

2) D⊇̇D2⊇̇D3⊇̇ · · · ⊇̇D∞.

where Φ(P i)⊇̇Φ(P i+1) means that: ∀x, y ∈ X : ϕ(pix,y) ≥ ϕ(pi+1
x,y ).

Proof. 1) ϕ is a monotonic decreasing function and because P is reflexive,

from [60] we have P ⊆ P 2 ⊆ P 3 ⊆ · · · ⊆ P∞ ⇒ Φ(P )⊇̇Φ(P 2)⊇̇Φ(P 3)⊇̇ · · · ⊇̇Φ(P∞)

which proves the statement.

2) To prove the second statement we first need to prove that D⊇̇D2, which

is equivalent to showing that, ∀x, y, z ∈ X : d2x,y = f
z
{g(dx,z, dz,y)} ≤ dx,y.

Lets prove by absurd this statement: suppose d2x,y > dx,y then the mini-

mum of f
z
{g(dx,z, dz,y)} must be > dx,y. f

z
{g(dx,z, dz,y)} is minimum if f

and g are minimum. g is minimum if dz,y = 0 for all z ∈ X − {x},

then g(dx,z, dz,y) ≥ dx,z. f is minimum if dx,z ≥ dx,y for all z ∈ X − {y}

then f(dx,y, dx,z) ≤ f(dx,y,+∞) ≤ dx,y, which contradicts our assumption,

d2,x,y > dx,y. Therefore, d2x,y ≤ dx,y.

By induction we can prove the general result.

∀x, y, z ∈ X : dn+1
x,y = f

z
{g(dnx,z, dz,y)} by hypothesis dnx,y ≤ dn−1x,y , thus

dn+1
x,y ≤ f

z
{g(dn−1x,z , dz,y)} = dnx,y, which proves the second statement.

Theorem 4.6. Given a proximity graph GP = (X,P ), a distance graph

GD = (X,D), and isomorphism ϕ, Φ as defined in 4.2. For a t-norm ∧

and t-conorm ∨ used to compute the transitive closure of P, then there exists

a TD-conorm/TD-norm pairs f and g, to compute the distance closure of D,
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Φ(P tc) = Ddc, which obey the condition:

∀x, y, z ∈ X : f
z
{g(ϕ(px,z), ϕ(pz,y)} = ϕ(∨

z
{∧(px,z, pz,y)})

(where Φ−1 is the inverse of Φ and ϕ−1 is the inverse function of ϕ). The

same is true if we fix f (TD-conorm), g (TD-norm) and isomorphism ϕ, Φ,

to obtain a pair of t-conorm, t-norm ∨ and ∧.

Proof. The transitive closure of P is given by P k1 and the distance closure of

D by Dk2 , with k1 and k2 integers. Let n = max(k1, k2), thus for Φ(P n) = Dn

to be true, the following must also be true:

∀x, y, z ∈ X : f
z
{g(ϕ(px,z), ϕ(pz,y)} = ϕ(∨

z
{∧(px,z, pz,y)})

We can prove by induction that Φ(P n) = Dn is true if we assume that the

condition in this theorem is true.

The condition in this theorem is equivalent to:

Φ−1(Φ(P ) ◦ Φ(P )) = P 2 = P ◦ P

Where Φ(P ) ◦Φ(P ) is the distance composition using f and g, and P ◦ P is

the transitive composition using ∧ and ∨. We also can define Dn in function

of Φ and P .

Dn = D ◦ · · · ◦D︸ ︷︷ ︸
n

= Φ(P ) ◦ · · · ◦ Φ(P )︸ ︷︷ ︸
n
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Therefore, what we want to prove is:

Φn(P ) = Φ(P n)

given the condition on this theorem is true.

by induction:

(1) Φ(P ) ◦ Φ(P ) = Φ(P 2) (Basis);

(2) Φn(P ) = Φ(P n) (Hypothesis);

(3) Φn+1(P ) = Φ(P n+1) (Thesis).

Assuming the condition on this theorem Φ−1(Φ(P )◦Φ(P )) = P 2 is true, then

it is also true that Φ(P ) ◦Φ(P ) = Φ(P 2). Thus, Φn+1(P ) = Φn(P ) ◦Φ(P ) =

Φ(P n) ◦ Φ(P ) = Φ(P n+1) from statements (1) and (2), which proves the

theorem.

Let us prove that there exist a pair of binary functions f and g as defined

in 4.3. From theorem 4.2 we have

g(ϕ(px,z), ϕ(pz,y)) = ϕ(∧(px,z, pz,y))

and from the condition in this theorem, we have

f
z
{g(ϕ(px,z), ϕ(pz,y))} = ϕ(∨

z
{∧(px,z, pz,y)})
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f
z
{ϕ(∧(px,z, pz,y))} = ϕ(∨

z
{∧(px,z, pz,y)})

Therefore,

f(dx,z, dz,y) ≡ ϕ(∨(ϕ−1(dx,z), ϕ
−1(dz,y)))

The conditions of this theorem leads to the equations of theorem 4.2:

g(dx,z, dz,y) = ϕ(∧(ϕ−1(dx,z), ϕ
−1(dz,y)))

f(dx,z, dz,y) ≡ ϕ(∨(ϕ−1(dx,z), ϕ
−1(dz,y)))

.

From these last equations we can also find ∨ and ∧ given f , g and the

isomorphism ϕ:

∨(px,z, pz,y) = ϕ−1(f(ϕ(px,z), ϕ(pz,y)))

∧(px,z, pz,y) = ϕ−1(g(ϕ(px,z), ϕ(pz,y)))

Corollary 4.1. According to the formulation of theorem 4.6, let f ≡ min()

, g ≡ +() and ϕ a distance function, as defined in 4.2. If ∨ = max() as

t-conorm, then the t-norm operator ∧ exists and ϕ is its generator function.

Proof. We have seen in theorem 4.2 that ϕ(x∧ y) = g(ϕ(x), ϕ(y)) therefore
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∀x, y, z ∈ P and by theorem 4.6:

ϕ−1(min
z
{ϕ(px,z) + ϕ(pz,y)}) = max

z
{∧(px,z, pz,y)}

max
z
{ϕ−1(ϕ(px,z) + ϕ(pz,y))} = max

z
{∧(px,z, pz,y)}

⇒

ϕ−1(ϕ(px,z) + ϕ(pz,y)) = ∧(px,z, pz,y)

This last result is the characterization function of t-norms, according to the-

orem 4.7 [53], which states that ∧ is a t-norm and ϕ is the decreasing

generator function (obeying definition 4.2).

Theorem 4.7. Given the isomorphism ϕ, if Dmc is the metric closure with

f ≡ min and g1 ≡ +, and Dum is the ultra-metric closure with f ≡ min and

g2 ≡ max then Dmc⊇̇Dum is equivalent to Pmc ⊆ P um, where Dmc = Φ(Pmc)

and Dum = Φ(P um).

Proof. We can prove by induction that:

1) D2⊇̇Φ(P 2) ;

2)

 H : Dn⊇̇Φ(P n)

T : Dn+1⊇̇Φ(P n+1)

Let’s prove 1)

∀x, y, z ∈ X : D2
mc = f

z
(dx,z+dz,y) = f

z
(ϕ(px,z)+ϕ(pz,y)) ≥ f

z
(g2(ϕ(px,z), ϕ(pz,y))) =

D2
um, therefore D2

mc⊇̇D2
um.

2) by the hypothesis we know that ∀x, y, z ∈ X : Dn ≥ Φ(P n) , then using

this result we have ∀x, y, z ∈ X : Dn+1 = f
z
{dnx,z+dz,y} ≥ f

z
{ϕ(pnx,z)+ϕ(pz,y)}
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, because f
z
{ϕ(pnx,z) + ϕ(pz,y)} ≥ f

z
{ϕ(pnx,z)∨ ϕ(pz,y)} and using theorem 4.2,

f
z
{g2(ϕ(pnx,z), ϕ(pz,y))} = ϕ(∨

z
{pnx,z ∧ pz,y}) = Φ(P n+1) , so

∀x, y, z ∈ X : Dn+1 ≥ Φ(P n+1) , which proves that Dmc ≡ Dn⊇̇Φ(P n) ≡

Dum.

Theorem 4.8. Given a fuzzy complement c(x), a t-norm DT 1
∧ = ab

a+b−ab and

a t-conorm max(a, b), then the triple has no involutive complement, which

satisfies the De Morgan’s laws.

Proof. A complement is involutive if c(c(x)) = x. If the complement c(x)

satisfies the De Morgan’s laws we have:

a ∨ b = ā ∧ b̄

c(max(a, b)) =
c(a)c(b)

c(a) + c(b)− c(a)c(b)

without loss of generality let a ≥ b

c(a) =
c(a)c(b)

c(a) + c(b)− c(a)c(b)

c(a)(1− c(b)) = 0

c(a) = 0 ∨ c(b) = 1

the only function that satisfies this condition is the threshold function, which

is not involutive [53].
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Chapter 5

Performance of metric closure

on recommender systems

In the previous chapter we related transitive and distance closure with the all

pairs shortest path problem. The distance closure and more specifically the

metric closure allows us to study semi-metric behavior in weighted graphs.

In this chapter and next chapter we apply the metric closure to interpret the

semi-metric behavior in complex networks. First, in this chapter we search

for evidence between semi-metric behavior and prediction and second, next

chapter, we relate semi-metric behavior with the study of the structure of

complex networks.
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5.1 Introduction

The search for strength of association between time events is inherent to

many systems, such as: recommender systems, social behavior, functional

brain interaction and many more. Recommender systems are a good exam-

ple of prediction, since given the information from the past (e.g. the relation

between users and items in collaborative filtering) recommend new useful

items to the users in the future. In Rocha et al [76] we found some evidence

on this relation in recommendation systems, between semi-metric behavior

and prediction. We employed two different types of weighted graphs in our

analysis and development: Proximity graphs, a type of Fuzzy Graphs based

on a co-occurrence probability (Fuzzy Jaccard measure, see chapter 4), and

(semi-metric) distance graphs, which do not necessarily observe the triangle

inequality of Euclidean distances for all edges. Both types of graphs were

used to develop intelligent recommendation and collaboration systems for the

MyLibrary@LANL web service, a user-centered front-end to the Los Alamos

National Laboratory’s digital library collections and Web resources. Recom-

mendation were issued using the semi-metric behavior of distance graphs de-

rived from users access profile. The quality of recommendation was assessed

using expert evaluations [76]. This assessment has shown that semi-metric

recommendations were relevant. In this chapter, instead of using experts

assessment we use a benchmark database from the group MovieLens 1, to

1http://movilens.umn.edu
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test the accuracy of the recommendations, and compare with some previous

work done on the same data. The advantage of this type of assessment is

that we do not have the subjectivity of human experts. The disvantage is

that the results are specific to the Movilens database on the topic of movies

preferences only. There are other datasets such the one provided by Netflix2,

where we can test the evidence between semi-metric behavior and prediction.

However, we do not intend in this chapter to perform an exhaustive study

on recommender systems. We leave for future work a more detailed study

on recommender systems where we intend to use the Netflix benchmark.

In collaborative filtering we manage a database that has information re-

lating items with users. Each user gives a certain score to a specific item. The

assumption in collaborative filtering is that if users share the same interests

in the past, they will also have similar preferences in the future.

In the next section we show how we built our recommender system.

5.2 Collaborative Filtering Based Recommen-

dation Systems

We developed and tested two types of collaborative filtering algorithms, prox-

imity and semi-metric based. Collaborative filtering systems start with the

relation between Items and Users. This relation consists on the history or

assessment done by the users to items. Examples are: the relation between

2www.netflix.com
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users and items such as in Amazon.com where users buy books and other

items, MovieLens where users rate movies, etc.

Given this relation between users and items we can associate users or

items to each other with some similarity or dissimilarity measures between

users (user-based) or items (item-based), respectively.

We build our item-based and user-based proximity graph by applying

the generalized Jaccard similarity measure (see chapter 4). Other measures

can be used such as: cosine projection (vector based), mutual information,

Pearson correlation and many more.

Given the proximity between users (user-based) or the proximity between

items (item-based) a collaborative filtering system identifies, for a given user,

a set of items to be recommended. In the case of user-based approaches we

search for a given user a neighborhood (using e.g. nearest neighbors method,

see [98]) of similar users and recommend the items more popular among the

set of neighbors. In the case of item-based recommendation, for each user,

we search for items similar to the ones that user have already consumed or

rated.

Item-based systems are based on the proximities between items. Each

user has associated a set of items, which is a subset of all items available to

the users. Given the relation between items, we compute for each user a set

of items which are similar to the items associated to that user.

The following algorithm describes an item-based collaborative filtering:

Algorithm 5.1. Item-Based

124



For each user:

1. We retrieve the set of items from the training set (relation between

users and items from the past U × I) for this particular user and form

a vector.

2. For each item in the proximity relation I×I (row vector), obtained using

the Fuzzy Jaccard similarity measure (equation 4.1) on the relation U×

I, we identify the items from the previous step 1. in this row vector and

calculate the average of the identified values. With this we get a score

for each item in I × I.

3. Each user is recommended the top n items.

4. Do the previous steps for all users.

We tested the following item-based algorithms:

1. Proximity Item-based algorithm (Prox-Item-based)

The simplest item-based algorithm follows algorithm 5.1 using the ma-

trix I × I calculated from the proximity measure of equation 4.1.

2. Semi-metric algorithm (SM-Item-based)

Here we calculated the metric closure from the proximity relation I× I

using the isomorphism of equation 4.7 (Dombi t-norm generator with

λ = 1). From the resulting matrix we identify the semi-metric pairs

(edges) where the below average ratio is above a given threshold (equa-

tions 2.19 and 4.3), and insert the corresponding edges from transitive
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closure of I × I) into the proximity graph (I × I). Finally use this

proximity graph as input for item-based algorithm 5.1.

User-based systems are based in the similarities between users. For each

user is determined a neighborhood of users, which are more similar to that

user. It is recommended the set of items more popular in that neighborhood

of users.

Algorithm 5.2. User-Based

For each user:

1. determine the number of users n in U×U , which form the neighborhood

of the user according to a given alpha-cut (threshold);

2. For this set of users calculate the top m items more frequent among

that neighborhood;

3. Recommend this set of items to the user;

4. Do the previous steps to all users.

We tested the following user-based algorithms:

1. Proximity User-based algorithm (Prox-User-based)

The simplest user-based algorithm follows algorithm 5.2 using the ma-

trix U × U calculated from the proximity measure of equation 4.1.

2. Semi-metric algorithm (SM-User-based)

Here we calculated the metric closure from the proximity relation U×U
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using the isomorphism of equation 4.7 (Dombi t-norm generator with

λ = 1). From the resulting matrix we identify the semi-metric pairs

(edges) where the below average ratio is above a given threshold (equa-

tions 2.19 and 4.3), and insert the corresponding edges from transitive

closure of U × U) into the proximity graph (U × U). Finally use this

proximity graph as input for item-based algorithm 5.2.

5.3 Experimental Evaluation

Data Sets

In this work we used the benchmark data set MovieLens. This data set is a

collection of votes given by web users (943 users) in respect to a given movie

(1682 movies), as a total of 100,000 ratings. The group Movilens provides

a set of datasets. In these datasets were retained only users that had rated

20 or more movies (943 users). Each user gives his opinion (vote) in respect

to a movie graded in a scale from one to five. These data sets are based in

the full matrix items (movies) versus users votes and partitioned in sets of

training and test. It was studied by the group [79] that the best partition

is a training set with 80% of the votes and a test set with the remaining

20%. These data sets are divided in two major data sets one with a test

set with the ten votes per user (about 10,000 ratings), while the training set

contains the remainder of the ratings (about 90,000 ratings). None of the

edges belongs both to the training and test sets.
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In our experiment we are only interested on the relation between semi-

metric behavior and prediction, i.e., based on the past watched movies from

a given user what are the movies he/she will watch in the future. Therefore,

we converted these data sets to binary votes: one or zero.

Evaluation Metrics

As evaluation metrics, we used Precision and Recall and F1 measure and a

variant of the Somers D, the degree of agreement metric to assess the per-

formance of the recommender system, [82]. Precision, recall, and the F1

measures are the traditional measures in information retrieval computed us-

ing unordered datasets. There are other assessment metrics for order datasets

such as the Area Under Curve (AUC). However, this measure is difficult to

implement on this particular dataset. Instead, we use the Somers D, which

is easy to apply and already tested in a set of recommender systems.

Precision and Recall : Precision and recall can be defined in the following

manner:

recall =
| test ∩ top−N |

| test |
(5.1)

precision =
| test ∩ top−N |

| N |
(5.2)

where top-N is the top N recommendations and test is the test set. From
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equations 5.1 and 5.2 we calculate the F1 parameter, which relates precision

and recall with equal importance.

F1 =
2 · recall · precision
recall + precision

(5.3)

The Somers D method follows the following procedure [98].

1. For each user we take the vector of similarities for each movie from the

training set.

2. Take only the non-watched movies (not in the test set).

3. Rank the non-watched movies taking in consideration all movies.

4. Compute the degree of agreement: consider each pair (a, b) of movies

from ranking, with a in the test set and b not. If a ahead of b: correct

pair (agreement), b ahead of a: incorrect pair, 5.4.

d =
#agreements

#total − of − pairs
(5.4)

5. Compute the global degree of agreement.

This variant of Somers D degree of agreement give us a measure of how

well our retrieved set of recommendations is distributed in the first positions

of our list of relevant items.
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5.4 Results

We compare our results with the ones of Fouss et al [98]. Table 5.1 shows

our results for the proximity and semi-metric approaches for item-based and

user-based recommender systems.

Prox-Item-based SM-Item-based Prox-User-based SM-User-based
Agreement (in %) 89.53 90.16 88.20 88.16

F1 0.1827 0.1832 0.2130 0.2179

Table 5.1: Results for recommendation system. Somers’D degree of agree-
ment [36] [98] and F1 measure.

The semi-metric thresholds were set on the below average ratio distri-

bution around the cut-off point of the distribution, as shown in figure 5.1

for the item-based approach. In the item-based, we tested values below and

above the threshold pointed in the figure 5.1, and the performance decreased

in both directions, having its maximum at the point chosen (b = 8). For

the user-based approach, we also set the threshold around the cut-off point,

according to figure 5.2. In this case we observe at the cut-off point a small

decrease on the Somers D measure and an increase on the F1 measure. We

also search for thresholds values below and above the cut-off point. We ob-

served that the Somers D measure decreased below the cut-off point and

increased slightly for values above the cut-off point reaching 88.20% when

we insert just a few semi-metric edges. The F1 measure remained almost the

same 0.2179 for values around the cut-off. This indicates that the threshold

should be chosen around the cut-off point of the distribution.
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Figure 5.1: below average ratio distribution of semi-metric edges with direct
edge =∞ (item-based). The threshold was chosen at the indicated point.

Fouss et al in [98] obtained the following results presented in tables 5.2

and 5.3 for several item and user based algorithms described below. A more

detailed description of these algorithms can be found in [98].

As we can see from tables 5.1, 5.2 and 5.3 the semi-metric approach

improves the item-based proximity method and is as good as the best result

of Fouss et al [98]. Our item-based algorithms are also among the best

algorithms of user-based on table 5.3. Our semi-metric user-based approach

is improved on F1 measure, but on the Somers D does not improve the results,

they remain almost the same. This maybe can be explained with the fact

that User-based approaches have to set the number of neighbors around a

given user, and this has a strong impact on the results. We leave this further
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Figure 5.2: below average ratio distribution of semi-metric edges with direct
edge =∞ (user-based). The threshold was chosen at the indicated point.

analysis for future work, since the objective of this chapter is to show that

semi-metric behavior in some way improves the predictions of a given user

watch a movie in the future.

Next we describe according to Fouss [98] the algorithms involved in this

comparison.

MaxF CT PCA CT One-way Return L+ kNN Cosine Katz Dijkstra
Agreement (in %) 85.69 85.66 87.08 85.64 80.65 90.99 −− −− 87.90 49.11

Table 5.2: Results for item-based recommendation system from [98].
Somers’D degree of agreement [36] [98].

Maximum frequency algorithm (MaxF). This method ranks the

movies by the number of users who watched them. The most watched movie
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MaxF CT PCA CT One-way Return L+ kNN Cosine Katz Dijkstra
Agreement (in %) −− 74.48 82.46 74.48 54.30 93.02 92.63 92.73 89.82 76.09

#Neighbors −− 100 60 100 100 100 100 60 20 100

Table 5.3: Results for user-based recommendation system from [98].
Somers’D degree of agreement [36] [98].

(a blockbuster) is simply suggested first to each user. The ranking is thus the

same for all the users. MaxF will be considered as a reference to which all the

other methods will be compared; it may be viewed as an equivalent of basing

the decision only on the a priori probabilities in supervised classification.

Average commute time (CT). We use the average com- mute time

n(i, j) to rank the elements of the considered set, where i is an element

of the people set and j is an element of the set to which we compute the

dissimilarity (the movie set). For instance, if we want to suggest movies to

people for watching, we compute the average commute time between people

elements and movie elements. The lower the value is, the more similar the

two elements are. In the sequel, this quantity will simply be referred to as

commute time.

Principal components analysis based on ECTD (PCA CT). Based

on the eigenvector decomposition of L+, the nodes can be mapped into a new

Euclidean space that preserves the ECTD, or a m-dimensional subspace keep-

ing as much variance as possible, in terms of ECTD. Thus, after performing

a PCA and keeping a given number of principal components, we recompute

the distances in this reduced subspace. These approximate ECTD between

people and movies are then used to rank the movies for each user (the closest
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first).

Average first-passage time (one-way). In a similar way, we use the

average first-passage time, m(i|j), to rank element i of the movie set with

respect to element j of the people set. This provides a dissimilarity between

person j and any element i of the movie set. This quantity will simply be

referred to as one-way time.

Average first-passage time (return). As a dissimilarity between el-

ement j of the people set and element i of the movie set, this method uses

m(j|i) (the transpose of m(i|j)), that is, the average time used to reach j

(from the people set) when starting from i (from the movie set). This quan-

tity will simply be referred to as return time.

Pseudoinverse of the Laplacian matrix (L+). L+ provides a similar-

ity measure since it is the matrix containing the inner products of the node

vectors in the Euclidean space where the nodes are exactly separated by the

ECTD. Once we have computed the similarity matrix, movies are ranked

according to their similarity with the user, and the closest movie that has

not been watched is proposed first.

Nearest neighbors (kNN). This method is one of the simplest and

oldest methods for performing general classification tasks. It can be repre-

sented by the following rule: to classify a new item, choose the class of the

nearest example in the training set as measured by a similarity metric. When

choosing the k nearest examples to classify the unknown pattern, one speaks

about k-nearest neighbors techniques.
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Cosine coefficient. The cosine coefficient between persons i and j, which

measures the strength and the direction of a linear relationship between two

variables. The predicted value of person i for movie j is computed in a similar

way as in the k-nearest neighbors method.

Katz. This similarity index has been proposed in the social sciences field

and has been recently rediscovered in the context of collaborative recommen-

dation and kernel methods where it is known as the von Neumann kernel.

Katz proposed a method of computing similarities, taking into account not

only the number of direct links between items but, also, the number of indi-

rect links (going through intermediaries) between items.

Shortest path algorithm (Dijkstra). This algorithm solves a shortest

path problem for a directed and connected graph with nonnegative edge

weights. As a distance be- tween two elements of the database, we compute

the shortest path between these two elements.

5.5 Discussion and Conclusions

From table 5.1 we can see that by introducing semi-metric edges into the

proximity graph I × I and U ×U we improve our predictions (recommenda-

tions), confirming the previous evidence in Rocha et al [76]. Moreover, the

combination of our generalized Jaccard proximity graphs with addition of

semi-metric edges are among the best recommender systems tested in previ-

ous works [98].
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As suspected semi-metric edges show some evidence of predicability in

recommender systems. In the next chapter we will see how semi-metric edges

are related to the structure of graphs and how can we use this information

to better characterize the structural properties of a complex networks.
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Chapter 6

Weighted graphs and the

small-world phenomenon

In this chapter we propose a new methodology to analyze weighted graphs,

based on semi-metric behavior. We compare our methodology with the tra-

ditional approach by studying the affect on the average path length, clus-

tering coefficient and semi-metricity and their implications to measure the

small-world phenomenon. We analyzed six real-world networks: US Air-

ports, Structural Human Cerebral Cortex, Functional Human Brain, Sci-

entific Collaboration, Astrophysics Collaborations and High-Energy Theory

Collaboration.
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6.1 Introduction

A traditional approach to study weighted graphs, especially to characterize

small-world behavior, is by to apply thresholds to the weights of the graph,

and then study the properties of the resulting crisp graphs. We propose

a new approach based on the semi-metric threshold. As detailed below this

method removes an edge ei,j only if the strongest path between corresponding

vertices vi and vj is below a certain threshold value. Let us describe the idea

with an example: I know the president of the United States (met him in

a formal dinner), but my direct tie to him is very weak. However, I have

a strong indirect influence on him via a chain that includes other people

(strongest path). In this case we do not remove the direct tie (link) between

the president and me, because there is a strong indirect way in which I

can influence the president. This may imply that in the future the direct

tie can become stronger. However, when there is no indirect path (above

a threshold), the ability to influence the president is too small, and so we

can in effect remove the direct tie from the network. After we apply this

reasoning by removing all direct ties that do not have an indirect or direct

path above the (semi-metric) threshold we end up with a weighted sub-

network of the original weighted network. This process is different from the

traditional, where we apply a threshold to all edge weights of the network,

thus removing the tail of the weights distribution. In our case, depending

on the level of semi-metric behavior associated with the network, we end up

138



with a weighted sub-network with weights distribution more similar to the

original network.

The shortest path length, as we have seen in chapter 4, depends on the

specific graph closure used, which is defined by a t-norm/t-conorm pair (in

proximity graphs) or a TD-norm/TD-conorm pair (in distance graphs). As

shown in chapter 4, the isomorphism between these spaces, can be controlled

by a t-norm generator function.

There is an unlimited number of t-norm generators, which follow in two

classes: parametric and non-parametric [53]. In this chapter we apply a

parametric t-norm, which allows us to sweep the range of graph closures. We

choose the Dombi t-norm generator:

ϕ(x) =

(
1− x
x

)λ
(6.1)

where λ is the sweeping parameter. This t-norm generator takes values in

]0,+∞[: λ→ 0 lower bound (drastic product) and λ→∞ is the upper bound

(minimum, ultra-metric). As in chapter 4, we choose this t-norm generator

because it yields the more commonly used transformation from proximity to

distance graphs, when λ = 1, [2] [89]. Moreover, as we have seen in chapter

4, this particular t-norm with λ = 1 leads to the closure with most desirable

properties.

In this chapter we study the impact of the proposed methodology to better

characterize the small-world phenomenon in weighted networks, which is typ-
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ically based on two measures: average path length and clustering coefficient.

This way, here we propose semi-metric behavior as one additional measure

for this phenomenon. Note, that all measures which depend in some way

on path lengths can profit from ours new methodologies. Examples of such

measures are: Efficiency, Modularity, Betweenness, Clustering Coefficient,

etc. It is easy to see, for instance that the weighted efficiency of a network

with the Dombi t-norm generator corresponds to the average strongest path,

when λ = 1. However, in this thesis we will restrict ourselves to studying

average path length, clustering coefficient and semi-metric behavior to better

characterize the small-world phenomenon in weighted networks.

The Small-world phenomenon is well understood in crisp graphs. When

such graphs have a small average shortest path between any two vertices (that

is, in the same order of magnitude of the logarithm of the size of the network)

and a high clustering coefficient (high local transitivities), they are said to

be organized as a small-world. An example is: I know a person who knows a

person, who knows a person who is friend of the president of United States.

Therefore, I am three steps away (degrees of separation) from the president

of United States. Milgram [90] showed that, on average a person that lives

in the United States is six degrees of separation from any other person in

United States. In weighted graphs however, the situation is different: links

between vertices (e.g. persons) are weighted according to some measure of

proximity or distance, which is a more realistic situation; for example when

we have a degree of friendship. Imagine the previous case where I am three
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degrees of separation from the president of the United States. If the weights

between each person are weak, which normally is the case, there is no way

that I can influence the president of the United States. However, if all links

on the path to the president of United States are strong, there is a greater

possibility that I can influence the president. This simple example shows us

that by moving from crisp to weighted graphs, the same data can lead to the

presence or absence of the small-world phenomenon.

6.2 Semi-metric thresholding

As we have seen in chapter 4, when we produce distance graphs from proxim-

ity data, shortest paths depend on the isomorphism we apply, which can be

constrained by the t-norm in the proximity space: see figure 6.1 for Dombi

t-norm example. By choosing a parameterized t-norm we can sweep various

by isomorphisms.

With the Dombi t-norm we can identify four regimes that depend on the

λ parameter: I, II, III and IV, figure 6.2. Regime I has been well studied

and it includes binary or crisp graphs, which do not observe any semi-metric

behavior. However, regimes II, III and IV are not so well studied. In figure

6.2 we see these regimes according to the semi-metric percentage computed

with the respective closure defined by λ.

In regime I (λ → 0; drastic product) the shortest path distribution has

a characteristic average path length; because the graphs resulting from a
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Figure 6.1: Closures with Dombi t-norm generator ϕλ

drastic product closure is essentially crisp, the semi-metric percentage of the

graph (SM) is 0. In regime II (λ > 0 and inferior to the curve inflection

point), the shortest path distribution still has a characteristic average path

length with semi-metric percentage ≈ 0. In regime III the variance of the

shortest path distribution starts increasing and diverges in regime IV (see

below). The semi-metric percentage increases in regime III, and stabilizes in

IV. lambda = 1 is in regime III (see case studies below), and we have seen

that for the Dombi t-norm the best λ in this regime is λ ≈ 1 (see chapter 4),

therefore in our methodology we will fix λ = 1.

The counterpart of shortest path distribution (distance space) in our iso-

morphism space, is the strongest path distribution (proximity space).
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Figure 6.2: Regimes with dombi t-norm generator ϕλ

Our semi-metric threshold (SMT) method is based on the removal of all

direct edges, which have both a direct and an indirect path below a threshold.

This is exemplified in figures 6.3 and 6.4 in the proximity graph. In figure 6.3

we have a weak (proximity) direct edge between vertices 1 and 2, but a strong

indirect path between these two vertices, via the path 1 − 3 − 4 − 2. With

a 0.5 ≥ SMT > 0.1, we do not remove the direct edge between vertices

1 − 2. Otherwise, if the direct edge is weak and so is any indirect path

(below the SMT threshold) between the two vertices, we remove the direct

edge as shown in figure 6.4. The motivation for this kind of procedure can be

exemplified in the context of a social network. Suppose a person has a direct

weak link with the president of the united states – say, this person has been

in a social event where the president was; the president knows this person

exists but has a really weak social connection. However, this person has a

strong indirect path through his social network to the president, via which
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he/she can influence the president. In this case the weak direct connection

is preserved because it denotes a link that can be indirectly realizable, and

thus we expect that it may become stronger in the future. Otherwise, if

there are no strong indirect paths in the network between the person and the

president, the weak direct link is assumed useless, and it can be removed.

Figure 6.3: Indirect path length shorter than the direct – keep direct edge
between vertices 1 and 2.

Figure 6.4: Indirect path length bigger than the direct – remove direct edge
between vertices 1 and 2.

We show (case studies below) that this form of thresholding the network

preserve better its original structure compared with traditional methodolo-

gies [81]. Moreover, by preserving the structure of the network, we gain
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measures that can be characteristic of the network even in the weighted case

such as: clustering coefficient, transitivity, semi-metric ratios, vertices degree,

modularity, etc.

6.3 Semi-metric edges and the Network Met-

ric backbone

In a network and its graph representation we have two types of edges: semi-

metric and metric. Semi-metric edges are edges that have an indirect path

that is shorter1 than the direct edge. Metric edges are edges for which there

is no indirect path shorter than the direct edge.

By definition, semi-metric edges do not affect the distribution of shortest

path, since there is at least one alternative path shorter than the direct edge.

The metric edges are the ones responsible for the shortest path distribution,

since at least one shortest path crosses these edges.

The smallest sub-graph that preserves the distribution of shortest path

of a given graph G(V,E) is the graph Gm(Vm, Em), Vm ⊆ V and Em ⊆ E,

where Em is the set of metric edges. If we remove one edge from Em the

average shortest path increases, since any of these edges participate at least

in one of the shortest paths. If the graph G has no isolated vertices it is easy

to see that Vm ≡ V .

1We use shorter in distance space, which isomorphically stronger in the proximity
space. Here, we center the discussion on the distance space. But, via the isomorphism,
every concept has a proximity counterpart
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Sub-graph Gm is what we call the metric backbone of a network. The

graph G is robust to semi-metric edges removal, but not to metric edges. By

removing a certain amount of metric edges from the network, the network

starts breaking into modules. Semi-metric edges only fill-up the metric sub-

graph Gm, increasing its connectivity. However, the evolution of a network

in time can turn semi-metric edges into metric.

The metric backbone by its definition, has a main impact on all mea-

sures associated to the shortest path, such as: efficiency, betweenness, etc.

Semi-metric edges by definition, have an impact only on measures that are

related to connectivity structure such as: clustering coefficient, transitivity,

vertices degree, modularity (or community structure), etc. They do not im-

pact the shortest path measures, since they do not participate in shortest

path. Modularity in particular, depends on both types of edges: semi-metric

and metric.

In the next subsections we will study the impact of these two types of

edges on real-world networks.

6.4 Measures and processing of weighted graphs

6.4.1 Normalization Procedures

In all networks we normalized the weighted graph using a linear normalization

that maps an interval

[a, b]→ [ε, 1− ε],
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where ε is small or zero. For ε = 0 the normalized edges are:

enij =
eij −MIN

i,j
(eij)

MAX
i,j

(eij)−MIN
i,j

(eij)
(6.2)

In the general case with ε > 0 (avoids merging vertices):

enij =
(1− 2ε)eij + (2ε− 1)MIN

i,j
(eij)

MAX
i,j

(eij)−MIN
i,j

(eij)
+ ε (6.3)

In our networks we used equation 6.3 with ε = 0.01 in order to preserve

the strongest and weakest edge in the network.

6.4.2 Average path length

The average path length < l > in graph is defined according to the following

equation:

< l >=
1

n · (n− 1)
·
∑
i,j

d(i, j) (6.4)

where n is the number of vertices of the graph, d(i, j) is the distance between

vertex vi and vertice vj. If i = j or d(i, j) = ∞ then some consider for the

calculation d(i, j) = 0, which only happens when the graph is not connected.

Here we only deal with networks that are connected.
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6.4.3 Clustering coefficient

The clustering coefficients have been defined in chapter 2. Here, we recall

the definitions. According to Watts the clustering coefficient C(i) for a given

vertex i in a crisp graph is defined by the following equation:

C(i) =
ei

ki(ki − 1)/2
(6.5)

where ki is the degree of vertex i and ei the edges between vertex i and

the neighbors of vertex i. The average clustering coefficient is defined by the

equation:

< C >=
1

N

∑
i

C(i) (6.6)

For direct and undirected weighted graphs the following clustering coef-

ficients are proposed by Onnela et al. [67]. They renormalize the clustering

coefficient of equation 6.6 of the equivalent crisp network. The renormaliza-

tion factors, intensity and coherence are defined in the following way:

I(h) =

 ∏
(i,j)∈lh

ei,j

 1

|lh|

(6.7)

Q(h) =
I(h)× |lh|∑

(i,j)∈lh ei,j
(6.8)

where I(h) is the Intensity for vertex h, ei,j the weight between vertex i and

j, lh is the number of edges for vertex h and Q(h) is the coherence for vertex
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h. The average intensity and the average coherence are defined as:

< I(h) >=
1

eh

∑
i∈N(h)

I(i) (6.9)

< Q(h) >=
1

eh

∑
i∈N(h)

Q(i) (6.10)

where N(h) denotes the neighborhood of vertex h and eh the edges among

vertex h neighbors. The clustering coefficient for vertex h in a weighted

network is now defined as:

Cw(h) =< I(h) > ×C(h) (6.11)

Cw(h) =< Q(h) > ×C(h) (6.12)

where C(h) is the clustering coefficient defined in equation 6.6 for the binary

contra-part of the weighted graph. The clustering coefficient for the network

is now defined by the renormalization as:

CI ≡< Cw >=

∑
i< I(i) > ×C(i)∑

i< I(i) >
(6.13)

CQ ≡< Cw >=

∑
i< Q(i) > ×C(i)∑

i< Q(i) >
(6.14)
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6.4.4 Coefficient of variability

The fluctuations to the average path length in the distance space are mea-

sured using the coefficient of variability:

CVd =
σl

< l >
(6.15)

where the l is the shortest path. The counterpart in the proximity space is:

CVp =
σStp

< Stp >
(6.16)

where the Stp is the strongest path.

6.4.5 Traditional thresholds

We apply the traditional way to analyze weighted networks, which consists

on applying to the edge weights of the network several thresholds. For each

threshold we obtain a weighted sub-graph, which we can study either as crisp

graph or as a weighted graph.

6.4.6 Semi-metric behavior

In chapter 2 we described three ways to measure the semi-metric behavior.

Here we use the semi-metric ratio from an edge.

s(vi, vj) =
ddirect(vi, vj)

dshortest(vi, vj)
(6.17)
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Where dshortest is the shortest path between any two vertices in the distance

graph. s ≥ 1 for semi-metric pairs, and s = 1 for metric pairs of a distance

graph. Therefore we define the semi-metric percentage (SM) as:

SM =

∑
i,j (s(vi, vj) > 1)

|E|
(6.18)

where |E| is the total number of direct edges.

For each network we study the average shortest path fluctuations by

sweeping several values of λ for the Dombi t-norm generator. We study the

properties of the metric backbone of the network, which determines measures

such as average shortest path, efficiency, etc.

We apply, the semi-metric thresholding methodology, described above. In

the limit of metric weighted graphs the traditional and semi-metric method-

ologies are equivalent, since with the semi-metric thresholding we obtain a

sub-graph that contains the subgraph obtained by the traditional threshold-

ing approach.

6.4.7 Null model

For each real network we randomize the topology of the corresponding weighted

graph maintaining the same weight distribution. In this process we keep con-

stant the number of edges, each vertex degree and the number of vertices.

Our null model is an average of 11 randomizations of the original network.
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6.4.8 Small-World phenomenon in weighted networks

The small-world phenomenon in weighted networks has been studied in the

last years. Two main approaches have been proposed: the first one uses the

traditional methodology of thresholding to produce crisp subgraphs, which

are used to study, the average path length and clustering coefficient [66]; the

second studies the small-world phenomenon of networks as weighted graphs

analyzing the average path length and clustering coefficient compared to a

null model based on randomization of the original graphs [56].

In the following sections, first we analyze how the average path length

is affected by sweeping λ values, for the Dombi t-norm. This is equivalent

to sweeping the various ways of computing distance closure. We first use

this study to confirm that high distortion (see chapter 4) implies higher

fluctuations shortest paths. Second, we determine the metric backbone for

λ = 1, and study the average shortest path fluctuations. Third, we apply

the traditional and semi-metric thresholding and compare the effects on the

crisp sub-graph obtained, regarding the small-world phenomenon. Fourth, we

apply the traditional and semi-metric thresholding, and analyze the resulting

weighted sub-graphs by comparing it with our null model.
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6.5 US Airport Network

6.5.1 Introduction

In the US Airport network [25] each vertex represents an airport and two

vertices are joined by an edge (link) if there exists a direct airline connection

between the corresponding airports. The edge weights are computed from

the number of available seats on these direct connections. This undirected

graph has 500 vertices. The edge weights represent the strength between the

airports (proximity graph).

6.5.2 Results and Discussion

Average shortest path fluctuations

After normalization, we apply the Dombi t-norm generator for various values

of its parameter and compute the metric closure of the respective distance

graphs. Figure 6.5 shows the of semi-metric percentage (SM) for the US

Airport network and for its randomized null model. In tables 6.1 and 6.2

we present various measures for the US Airport network and the randomized

null model, respectively.

As suspected the fluctuations increase with λ. We have seen in chapter

4, that λ = 1 is the value which best preserves the characteristic properties

between proximity and distances with small fluctuations for path length. The

shortest path length fluctuations for λ = 1 are high CVd ≈ 0.66 compared
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Figure 6.5: Semi-metric percentage (SM) for Dombi t-norm generator

λ < l > σl CVd CI CQ C SM
0.01 3.1 0.9 0.29 − − 0.62 0
0.2 5.4 1.9 0.35 0.86 0.79 0.62 0.02
0.5 13.6 6.1 0.45 0.86 0.79 0.62 0.54
1 75.2 50.0 0.66 0.86 0.79 0.62 0.75
2 3.7E3 3.6E3 0.97 0.86 0.79 0.62 0.80
5 1.0E9 1.9E9 1.9 0.86 0.79 0.62 0.82
10 2.9E18 1.2E19 4.14 0.86 0.79 0.62 0.83

Table 6.1: Variation in the US Airport Network, for various values of the
Dombi parameter λ. < l > average path length, σl standard deviation of the
shortest path, CVd coefficient of variability, CI and CQ weighted clustering
coefficients, C clustering coefficient (crisp), SM semi-metric percentage.

with the null model CVd ≈ 0.30 and as we have seen in chapter 4, λ = 1

minimizes these fluctuations in the both proximity and distance spaces given
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λ < l > σl CVd CI CQ C SM
0.01 2.8 0.6 0.21 − − 0.02 0
0.2 4.7 1.0 0.20 0.03 0.03 0.02 6.04E − 4
0.5 9.6 2.2 0.23 0.03 0.03 0.02 0.09
1 25.6 7.6 0.30 0.03 0.03 0.02 0.48
2 154.8 91.7 0.59 0.03 0.03 0.02 0.71
5 1.9E5 1.5E6 7.24 0.03 0.03 0.02 0.81
10 9.4E14 1.5E16 12.79 0.03 0.03 0.02 0.82

Table 6.2: Variation in the null model of the US Airport Network, for various
values of the Dombi parameter λ. < l > average path length, σl standard
deviation of the shortest path, CVd coefficient of variability, CI and CQ
weighted clustering coefficients, C clustering coefficient (crisp), SM semi-
metric percentage.

the network real fluctuations CVd, in this case CVd ≈ 0.66. Since, the real

fluctuations CVd ≈ 0.66, in order to study the US network at λ = 1 we have

to reduce the real shortest paths fluctuations, by studying sub-graphs of the

original US network.

Metric backbone

As we can see from table 6.1 for λ = 1 the SM is 0.75, which means that 75%

of the direct edges are semi-metric and the backbone has 25% of the network

edges. Figure 6.6 and table 6.3 show us the metric graph representation and

some of its properties.

From figure 6.6 we can qualitatively see that the backbone is mainly

compose by hubs, bridges and peripheral vertices. All edges in this network

participate on the shortest path between any two verices. We can see from

this figure if we remove the hubs or bridges the graph becomes partitioned
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Figure 6.6: US Airport metric backbone

λ < l > CVd < Stp > CVp kavg CI C N SM
USN 1 75.2 0.66 0.03 1.44 3.01 0.46 0.23 500 0
RNM 1 25.6 0.30 0.04 0.53 6.23 0.05 0.006 500 0

Table 6.3: US Airport metric backbone (USN) and Null Model (RNM), for
λ = 1. < l > average path length, CVd coefficient of variability, < Stp > av-
erage strongest path (Global Efficiency), CV p coefficient of variability, kavg
average degree, CI weighted clustering coefficient, C clustering coefficient
(crisp), N number of vertices on the main component, SM semi-metric per-
centage.

in modules. From table 6.3 we can see that the average path length remains

intact compared with the values obtain in tables 6.1 and 6.2 for λ = 1, as
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expected. However, the clustering coefficients has been reduced considerably

for the US Airport metric backbone, showing that semi-metric edges affect

mainly the clustering coefficients.

Next, we compare the traditional and semi-metric (SMT) thresholding

applied to weighted graphs.

Traditional versus Semi-metric thresholding

In figure 6.7 we can see the number of vertices removed with the traditional

and the semi-metric thresholding. It is noteworthy that the semi-metric

thresholding preserves more edges in the network. Even for small thresholds

the traditional thresholding removes more than 90% of the edges. In figure 6.8

we can see that for threshold values approximately larger than 0.02 we start

affecting the bridges of the backbone, and the graph starts being partitioned.

Since, the removal of semi-metric edges do not affect bridges, with the semi-

metric thresholding we obtain the same modularization as in the traditional

thresholding, figure 6.7.

In tables 6.4 and 6.5 we show some properties of the crisp sub-graphs

with traditional and semi-metric thresholding, respectively. We then study

various properties of the main component obtained. We observe the main

differences on the clustering coefficient and average degree as expected. In

the case of semi-metric thresholding we observe an increase on the average

degree. This is observed because the main component decreases in size. We

also observe minor differences in the average shortest path because we are
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Figure 6.7: Traditional versus Semi-metric thresholding, which naturally co-
incide, for the US Airport network.

treating the sub-graphs as crisp and some semi-metric edges become metric.

The average shortest path is of the same order of magnitude of log(N)

and the clustering coefficients are high for both traditional and semi-metric

thresholding, therefore the crisp sub-graphs obtained by thresholding are

considered small-worlds. However, this is more pronounced on the semi-

metric thresholding, since the clustering coefficients are considerably higher.
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Figure 6.8: Main component size using traditional and semi-metric thresh-
olding for the US Airport network.

Weighted network analysis

Here we study the network considering its weights, we do not turn the sub-

graphs into crisp graphs. We apply the traditional and semi-metric thresh-

olding. Table 6.6 show us the properties for both methods. Table 6.7 show

the same properties for the Null Model.

We can see in these tables that for thresholds bigger than 0.04 the tradi-

tional and semi-metric sub-graphs are small-worlds, since they have average
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th < l > CVd < Stp > CVp C kavg N SM
0.02 2.6 0.28 0.10 1.05 0.53 12.8 346 0
0.04 2.5 0.27 0.13 0.86 0.57 12.5 242 0
0.06 2.5 0.28 0.16 0.73 0.50 11.5 192 0
0.1 2.4 0.31 0.21 0.58 0.45 10.1 134 0
0.15 2.4 0.34 0.27 0.48 0.50 8.6 97 0

Table 6.4: Results for the US Airport main component sub-networks (USN)
with the traditional thresholding. SMT semi-metric threshold, < l > average
path length, CVd coefficient of variability, < Stp > average strongest path,
CVp coefficient of variability, C clustering coefficient (crisp), kavg average
degree, N number of vertices, SM semi-metric percentage.

SMT < l > CVd < Stp > CVp C kavg N SM
0.02 2.6 0.28 0.09 1.16 0.62 15.1 346 0
0.04 2.3 0.27 0.09 1.11 0.73 19.4 242 0
0.06 2.1 0.29 0.10 1.08 0.76 22.5 192 0
0.1 1.9 0.30 0.11 1.01 0.76 26.3 134 0
0.15 1.9 0.34 0.14 0.91 0.70 24.7 97 0

Table 6.5: Results for the US Airport main component sub-networks (USN)
with the SMT. SMT semi-metric threshold, < l > average path length, CVd
coefficient of variability, < Stp > average strongest path, CVp coefficient of
variability, C clustering coefficient (crisp), kavg average degree, N number of
vertices, SM semi-metric percentage.

shortest paths at the same order of magnitude of the Null Model and high

clustering coefficient. From table 6.6 the semi-metric thresholding preserves

better the degree , clustering coefficient and semi-metric percentage than the

traditional thresholding, as expected.
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th < l > CVd < Stp > CVp CIT CISM kT kSM N SMT SMSM

0.02 37.5 0.60 0.04 1.12 0.89 0.92 12.8 15.1 346 0.78 0.82
0.04 20.3 0.51 0.07 0.88 0.91 0.95 12.5 19.4 242 0.76 0.85
0.06 14.5 0.50 0.09 0.77 0.89 0.94 11.5 22.5 192 0.73 0.86
0.1 8.9 0.46 0.13 0.62 0.76 0.96 10.1 26.3 134 0.65 0.87
0.15 6.2 0.47 0.17 0.53 0.78 0.93 8.6 24.7 97 0.56 0.85

Table 6.6: Results for the US Airport sub-network (USN) with metric dis-
tance closure (λ = 1). SMT semi-metric threshold, < l > average path
length, CVd coefficient of variability, < Stp > average strongest path, CVp
coefficient of variability, CIT and CISM the clustering coefficient for tradi-
tional and semi-metric thresholding, kT and kSM are the average degree for
the traditional and semi-metric thresholding, N number of vertices, SMT and
SMSM semi-metric percentage for traditional and semi-metric thresholding.

th < l > CVd < Stp > CVp CIT CISM kT kSM N SMT SMSM

0.02 17.6 0.30 0.06 0.49 0.03 0.04 12.8 15.1 346 0.46 0.54
0.04 12.7 0.30 0.08 0.47 0.06 0.07 12.5 19.4 242 0.39 0.61
0.06 10.2 0.29 0.10 0.45 0.05 0.11 11.5 22.5 192 0.32 0.65
0.1 7.5 0.30 0.13 0.43 0.07 0.19 10.1 26.3 134 0.19 0.68
0.15 5.7 0.32 0.17 0.41 0.08 0.25 8.6 24.7 97 0.13 0.66

Table 6.7: Results for the null model (RNM) with metric distance closure
(λ = 1). SMT semi-metric threshold, < l > average path length, CVd
coefficient of variability, < Stp > average strongest path, CVp coefficient of
variability, CIT and CISM the clustering coefficient for traditional and semi-
metric thresholding, kT and kSM are the average degree for the traditional
and semi-metric thresholding, N number of vertices, SMT and SMSM semi-
metric percentage for traditional and semi-metric thresholding.

6.6 Structural Human Cerebral Cortex Net-

work

6.6.1 Introduction

The Human Cerebral Cortex Network is a weighted network with 66 ver-

tices. The vertices represent anatomical regions and the edges the interaction
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(strength) between these regional anatomical areas in the Human Cerebral

Cortex. The strength of these connections are obtain using high-resolution

T1 weighted and diffusion spectrum MRI (DSI), which estimates the axonal

trajectories across regions of interest (ROI’s), e.g. anatomical regions. This

gives an approximation of the large scale human cortex structural network

(connectome). A more deep description in how this network was build is in

[34]. We study the network obtained by averaging five subjects networks.

6.6.2 Results and Discussion

Average shortest path fluctuations

After normalization, we apply the Dombi t-norm generator for several pa-

rameters and apply the APSP Dijkstra algorithm to calculate the shortest

path distribution. Figure 6.9 shows the semi-metric percentage (SM) for

the Human Cerebral Cortex Network and for randomized weighted random

network.

In tables 6.8 and 6.9 we present the results for the Human Cerebral Cortex

network and the randomized network, respectively.

In tables 6.8 and 6.9 we can confirm when we increase λ the fluctuations

increase. The high values of CVd ≈ 0.91 for λ = 1 conduct us to study

sub-networks of the Human Cortex network.
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Figure 6.9: Semi-metric percentage (SM) for Dombi t-norm generator

λ < l > σl CV CI CQ C SM
0.01 1.5 0.5 0.33 − − 0.72 0
0.2 3.0 0.9 0.30 0.73 0.73 0.72 0.03
0.5 8.0 3.5 0.44 0.73 0.73 0.72 0.69
1 21.5 19.6 0.91 0.73 0.73 0.72 0.91
2 288.7 699.2 2.42 0.73 0.73 0.72 0.93
5 1.9E7 9.7E7 5.11 0.73 0.73 0.72 0.94
10 9.5E15 5.4E16 5.68 0.73 0.73 0.72 0.94

Table 6.8: Variation in the Human Cortex Network, for various values of the
Dombi parameter λ. < l > average path length, σl standard deviation of
shortest path, CV coefficient of variability, CI and CQ weighted clustering
coefficients, C clustering coefficient (crisp), SM semi-metric percentage.

Metric backbone

As we can see from table 6.8 for λ = 1 the SM is 0.91, which means that 91%

of the direct edges are semi-metric and the backbone has 9% of the network
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λ < l > σl CV CI CQ C SM
0.01 1.5 0.5 0.33 − − 0.54 0
0.2 2.7 0.6 0.24 0.53 0.53 0.53 0.06
0.5 5.5 1.8 0.33 0.53 0.53 0.53 0.80
1 11.9 6.2 0.52 0.53 0.53 0.53 0.89
2 65.0 112.0 1.57 0.53 0.53 0.53 0.93
5 1.5E5 7.8E5 3.43 0.53 0.53 0.53 0.94
10 2.6E11 8.8E11 4.50 0.53 0.53 0.53 0.94

Table 6.9: Variation in the null model of the Human Cortex Network, for
various values of the Dombi parameter λ. < l > average path length, σl
standard deviation of shortest path, CV coefficient of variability, CI and CQ
weighted clustering coefficients, C clustering coefficient (crisp), SM semi-
metric percentage.

edges. Figure 6.10 and table 6.10 show us the metric graph representation

and some of its properties.

λ < l > CVd < Stp > CVp kavg CI C N SM
HCN 1 21.5 0.91 0.08 1.10 3.21 0.31 0.13 66 0
RNM 1 11.9 0.46 0.10 0.78 3.86 0.11 0.02 66 0

Table 6.10: Human Cortex metric backbone (HCN) and Null Model (RNM),
for λ = 1. < l > average path length, CVd coefficient of variability, < Stp >
average strongest path (Global Efficiency), CV p coefficient of variability,
kavg average degree, CI weighted clustering coefficient, C clustering coeffi-
cient (crisp), N number of vertices on the main component, SM semi-metric
percentage.

From figure 6.10 we can see that the backbone has some modular structure

and contain mainly bridges between these modules. All edges in this network

participate on the shortest path between any two vertices. We can see from

this figure if we remove some of these bridges the graph becomes partitioned

in modules. From table 6.10 we can see that the average path length remains
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Figure 6.10: Human Cortex metric backbone

intact compared with the values obtain in table 6.8 for λ = 1, as expected.

However, the clustering coefficients reduced considerably.

Next, we compare the traditional and semi-metric (SMT) thresholding

applied to weighted graphs.

Traditional versus Semi-metric thresholding

In figure 6.11 we can see the number of edges removed with the traditional

and the semi-metric thresholding. It is noteworthy that the semi-metric
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thresholding preserves more edges in the network. Even for small thresholds

the traditional thresholding removes more than 80% of the edges. In figure

6.12 we can see how the threshold partitioned the network. The partitioning

comes in blocks with a big jump around th = 0.15. This block partitioning

can be explained by the modular structure observed in figure 6.10 (backbone).
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Figure 6.11: Traditional versus Semi-metric thresholding, which naturally
coincide, for the Human Cortex network.

In tables 6.11 and 6.12 we show some properties of the crisp sub-graphs

after thresholding with traditional and semi-metric, respectively.

166



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

20

30

40

50

60

70

Threshold

S
iz

e 
of

 m
ai

n 
co

m
po

ne
nt

Figure 6.12: Main component size using traditional and semi-metric thresh-
olding for the Human Cortex network.

We observe the main differences on the clustering coefficient and average

degree as expected. The differences in the average shortest path are observed

because we are treating the sub-graphs as crisp. As we will see below when we

treat the sub-graphs as weighted there are no differences on average shortest

path.

The average shortest path is of the same order of magnitude of log(N)

and the clustering coefficients are high for traditional thresholding for th <
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th < l > CVd < Stp > CVp C kavg N SM
0.025 3.1 0.43 0.02 4.41 0.46 7.02 65 0
0.05 3.5 0.42 0.02 4.39 0.43 5.48 61 0
0.1 4.9 0.46 0.02 4.77 0.32 3.59 58 0
0.15 6.3 0.56 0.02 4.70 0.19 2.86 49 0
0.02 3.8 0.52 0.05 3.16 0.03 2.72 25 0

Table 6.11: Results for the Human Cortex sub-network (HCN) with the
traditional thresholding. SMT semi-metric threshold, < l > average path
length, CVd coefficient of variability, < Stp > average strongest path, CVp
coefficient of variability, C clustering coefficient (crisp), kavg average degree,
N number of vertices, SM semi-metric percentage.

SMT < l > CVd < Stp > CVp C kavg N SM
0.025 1.5 0.39 0.02 3.43 0.70 33.78 65 0
0.05 1.5 0.34 0.02 3.42 0.69 28.39 61 0
0.1 2.5 0.46 0.02 3.92 0.72 13.07 58 0
0.15 3.9 0.62 0.03 3.91 0.56 8.90 49 0
0.02 1.9 0.42 0.06 2.59 0.71 8.72 25 0

Table 6.12: Results for the Human Cortex sub-network (HCN) with the
semi-metric thresholding. SMT semi-metric threshold, < l > average path
length, CVd coefficient of variability, < Stp > average strongest path, CVp
coefficient of variability, C clustering coefficient (crisp), kavg average degree,
N number of vertices, SM semi-metric percentage.

0.05 and low for th > 0.05. The crisp sub-graphs obtained by traditional

thresholding are considered small-worlds for th < 0.05 and not for th > 0.05.

However, for semi-metric thresholding we can can consider the small-world

for all range of thresholds.
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Weighted network analysis

Here we study the network considering its weights, we do not turn the sub-

graphs into crisp graphs. We apply the traditional and semi-metric thresh-

olding. Table 6.13 show us the properties for both methods. Table 6.14 show

the same properties for the Null Model.

th < l > CVd < Stp > CVp CIT CISM kT kSM N SMT SMSM

0.025 19.3 0.78 0.09 1.07 0.49 0.72 7.0 33.8 65 0.56 0.91
0.05 15.0 0.51 0.09 1.00 0.41 0.70 5.5 28.4 61 0.44 0.89
0.1 15.1 0.55 0.10 1.01 0.35 0.68 3.6 13.1 58 0.24 0.79
0.15 15.5 0.67 0.11 1.04 0.33 0.46 2.9 8.9 49 0.16 0.73
0.2 4.7 0.53 0.23 0.65 0.21 0.77 2.7 8.7 25 0.15 0.73

Table 6.13: Results for the Human Cortex sub-network (HCN) with metric
distance closure (λ = 1). SMT semi-metric threshold, < l > average path
length, CVd coefficient of variability, < Stp > average strongest path, CVp
coefficient of variability, CIT and CISM the clustering coefficient for tradi-
tional and semi-metric thresholding, kT and kSM are the average degree for
the traditional and semi-metric thresholding, N number of vertices, SMT and
SMSM semi-metric percentage for traditional and semi-metric thresholding.

We can see in these tables the weighted sub-graphs obtained by traditional

thresholding are considered small-worlds for th < 0.05 and not for th > 0.05.

However, for semi-metric thresholding we can consider the small-world for

all range of thresholds.
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th < l > CVd < Stp > CVp CIT CISM kT kSM N SMT SMSM

0.025 11.4 0.48 0.11 0.79 0.11 0.52 7.0 33.8 65 0.46 0.89
0.05 10.7 0.52 0.11 0.76 0.11 0.48 5.5 28.4 61 0.32 0.87
0.1 10.3 0.53 0.12 0.76 0.17 0.21 3.6 13.1 58 0.09 0.72
0.15 9.0 0.70 0.14 0.74 0.22 0.17 2.9 8.9 49 0.06 0.65
0.2 4.0 0.67 0.22 0.75 0.20 0.33 2.7 8.7 25 0.09 0.70

Table 6.14: Results for the null model (RNM) with metric distance closure
(λ = 1). SMT semi-metric threshold, < l > average path length, CVd
coefficient of variability, < Stp > average strongest path, CVp coefficient of
variability, CIT and CISM the clustering coefficient for traditional and semi-
metric thresholding, kT and kSM are the average degree for the traditional
and semi-metric thresholding, N number of vertices, SMT and SMSM semi-
metric percentage for traditional and semi-metric thresholding.

6.7 Functional Human Brain Network

6.7.1 Introduction

The Functional Human Brain Network is a weighted network with 116 ver-

tices. It was acquired in resting-state the fMRI images for 40 healthy subjects

during 420000 ms at a TR=2000 ms. All participants were scanned using

the same Siemens 3T Tim Trio Scanner at the Medical Research Council

Cognition and Brain Sciences Unit, Cambridge, UK. Functional images were

acquired with a gradient echo planar imaging sequence with the following

parameters: repetition time TR= 2000 ms, echo time TE= 30 ms, voxel size

= 3 × 3 × 3 mm, for 32 brain slices. A more detailed description of the ac-

quisition of fMRI data can be found in [85]. The vertices represent anatom-

ical regions (ROI’s) and the edges the Maximal Overlap Discrete Wavelet

Transform (MODWT) correlation between ROI’s time series. We study the
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network obtained by averaging the 40 subjects networks at wavelet scale 1.

Scale 1 frequencies range is [0.125, 0.25] Hz.

6.7.2 Results and Discussion

Average shortest path fluctuations

After normalization, we apply the Dombi t-norm generator for several pa-

rameters and apply the APSP Dijkstra algorithm to calculate the shortest

path distribution. Figure 6.13 shows the semi-metric percentage (SM) for

the Functional Human Brain Network and for randomized weighted random

network.
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Figure 6.13: Semi-metric percentage (SM) for Dombi t-norm generator
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In tables 6.15 and 6.16 we present the results for the Functional Human

Brain network and the randomized network, respectively.

λ < l > σl CV CI CQ C SM
0.01 1.3 0.4 0.34 − − 0.85 0
0.2 1.6 0.5 0.33 0.84 0.83 0.85 0.04
0.5 2.3 0.8 0.37 0.84 0.83 0.85 0.39
1 2.9 1.3 0.46 0.84 0.83 0.85 0.81
2 3.2 2.2 0.69 0.84 0.83 0.85 0.94
5 7.5 20.1 2.77 0.84 0.83 0.85 0.97
10 422.9 3.0E3 7.14 0.84 0.83 0.85 0.98

Table 6.15: Variation in the Functional Human Brain Network, for various
values of the Dombi parameter λ. < l > average path length, σ standard
deviation of shortest path, CV coefficient of variability, CI and CQ weighted
clustering coefficients, C clustering coefficient (crisp), SM semi-metric per-
centage.

λ < l > σl CV CI CQ C SM
0.01 1.3 0.4 0.34 − − 0.76 0
0.2 1.5 0.4 0.24 0.76 0.76 0.76 0.07
0.5 1.8 0.4 0.22 0.76 0.76 0.76 0.52
1 1.7 0.4 0.26 0.76 0.76 0.76 0.81
2 1.2 0.4 0.35 0.76 0.76 0.76 0.93
5 0.3 0.2 0.76 0.76 0.76 0.76 0.97
10 0.04 0.07 1.83 0.76 0.76 0.76 0.97

Table 6.16: Variation in the null model of the Functional Human Brain
Network, for various values of the Dombi parameter λ. < l > average path
length, σ standard deviation of shortest path, CV coefficient of variability,
CI and CQ weighted clustering coefficients, C clustering coefficient (crisp),
SM semi-metric percentage.

In tables 6.15 and 6.16 we can confirm when we increase λ the fluctuations

increase.
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In table 6.16 for λ > 1 the null model changes the tendency of increasing

the average path length with λ. The reason for this type of behavior can

be explained by its semi-metric values and weights distribution. We have

seen that the average path length only depends on the metric backbone. For

λ > 1 the semi-metricity is bigger than 94%, which means only 6% of the

edges contribute for average shortest path, the ones in metric sub-graph.

We have 5, 071 edges in the Functional Human Brain network, which means

we have 0.06 × 5, 071 ≈ 304 edges that contribute to the average shortest

path. From the weights distribution, we have 302 edges out of 5, 071 with

weights bigger than 0.5, which means in the distance graph for this weights

we have distances between 0 and 1, and for λ > 1 are considerable smaller

than for λ ≤ 1. With the randomization of the network we get a high

probability of having some of these edges on the backbone, decreasing the

average shortest path. Moreover, for λ > 1 the metric closure behaves as

the ultra-metric closure (max,min), and the shortest path will be equal to

max of the minimum distance weight which is very small for weights bigger

than 0.5. This explains how the null model gets small average shortest path

values for λ > 1.

Metric backbone

As we can see from table 6.15 for λ = 1 the SM is 0.81, which means that 81%

of the direct edges are semi-metric and the backbone has 19% of the network

edges. Figure 6.14 and table 6.10 show us the metric graph representation
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and some of its properties.

Figure 6.14: Functional Human Brain metric backbone

λ < l > CVd < Stp > CVp kavg CI C N SM
HCN 1 2.9 0.46 0.29 0.38 16.8 0.34 0.38 116 0
RNM 1 1.7 0.26 0.41 0.19 17.9 0.13 0.14 116 0

Table 6.17: Functional Human Brain metric backbone (HCN) and Null Model
(RNM), for λ = 1. < l > average path length, CVd coefficient of variabil-
ity, < Stp > average strongest path (Global Efficiency), CV p coefficient of
variability, kavg average degree, CI weighted clustering coefficient, C clus-
tering coefficient (crisp), N number of vertices on the main component, SM
semi-metric percentage.
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From figure 6.14 we can see that the metric backbone has some modular

structure and contains hubs and bridges between these modules. All edges in

this network participate on the shortest path between any two vertices. We

can see from this figure if we remove some of these bridges the graph becomes

partitioned in modules. From table 6.17 we can see that the average path

length remains intact compared with the values obtain in table 6.15 for λ = 1,

as expected. However, the clustering coefficients reduced considerably.

Next, we compare the traditional and semi-metric (SMT) thresholding

applied to weighted graphs.

Traditional versus Semi-metric methodology

In figure 6.15 we can see the number of edges removed with the traditional

and the semi-metric thresholding. In figure 6.16 shows how the threshold

partition the network. The partitioning comes in blocks with a big jump

between 0.4 < th < 0.7. This block partitioning can be explained by the

modular structure observed in figure 6.14 (backbone).

This network can be considered as small-world for λ = 1, since the values

of CVd ≈ 0.46 and CVp ≈ 0.38 are small. For the propose of characterizing

the network as small-world we do not need to further inspect sub-graphs

(thresholding). If we intend to characterize other measures we can apply the

semi-metric thresholding, however in this thesis we do not proceed with that

analysis.
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Figure 6.15: Traditional versus Semi-metric thresholding for the Functional
Human Brain network.

6.8 Scientific Collaboration Network

6.8.1 Introduction

The structure and connectivity of the Scientific Collaborative Network has

been deduced from co-authorship of scientists in a single paper, which a

link between two scientists is established by their coauthorship of one or

more scientific papers [66]. Thus the groups to which scientists belong in
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Figure 6.16: Main component size using traditional and semi-metric thresh-
olding, which naturally coincide, for the Functional Human Brain network.

this network are the groups of coauthors of a single paper. This network is

undirected and has a total of 15, 179 vertices and 86, 022 undirected edges.

6.8.2 Results and Discussion

After normalization, we apply the Dombi t-norm generator for several pa-

rameters and apply the metric closure to calculate the main components. We

have one strong component of 12, 722 vertices and 735 small components of
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2 vertices. We analyze only the strong component. Figure 6.17 shows the

semi-metric percentage (SM) for the Scientific Collaboration Network and

for randomized weighted random network (null model).
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Figure 6.17: Percentage of semi-metricity for Dombi t-norm generator

In tables 6.18 and 6.19 we present the results for the Scientific Collabo-

ration network and the randomized network, respectively.

The network is 91% metric, which means the metric backbone is the

network itself. Moreover, the average shortest path is at the same order

of magnitude of the null model and the CV = 0.32 and CVp = 0.44 for

the actual network with λ = 1, we can conclude that the network can be

considered a small-world. Therefore, this network has no need for further
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λ < l > σl CV CI CQ C SM
0.01 7.1 1.7 0.24 − − 0.65 0
0.2 13.2 3.1 0.23 0.69 0.70 0.65 2.5E − 5
0.5 35.6 8.9 0.25 0.69 0.70 0.65 0.02
1 183.3 58.7 0.32 0.69 0.70 0.65 0.09
2 5.5E3 3.3E3 0.60 0.69 0.70 0.65 0.21
5 7.6E8 1.2E9 1.58 0.69 0.70 0.65 0.28
10 1.6E18 5.5E18 3.44 0.69 0.70 0.65 0.28

Table 6.18: Variation in the Scientific Collaboration Network, for various
values of the Dombi parameter λ. < l > average path length, σl standard
deviation of shortest path, CV coefficient of variability, CI and CQ weighted
clustering coefficients, C clustering coefficient (crisp), SM semi-metric per-
centage.

λ < l > σl CV CI CQ C SM
0.01 5.5 0.9 0.16 − − 5E − 4 0
0.2 10.8 1.7 0.16 0.04 0.04 0.07 0
0.5 31.2 5.0 0.16 0.04 0.04 0.07 1.0E − 4
1 174.4 33.1 0.19 0.04 0.04 0.07 1.4E − 3
2 4.8E3 1.5E3 0.31 0.04 0.04 0.07 0.20
5 1.4E8 3.2E8 2.29 0.04 0.04 0.07 0.58
10 1.0E17 1.2E18 12.00 0.04 0.04 0.07 0.63

Table 6.19: Variation in the null model of the Scientific Collaboration Net-
work, for various values of the Dombi parameter λ. < l > average path
length, σl standard deviation of shortest path, CV coefficient of variability,
CI and CQ weighted clustering coefficients, C clustering coefficient (crisp),
SM semi-metric percentage.

investigation since for λ = 1 the average path length is characteristic and we

would take advantage with the semi-metric thresholding.
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6.9 Astrophysics Collaborations Network

6.9.1 Introduction

The structure and connectivity of the Astrophysics Collaborations Network

has been deduced from co-authorship of scientists in a single paper, which

a link between two scientists is established by their coauthorship of one or

more scientific papers [66]. Thus the groups to which scientists belong in

this network are the groups of coauthors of a single paper. This network is

undirected and has a total of 16, 706 vertices and 121, 251 undirected edges.

6.9.2 Results and Discussion

After normalization, we apply the Dombi t-norm generator for several pa-

rameters and apply the metric closure to calculate the main components. We

have one strong component of 14, 845 vertices and many small components

of 2 vertices. We analyze only the strong component. Figure 6.18 shows the

semi-metric percentage (SM) for the Astrophysics Collaborations Network

and for randomized weighted random network (null model).

In tables 6.20 and 6.21 we present the results for the Astrophysics Col-

laborations network and the randomized network, respectively.

The network is 80% metric, which means the metric backbone is the

network itself. Moreover, the average shortest path is at the same order

of magnitude of the null model and the CV = 0.35 and CVp = 0.43 for

the actual network with λ = 1, we can conclude that the network can be

180



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dombi t norm  parameter

Pe
rc

en
ta

ge
 o

f S
em

im
et

ric
ity

 (S
M

)

 

 

ACN
Rand ACN

Figure 6.18: Percentage of semi-metricity for Dombi t-norm generator

λ < l > σl CV CI CQ C SM
0.01 5.0 0.4 0.08 − − 0.70 0
0.2 9.5 2.3 0.24 0.71 0.73 0.70 2.5E − 5
0.5 26.1 6.4 0.25 0.71 0.73 0.70 0.03
1 132.4 45.8 0.35 0.71 0.73 0.70 0.20
2 4.2E3 3.3E3 0.79 0.71 0.73 0.70 0.41
5 1.1E9 2.2E9 2.00 0.71 0.73 0.70 0.47
10 5.2E18 1.5E19 2.88 0.71 0.73 0.70 0.48

Table 6.20: Variation in the Astrophysics Collaborations Network, for vari-
ous values of the Dombi parameter λ. < l > average path length, σl standard
deviation of shortest path, CV coefficient of variability, CI and CQ weighted
clustering coefficients, C clustering coefficient (crisp), SM semi-metric per-
centage.
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λ < l > σl CV CI CQ C SM
0.01 3.9 0.5 0.13 − − 1E − 3 0
0.2 7.8 1.0 0.13 7E − 3 7E − 3 1E − 3 0
0.5 23.3 3.3 0.14 7E − 3 7E − 3 1E − 3 3.7E − 4
1 125.2 21.1 0.17 7E − 3 7E − 3 1E − 3 0.02
2 2.7E3 7.3E2 0.27 7E − 3 7E − 3 1E − 3 0.58
5 2.9E7 8.2E7 2.83 7E − 3 7E − 3 1E − 3 0.83
10 6.7E15 2.5E17 36.7 7E − 3 7E − 3 1E − 3 0.86

Table 6.21: Variation in the null model of the Astrophysics Collaborations
Network, for various values of the Dombi parameter λ. < l > average path
length, σl standard deviation of shortest path, CV coefficient of variability,
CI and CQ weighted clustering coefficients, C clustering coefficient (crisp),
SM semi-metric percentage.

considered a small-world. Therefore, this network has no need for further

investigation since for λ = 1 the average path length is characteristic and we

would take advantage with the semi-metric thresholding.

6.10 High-Energy Theory Collaborations Net-

work

6.10.1 Introduction

The structure and connectivity of the High-Energy Theory Collaborations

Network has been deduced from co-authorship of scientists in a single paper,

which a link between two scientists is established by their coauthorship of

one or more scientific papers [66]. Thus the groups to which scientists belong

in this network are the groups of coauthors of a single paper. This network
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is undirected and has a total of 8, 361 vertices and 15, 751 undirected edges.

6.10.2 Results and Discussion

After normalization, we apply the Dombi t-norm generator for several param-

eters and apply the metric closure to calculate the main components. We

have one strong component of 5, 835 vertices and many small components

of 2 vertices. We analyze only the strong component. Figure 6.19 shows

the semi-metric percentage (SM) for the High-Energy Theory Collaborations

Network and for randomized weighted random network (null model).
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Figure 6.19: Percentage of semi-metricity for Dombi t-norm generator

In tables 6.22 and 6.23 we present the results for the C. Elegans network
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and the randomized network, respectively.

λ < l > σl CV CI CQ C SM
0.01 7.3 2.0 0.27 − − 0.51 0
0.2 13.5 3.7 0.27 0.58 0.60 0.51 7.2E − 5
0.5 36.5 10.3 0.28 0.58 0.60 0.51 0.03
1 186.4 61.4 0.33 0.58 0.60 0.51 0.13
2 5.1E3 2.6E3 0.51 0.58 0.60 0.51 0.25
5 3.7E8 7.5E8 2.03 0.58 0.60 0.51 0.33
10 6.0E17 4.9E18 8.17 0.58 0.60 0.51 0.34

Table 6.22: Variation in the High-Energy Theory Collaborations Network ,
for various values of the Dombi parameter λ. < l > average path length,
σl standard deviation of shortest path, CV coefficient of variability, CI and
CQ weighted clustering coefficients, C clustering coefficient (crisp), SM semi-
metric percentage.

λ < l > σl CV CI CQ C SM
0.01 5.8 1. 0.17 − − 1E − 3 0
0.2 11.1 2.0 0.18 0.06 0.06 1E − 3 0
0.5 30.9 5.8 0.19 0.06 0.06 1E − 3 1.0E − 4
1 167.4 35.6 0.21 0.06 0.06 1E − 3 1.2E − 3
2 4.7E3 1.5E3 0.32 0.06 0.06 1E − 3 0.07
5 1.4E8 3.9E8 2.79 0.06 0.06 1E − 3 0.46
10 1.5E17 2.7E18 18.00 0.06 0.06 1E − 3 0.49

Table 6.23: Variation in the null model of the High-Energy Theory Collabo-
rations Network, for various values of the Dombi parameter λ. < l > average
path length, σl standard deviation of shortest path, CV coefficient of vari-
ability, CI and CQ weighted clustering coefficients, C clustering coefficient
(crisp), SM semi-metric percentage.

The network is 87% metric, which means the metric backbone is the

network itself. Moreover, the average shortest path is at the same order

of magnitude of the null model and the CV = 0.33 and CVp = 0.47 for
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the actual network with λ = 1, we can conclude that the network can be

considered a small-world. Therefore, this network has no need for further

investigation since for λ = 1 the average path length is characteristic and we

would take advantage with the semi-metric thresholding.

6.11 Conclusion

We have seen the the previous chapter 5 how the semi-metric behavior is

related to some latent association between vertices. In this chapter we ex-

plored the structural properties of semi-metric edges in a network and how

they can differentiate two types of edges in a graph: metric and semi-metric.

We have seen in this chapter that semi-metric edges work on connectivity

structure properties of the network, such as vertex degree, clustering coef-

ficient, etc. and metric edges work on network shortest path distribution.

Since, the semi-metric edges work only on the graph structure connectivity,

we proposed a new methodology of thresholding (semi-metric thresholding),

which better preserves the connectivity of the networks, allowing us to bet-

ter characterized the small-world phenomenon either than the traditional

thresholding.
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Chapter 7

Concluding Remarks

7.1 Summary of Contributions

In this thesis we have addressed three main problems: (1) the scale-free de-

gree distribution with cut offs and (2) generalized transitive closures on com-

plex networks (3) a new methodology to analyze complex networks, which

allow us to study the small-world phenomena in weighted complex networks.

The main contributions were:

(a) Produced an analytical solution and integrative model of cut-offs in

the power-law degree distribution , which gives us the ability to better predict

the organization of complex networks.

(b) Produced a relation between mathematical treatment of transitive

closure in fuzzy graphs and the Dijkstra algorithm [29] in weighted graphs.

This result bridges the gap between complex networks and fuzzy graphs and
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gives an insight about how we measure the shortest paths between any two

vertices in a weighted graph, since there are no unique way to perform this

measurement.

(c) Proposed a new methodology to analyze complex networks and study

properties such as: the average path length, semi-metric behavior and clus-

tering coefficient in weighted graphs. This helps us to characterize more

effectively the small-world phenomena in weighted networks.

In chapter 3 we addressed the first contribution of this thesis. We intro-

duced a stochastic theoretical model as a mathematical explanation of the

Amaral’s et al. PAVA model [6]. We started by presenting our stochastic

model for the Amaral et al. model of preferential attachment with vertex

aging. We explained the exponential decay for degree distributions and the

network stop growing estimation. We tested the predicting simulations done

by Amaral et al. with our STM model.

We believe this work can provide a simple explanation for the dynamics

of some scale-free networks and through this knowledge, obtain a better

understanding of how these scale-free networks can emerge. As we have

seen in the introduction, the field of complex networks is an interdisciplinary

field. Therefore, a better understanding of the mechanisms behind complex

networks can improve the understanding behind certain problems in areas

like the Internet, World Wide Web, Neural Networks, Chemical Networks,

Social Networks and so on.

In chapter 4 we addressed the second main contribution, the relations
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between transitive closure in fuzzy graphs and the APSP Dijkstra algorithm.

We proved corollary 4.1, which states there always exists a t-norm and

t-conorm for (min,+) operators such that the two generated closures are

isomorphic and the isomorphism between the fuzzy graphs and the distance

graphs is in fact the generator for the t-norm. This theorem has a strong

impact when we convert a proximity graph into a distance graph and then

calculate the respective distance closure. The isomorphism we use defines a

t-norm, that is, a metric in fuzzy or distance graphs, which influences the

way we measure distances in our graphs.

It is implicit in the results that the transitive closure is a generalization of

the APSP Dijkstra algorithm, and consequently these closures are not unique

as already known in the theory of fuzzy graphs [53].

We also estimate the best t-norm in the family of Dombi t-norms, which

preserves the characteristics in the proximity and distance spaces.

In chapter 5 we study proximity and semi-metric networks, and empir-

ically enforce that the ultra-metric closure destroys several properties from

the original networks. Moreover, we verify the result from chapter 4 that

λ = 1 for Dombi t-norm, gives good experimental results in recommendation

systems and also preserves properties such strength distribution from the

original graphs.

In Chapter 6 we introduced a new methodology, based on semi-metric

behavior, to analyze complex networks. This methodology has as main con-

tribution find the core sub-network of a real-world network, which preserves
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the structure of the network. Following from results on chapter 4 and this

new methodology we discuss the small-world phenomena in six real-world

weighted networks.

7.2 Future Work

For future work we foresee the following developments in the following areas.

7.2.1 Study other pairs of t-norms and t-conorms be-

tween Proximity and Distance spaces

We have studied in this thesis the Dombi t-norm, when we map a proximity

into a distance. However, there are many other possible mappings, such as

ϕ = −log(x), which belongs to the family of Schweizer-Sklar t-norms and

many others, [51]. We would like to pursue an in deep study of all these t-

norms possibilities and it consequences to real problems such as how it affect

the topological and dynamics of complex networks.

7.2.2 Depth study of the semi-metricity of Human Cor-

tex Network

We intend pursue a study more in-depth of the Human Cerebral Cortex

network, to detect the biological implications derived from this work. Where

we found that the Human Cortex network is highly semi-metric. This future
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work can provide us a better understanding of the functionalities the Human

Cortex.

7.2.3 Community detection in weighted networks

Community detection in crisp networks (edges with values 1 or 0) studies

the topology of connections to separate groups of vertices. Through utility

functions we can optimize the communities in crisp networks. This works in

crisp networks because they do not violate the triangle inequality, that is,

all direct paths are shorter than the indirect paths. However, when dealing

with weighted networks this is not the case. Real-world weighted networks

generally do not obey the triangle inequality, they are semi-metric, that is,

many indirect paths between vertices in the network are shorter than the

direct paths. The proximity between vertices must be studied not only from

the topology of crisp edges but also by the general topology with weighted

edges. If we apply the general algorithms from crisp networks to detect

communities in weighted networks we are not taking in consideration the

semi-metric effect. For future work we intend to explore a framework where

we calculate first the shortest distance between all vertices, through the Di-

jkstra algorithm. After using the matrix with all shortest paths calculate

the communities by adapting the concept of distance with any clustering al-

gorithm from the data-mining field; in general k-means or c-means. With

this process we expect to be able to detect groups of vertices that have in

consideration the semi-metric topology in weighted graphs.
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7.2.4 Dynamics in weighted networks

In general real-world networks are heterogeneous in the degree distribution,

weight distribution. We have proposed in this thesis a new methodology of

analysis of complex networks. This methodology allow us to study subnet-

works that have properties such as small-world and represent a more homo-

geneous subgraph of the network. We would like to explore the dynamics of

epidemic spreading in vertices of this subnetworks versus vertices outside of

these subnetworks.

7.2.5 Churning in telecommunication networks

Churning is a problem for telecommunication companies, since the market

is saturated and is more expensive to try to acquire a new customer than to

maintain the customer. To maintain profitability, telecommunication com-

panies must control churn. Nowadays, the pre-paid services to around 80%

of the marked. In the pre-paid the telecommunication companies have al-

most no information about the customer, turning the churn prediction very

difficult by the use of traditional data mining tools.

From the Call Detail Record (CDR), we are able to build a weighted

graph, representing the social connections of customers. We intend to explore

the subnetwork using our methodology with epidemic spreading algorithms

to predict churn.
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