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Lexical sentiment analysis has been used to understand what is expressed in natural

language, sometimes to better understand the psychological characteristics of an author,

or to understand the author’s stance towards an object, such as a product, person, or

idea. This methodology has also been used to study temporal patterns in the mood of

populations, or to understand the general use of language. In general, these applications

study changes in the central tendency of the mood of entire populations. However, it

is likely that collective moods may be composed of discordant parts. Can we use these

sentiment tools to predict and understand health outcomes for both small cohorts and

at the level of populations, and does the analysis of the distribution of sentiment reveal

distinct components useful for those goals?

In this dissertation, I demonstrate how the use of natural language processing and

lexical sentiment of social media timelines can be useful in predicting health outcomes

for a small cohort of epilepsy patients. I develop a method based on the singular vector

decomposition to discern characteristic components of the distributions of collective

sentiment, associated with sub-populations and cohorts of interest. I demonstrate that

the first singular component represents the base distribution of sentiment due to the

frequency of sentimental words in natural language and show how further components

can reveal meaningful patterns in sentiment over time. To show the predictive and

analytical power of these components, I demonstrate their use in modeling sex searches

as a proxy for human reproductive cycles and mortality during the Covid-19 pandemic.
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Chapter 1

Introduction and Related Work

1.1 Motivation

Lexical sentiment analysis has been used to understand what is expressed in natural

language – sometimes to better describe the psychological characteristics of an author

[1], or to measure the author’s stance towards an object, such as a product, person, or

idea [2]. This methodology has also been used to study temporal patterns in the mood of

populations, or to understand the general use of language [3, 4]. In general, the applica-

tion of this methodology involves measuring changes in the central tendency of the mood

of entire populations. However, it is likely that collective moods may be composed of

discordant parts. For instance, an event such as an election or a competition may lead to

the simultaneous appearance of happy and sad sub-populations, which central tendency

measures of the whole population may miss. Furthermore, changes in the components

of mood in time may allow us to identify cohorts and individuals with specific diseases

or conditions. To study and address those situations, I propose to develop methods that

can discern characteristic components of collective mood, potentially associated with

1
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sub-populations and cohorts of interest and test them on problems of public health and

social interest. I will treat measured sentiment in social media posts as a composition of

sentiments over time, and define characteristic mood components and temporal patterns

as the right and left singular vectors of this data matrix respectively. To test the hy-

pothesis that central tendency in lexical sentiment analysis may miss important aspects

of collective human behavior, and that methods that discriminate different contributions

of collective mood can be more effective in predicting that behavior, I propose to answer

the following questions (numbers) and hypotheses (letters):

1. Can meaningful components of collective mood states be extracted from time-series

analysis of the sentiment of entire populations measured on social media?

1.Ha A singular value decomposition of lexical sentiment measurements over time

provides useful components representing collective mood states

1.Hb These components are characteristic of sub-populations and phenomena of

interest.

2. Are components of collective mood predictive of the future collective behavior of

populations?

2.Ha Components of collective moods can predict and explain the influence of

culture on human reproductive cycles.

2.Hb Components of collective mood can track mortality due to Covid-19.

3. Can characteristic temporal patterns associated with individuals or small cohorts

be used to predict specific mental or medical conditions?

3.Ha Patterns in sentiment measures are predictive of increased risk of sudden

unexpected death in epilepsy.
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1.2 Related Work

1.2.1 Sentiment Analysis

Sentiment Analysis, also called Opinion Mining, has been an area of increasing interest

in the past two decades. People have long been interested in what others think. Among

others, consumers want to know the opinions of trusted reviewers before making a pur-

chase, politicians want to know the views of their constituents, and companies want to

know how their products are seen by the market. With data increasingly available in

digital form from public blogs, reviews, and social media; traditional opinion polling

can be complemented by automatic information extraction and retrieval tools. Due to

these interests, much of the computer science literature casts problems in this domain

as classification or regression problems, determining whether a text holds a positive or

negative opinion. As Pang and Lee note in their review of the subject, extracting sub-

jective opinion offers a host of new challenges that objective information extraction may

not face, including the use of sarcasm (particularly in political discussions), the deter-

mination of subjective opinion, and the polarity of a sentiment-laden word or phrase in

context[5]. Liu in his book [2] casts the problem generally as one of extracting quintu-

ples representing a target (e.g. a camera), an aspect of the target (e.g. the battery),

the sentiment directed towards the target (e.g. positive or negative), the holder of the

sentiment, and the time when the sentiment was expressed. Approaches to solving these

classification problems involve selecting features based on likely expressions of senti-

ment; transforming those features based on syntactic rules; multi-stage classifications of

topic, subjectivity, and sentiment; and natural language processing (NLP) techniques to

identity product features and the authors of the opinion[2, 5].
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Bing Liu defines sentiment analysis as ”the field of study that analyzes people’s

opinions, sentiments, evaluations, appraisals, attitudes, and emotions towards entities

such as products, services, organizations, individuals, issues, events, topics, and their

attributes”[2], and Pang an Lee suggest that many use the term ”broadly to mean the

computational treatment of opinion, sentiment, and subjectivity in text.” Work focusing

on more linguistic or affective concerns thus also fall under this umbrella. Dictionaries

of sentiment-laden words are commonly built through a variety of methods – such as

expert curation and consensus, surveys, and supervised machine learning classifiers –

for use in feature construction and selection in classification tasks [2, 5]. However, these

tools and how they describe the affect of words can themselves be the subject of interest

or interpreted as revealing underlying moods[3, 4, 6–9]. Implicit in this approach is an

understanding of individual or population-level emotion as a latent state, observable

through written text, similar to psychological mood states[10], or hidden states in a

generative model for text [11, 12].

1.2.2 Available Sentiment Instruments

Most out-of-the-box sentiment tools are dictionary based: words and a numeric score

describing their sentiment, and most focus on a single dimension of measured affect,

ranging from negative to positive valence (happiness). A non-comprehensive list includes

the General Inquirer[13], the Affective Norms for English Words (ANEW)[4, 6] along

with many extensions and translations of the ANEW dictionary[14–16], Google Profile of

Mood States (GPOMS)[9, 17], Peter Dodds’ LabMT dictionary[8], SentiWordNet[18, 19],

the Lingustic Inquiry and Word Count (LIWC)[1], VADER[20], and OpinionFinder[21].

There are many more, twenty-four of which are listed in Reagan et al.’s paper comparing

six in depth[22], while a different, but overlapping set of twenty-four were compared on a
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number of classification tasks in Ribeiro et al.’s Sentibench[23] . Due to this proliferation

of tools I will only discuss those mentioned above, which cover historically important

tools, like the General Inquirer and ANEW, tools developed for large-scale social media

analysis like LabMT, as well as widely used tools like LIWC and VADER that are among

the best across a number of the Sentibench three-class (negative, neutral, and positive)

classification tasks[23].

The General Inquirer [13] was developed as a tool to organize nonnumerical data,

and tag words in a text across various categories, and allow the text to be organized

according to such tags. The system started as a general-purpose tool with a dictionary

of categories over the 3000 most common English words and a few hundred words of

interest to a behavioral scientist. The categories included “Persons”, “Behavorial Pro-

cesses”, “Psychological States”, and more for the purpose of content analysis to trace

psychological themes over a series of group discussions It has since grown to include the

”Harvard IV-4” and ”Lasswell” content analysis dictionaries as well, for a total of 198

categories[24].

The Affective Norms for English Words (ANEW) includes ratings from 1 to 9 for

1034 words along three mood dimensions: valence from unhappy to happy, arousal

from calm to excited, and dominance from controlled to in-control. These ratings were

collected from surveys given to undergraduates in a psychology class using a 9-point

Likert-like scale[6]. It has been used as a basis for a number of new dictionaries, in-

cluding an extension to nearly 14,000 words[16], a translation to Spanish[14], European

Portuguese[15], among others.

The Google Profile of Mood States (GPOMS) is an extension of the Profile of Mood
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States (POMS), a test of self-report Likert-scale questions measuring 6 underlying di-

mensions of mood: Tension or Anxiety, Depression or Dejection, Anger or Hostility,

Vigor or Activity, Fatigue or Inertia, and Confusion or Bewilderment[10]. GPOMS tries

to translate the questionaire to a dictionary suitable for sentiment analysis of large-scale

social media data. This tool extended the original 72 terms in the POMS questionnaire

to a dictionary of 964 words by looking at co-occurrences in Google’s 4, and 5-gram

corpora. These terms correspond to moods across 6 categories: calm, alert, sure, vital,

kind, and happy [17].

LabMT Hedonometer used Amazon’s Mechanical Turk to send out ANEW-like sur-

veys ranking 1,000s of words on a 9-point scale from sad to happy, collecting at least 50

ratings for each word. Initially, LabMT Hedonometer was comprised of 10,222 English

words found by merging the 5,000 most used words in each of four corpora: Google

Books, Twitter, music lyrics, and the New York Times[8]. This has since been extended

to include 10 languages with about 10,000 words each collected across 24 corpora [7].

Linguistic Inquiry and Word Count, LIWC (pronounced “Luke”), is a software tool

for text analysis whose first version was released publicly in 2001 and has been actively

supported and widely used since[1, 25]. LIWC was developed by a number of judges

who independently created lists of words, tested for consistent categorization between a

majority of judges, uncommon words not present in a variety of corpora (blogs, novels,

spoken language studies, etc.) were removed, internal consistency was evaluated with

a corrected Cronbach’s alpha calculation, and external validity was tested through psy-

chological studies, including writing prompts for students. The version of the software

used in this work, LIWC2015, has dictionaries containing nearly 6,400 words and pro-

duces outputs across about 90 categories, including positive and negative emotion, but
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also pronouns, articles, congitive processes, time focus, personal concerns, and informal

language among others [1].

SentiWordNet [18, 19] is a dictionary assigning words values from 0 to 1 along three

dimensions: Objective, Positive, and Negative, such that all values sum to one for each

word. SentiWordNet was built on synsets, groups of synonymous words, from Word-

Net [26] and the lexical relationships between them. A committee of ternary classifiers

were trained in a semi-supervised fashion. Starting from a small set of positive or

negative labeled seeds, labels were propagated to related synsets within various radii,

and various supervised classifiers were trained on these sets. The final values for each

word/synset are determined by the proportion of classifiers labeling the synset as objec-

tive, positive, or negative, with random walk dynamics further refining values[19].

VADER[20] is a tool for measuring the extent of positive or negative sentiment with

more than a dictionary, and is readily available as part of the natural language toolkit for

python. In addition to dictionary-based sentiment scores, VADER looks at other words

in a sentence modifies sentiment scores based on 5 simple rules, namely the presence

of exclamations (e.g. “!!!”), capitalization, adverbs (e.g. “very”), negations within the

last three words before a sentiment-laden lexical feature (e.g. “not”), and contrastive

conjunctions (e.g. “but”).

OpinionFinder [27] is a full processing pipeline, first tokenizing a document, and then

using a series of classifiers trained on various corpora, to find subjective statements, find

speech events, identify opinion source, identify expressions of sentiment, and finally to

identify the expression as positive or negative.

Other work suggests modifications of sentiment scores through context, such as
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Karo Moilanen and Stephen Pulman’s proposed compositional rules to modify senti-

ment scores from sentence parse trees[28]. More extensions to dictionary-based senti-

ment analysis involve techniques to build features for traditional machine learning clas-

sifiers (Naive Bayes, SVM, etc.) on top of or in lieu of lexical scores[20]. Such features

include word modification, grammatical position, sentence-level, and document-level

features[27]; adding semantic features identifying the type of entity discussed (person,

place, etc.) [29]; using features from a hidden markov model latent dirichlet allocation

analysis[30]; or comparing the parse trees of text from different classes through boost-

ing methods[31]. These methods will not be explored in detail here, for most are not

available out-of-the-box, and must be trained for specific tasks.

1.2.3 The Use of Sentiment Tools

A common application of sentiment analysis tools is towards automatic classification of

reviews, in part because the data is often well structured with clear labels, e.g. number

of stars, thumbs up, ratings, etc. One early application of this sort of analysis was Pang,

Lee, and Vaithyanathan’s classifications of movie reviews, finding that straightforward

machine learning models like Naive Bayes, Support Vector Machines, and Maximum

Entropy models could outperform simple dictionaries invented by human participants

at determining positive or negative reviews.[32]. It is commonly noted, however, that

sentiment classifiers trained in one domain will not necessarily do well when transferred

to another. A more thorough review of papers concerned with sentiment analysis towards

reviews can be found in Pang and Lee’s review paper and Liu’s book [2, 5].

The authors of LIWC cite psychological studies to demonstrate how various LIWC

categories reveal underlying psychological states, including the use of more first-person

singular pronouns when describing pain or trauma, the use of verb tense describing the
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immediacy of an experience, the use of first-person plural pronouns to denote higher

social status, and the use of prepositions and conjunctions as a proxy to the complexity

of thought, among other examples[25]. A number of studies have used this tool as part

of automated text analysis for different applications. Robinson, Navea, and Ickes found

that some variables from LIWC calculated from students’ self-introductions, followed by

a Principal Component Analysis, are good predictors of a student’s overall performance

in a class — for example, the use of commas, quotes, and negative affect were positively

correlated with final performance, while use of the present tense, first-person singular,

home, and eating and drinking categories were negatively correlated[33]. LIWC has also

been found to be accurate for the automatic classification of the positive vs negative

affect of dream reports[34], used as descriptive statistics and as features for the classifi-

cation of suicide notes in completed vs non-completed attempts[35], and used to track

feelings of sadness, anxiety, and anger on social media during the September 11th World

Trade Center attacks[36, 37].

When applied to large-scale social media data, sentiment dictionaries reveal patterns

in population-level moods. Golder and Macy, applying LIWC to Twitter data, find

diurnal and seasonal rhythms to positive and negative sentiment, with increased positive

to negative sentiment in the morning decreasing through the day, and increasing with

longer day-lengths [3]. Using GPOMS and Twitter data, Bollen, Mao, and Zeng were

able to predict the overall direction of the Dow Jones Industrial Average [17]. Dodds

and Danforth, using song lyrics and blogs, found that there is a strong correspondence

between average ANEW valence and genre, blogger age, blogger location, and the day

of the week (peaking on the weekend and bottoming on Wednesday)[4]. In Dodds et

al.’s later work using the larger LabMT Hedonometer dictionary, many of these results

are reproduced with finer detailand shown to be robust to tuning parameters to remove
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more neutral terms[8]. Once extended to ten languages, LabMT Hedonometer shows a

universal positive skew in the frequency distribution of human language [7]. Reagan et al.

compare a number of tools to each other and their performance on a number of corpora,

including LabMT Hedonometer, ANEW, and LIWC, finding that in general sentiment

dictionaries tend to agree on positive and negative terms, but that ANEW, being a small

dictionary, lacks coverage of much of the text, while LIWC and similar dictionaries offer

less nuanced interpretation since the strength of terms in these dictionaries is limited to

a binary choice between positive and negative (or neutral/uncategorized) rather than a

metric or ordinal scale[22].

1.2.4 The Use of Social Media to Study Public Health

More broadly, social media and the use of online tools has been used to study a large va-

riety of topics, from social protests [38], to the spread of information [39], to a variety of

public health applications [40–42]. Studies have investigated how social media has been

used to spread information regarding ebola [43], track flu epidemics [44, 45], or track

dengue epidemics through search volume [46]. It should be noted, however, that due

to changes in underlying systems, data over-fitting, or spurious correlations with com-

mon factors, big-data models that initially predict some effect well, such as Google Flu

Trends’s prediction of CDC flu reports [47], may not predict such phenomena accurately

beyond training [48].

Sentiment analysis of social media in various forms has also been used to good

effect for public health applications. Qualitative content analysis finds that most doctor

reviews are positive [49] and that more positive reviews are associated with surgeons with

high procedure volume [50]. Similar qualitative content analysis found mostly positive

views of marijuana in related tweets [51] with increasing volume when marijuana was
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legalized in two states [52]. Machine learning methods for sentiment classification were

used to find that negative sentiment towards vaccines spreads more easily than positive

sentiment in social networks [53] and users with like-sentiment tend to cluster in social

networks [54]. In addition, machine learning methods have been able to accurately

classify social media posts according to the mental conditions to which they relate[55],

while ANEW and LIWC features have been useful in particular for classifying tweets

related to depression [56]. However, many of these studies focus on qualitative content

analysis, or building custom machine learning classifiers, while few have investigated

the ability of sentiment measures to capture general trends for small cohorts. There is

evidence that depression is related to phase shifts in mood, according to a study using

self-reports [57]. If these moods can be accurately measured by sentiment tools on social

media posts, we can better understand how mental illness relates to underlying dynamics

in mood, and potentially direct those most at risk to appropriate help and resources.

1.2.5 Topic Modeling and Vector Space methods

Related research in Natural Language Processing investigates how to capture semantic

topics from natural text, such as well known models like the Latent Dirichlet Allocation

[58–60]. Some of the above methods, like LIWC, cover not only the affective categories

of positive and negative emotion, but also semantic and cognitive categories like family,

or work. A topic can be discussed in different affective terms, and choice of affective

expression can be driven by a topic. To get to the try to access the underlying semantics

of word use, various methods can be used to give words a vector representation based

on the context in which the word appears.

Latent Semantic Indexing and Probabilistic Latent Semantic Indexing [61, 62] are

methods to find underlying factors in natural text. More generally, Principal Component
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Analysis (PCA), and Singular Value Decomposition (SVD) are useful methods both to

explore data, parsimoniously decomposing the variance into a few components, and to

give data the required properties (e.g. linear independence, whitening) for further anal-

ysis [63–66]. Related methods, like common factor models, similarly find parsimonious

descriptions of covariance structures with explicit reference to hypothesized latent vari-

ables [64, 65]. More matrix factorization methods have recently been proposed to apply

different constraints to data, like non-negativity [67–69], while Matrix Factorization Ma-

chines have provided a unifying framework to understanding these factorizations applied

to a variety of tasks [70, 71]. Techniques like word2vec learn vector representations of

words from context, and successfully capture semantic information, such that vector

operations can operate like analogies [72–74]. Vector representations allow for geometric

descriptions of topics as nearby clusters of words in a vector space [75]. Additionally

tensor or multi-table factorization methods like multilinear singular value decomposi-

tion [76], the canonical polyadic decomposition [77], and multiple factor analysis [78, 79]

have been used to extend matrix factorization to data with three or more sets of related

variables.

PCA has also been applied to “compositional data”, data whose variates are propor-

tions of a whole, including the composition of blood, chemical, or geological compounds

[66]. This sort of data has an imposed constraint – the sum of all variates for each sam-

ple must equal a constant, namely one. Aitchison argues that this constraint leads to

two difficulties when applying PCA: first that actual data in the simplex is often curved

in ways that linear principal directions do not capture, and second that he constraint

biases the covariance structure towards negative values, as increases in one proportion

must reduce at least one other. Aitchison proposes a transformation of the data to the

log ratio of proportions to the harmonic mean of all proportions, which removes the
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constraint on the covariance structure, and allows for principal directions curved in the

original space [80]. Filmoser, Hron, and Reimann extend this method to handle robust

estimation of the covariance matrix with outliers [81]. Others, like Kaciak and Sheahan,

however, have had success without transformations, or even centering [82].

1.2.6 Key Methodology in Support of Research Questions

While the opinions and sentiment of individuals has received a great deal of attention,

less has been paid to the mood of groups. It is unclear if the mood states of the indi-

viduals comprising a group are a good description of the overall mood of a group. In

particular, we may conjecture that groups have a greater propensity to hold divergent or

conflicting opinions towards the same object than individuals would, since an individual

may find it inconsistent to hold such conflicting opinions, while two separate individuals

holding opposing opinions encounter no such inconsistency. Additionally, there may be

patterns in the moods of a group of people that are not apparent from any individual.

Previous work looking at the large-scale moods of populations typically focus on mean

sentiment, assuming that the mood of individuals in the population follows the mood

of the group [3, 8]. In this work, I will try to characterize these collective moods by

measuring the sentiment of groups of people posting on social media, treating these

distributions as compositions of sentiment, and factorizing the composition of sentiment

over time. The goal will be to find meaningful collective mood states and temporal

patterns that correspond to other large-scale patterns of collective behavior. The con-

sequences for individuals will also be examined by looking at the correspondence of

individuals in smaller cohorts to these characteristic patterns.

With the variety of both sentiment tools, and matrix factorization methods, it is im-

practical to systematically study all of them. In the proposed dissertation, I will use the
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following sentiment tools: ANEW, VADER, LIWC and LabMT Hedonometer. These

tools are widely used in sentiment analysis literature, and have well-established founda-

tions through psychological surveys, qualitative analysis followed by machine learning

evaluation, expert curation, and distributed surveys respectively. Additionally, VADER

and LIWC, were consistently among the best tools for 3-class polarity classification

(negative, neutral, or positive emotion) across a number of corpora in a benchmark

comparison study, which is useful since an increase in the rate of neutral valence mood

in a group could still be an important state [23]. To find characteristic patterns in mul-

timodal time series, I will focus on the singular value decomposition which is one of the

most established matrix factorizations, and requires tuning few parameters.

1.3 Thesis Overview

The following subsections describe how I will approach the research questions and hy-

pothesis outlined in 1.1.

1.3.1 Eigenmood Analysis

This chapter will present the Eigenmood methodology developed to uncover charac-

teristic components of collective moods, particularly in multi-modal distributions of

sentiment. Many patterns in collective mood can be overlooked by a focus on the cen-

tral tendency of sentiment measured for some population. Populations may experience

different moods simultaneously. Especially when populations are comprised of different

groups, its collective mood may become complex, composed of a k-modal distribution of

sub-population moods, and no longer easily described by the central tendency of senti-

ment. The Eigenmood methodology aims to provide a decomposition of the distribution
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of mood values of large populations on social media—in this thesis, tested on Twit-

ter. The goal is to understand the various, time-changing components that make up a

collective mood, which we think of as eigenmoods.

This chapter will explore the use of a singular value decomposition to find component

moods. Its use will be illustrated through artificial examples, including Gaussian mixture

models with known mixture dynamics, as well as mixtures with a dominating distribution

representing usual language use. This chapter will also apply Eigenmood to real social

media data, and demonstrate that the first component captures the overall frequency

of sentiment in language through comparison with external corpora. The dataset used

includes a 10% sample of tweets from the US between September 2010 to February 2014,

and between August 2016 and February 2018 from the Truthy and OSoMe projects

[83, 84].

This chapter will address hypotheses 1.Ha, 1.Hb, and 2.Hb. Question 1.Ha will be

explored through the use of artificial examples, showing what the method can recover.

Our hypotheses are that SVD components will be able to recover underlying dynamics

closely, and remove the influence of a dominating baseline distribution better than the

subtraction of a mean distribution. Hypothesis 2.Hb will be explored through the pre-

dictive ability of sentiment measures and components against weekly mortality reports

during the Covid-19 pandemic [85]. We find that VADER sentiment does improve the

predictive power of ARIMA models to track changes in mortality patterns due to the

pandemic in most of the 20 cities with the most per-capita cases in the first months of the

pandemic. We show that k-model eigenmood We find that mean VADER sentiment does

improves the predictive power of ARIMA models to track changes to mortality patterns

due to the pandemic, while eigenmood components provide the best fit to in-sample

data.
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1.3.2 Human Sexual Cycles are Driven by Culture and Match Collec-

tive Eigenmoods

This chapter will apply Eigenmood methodology to study the collective sentiment be-

hind yearly cycles of human reproductive interest. Human reproduction does not happen

uniformly throughout the year and what drives human sexual cycles is a long-standing

question. The literature is mixed with respect to whether biological or cultural factors

best explain these cycles [86]. The biological hypothesis proposes that human reproduc-

tive cycles are an adaptation to the seasonal (hemisphere-dependent) cycles, while the

cultural hypothesis proposes that conception dates vary mostly due to cultural factors,

such as holidays. However, for many countries, common records used to investigate

these hypotheses are incomplete or unavailable, biasing existing analysis towards North-

ern Hemisphere Christian countries. Here we show that interest in sex peaks sharply

online during major cultural and religious celebrations, regardless of hemisphere loca-

tion. This online interest, when shifted by nine months, corresponds to documented

human births, even after adjusting for numerous factors such as language and amount

of free time due to holidays. We further show that mood, measured independently on

Twitter, contains distinct collective emotions associated with those cultural celebrations.

Our results provide converging evidence that the cyclic sexual and reproductive behavior

of human populations is mostly driven by culture and that this interest in sex is associ-

ated with specific emotions, characteristic of major cultural and religious celebrations,

contradicting the biological hypothesis. This work is especially noteworthy because it

demonstrates that data science—and Eigenmood in particular—can be used to test ex-

isting hypotheses in sociobiology and provide new theories to better anticipate human

behavior of great public health interest.
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In particular, to measure holiday mood, we applied ANEW to a 10% sample of

Tweets from 2010 to early 2014. We found holiday moods by applying a singular value

decomposition of the collective mood distributions over time, and selecting eigenmoods

composed of two components corresponding to particular holidays. We found major

holiday eigenmoods correspond to reproductive interest throughout the year, in multiple

countries around the world, lending additional evidence towards a cultural explanation

of human reproductive cycles. Additionally, we perform a Granger causality analysis

and find that some mood components significantly Granger-cause sex searches, while

others are significantly Granger-caused by sex searches.

This chapter will directly address hypothesis 2.Ha, that components of the mood

that correspond with holidays associated with sex searches will be associated with sex

searches throughout the rest of the year. Hypothesis 1.Hb will be explored through

the emphasis of particular components during holidays and cultural events, particularly

the cultural holidays associated with sex searches. Our hypotheses are that various

components will be more closely associated with particular annual events than others,

allowing a characterization of the annual events.

1.3.3 Using Sentiment in Small Cohorts

This chapter will address hypotheses 3.Ha through temporal analysis of sentiment on

social media from small patient cohorts to investigate the feasibility of uncovering early

warnings for the onset of sudden unexpected death in epilepsy (SUDEP), a frightening

outcome for those with epilepsy that is poorly understood [87]. I explore whether there

are characteristic patterns detected by sentiment measures in the time period before

SUDEP, using a SUDEP patient cohort on Facebook—data obtained with consent of the

families of the deceased patients via the Epilepsy Foundation of America. Specifically,
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we have collected the facebook posts of a small set of 12 subjects who experienced

SUDEP. First, we will use sentiment tools, particularly ANEW, VADER, and LIWC, to

characterize changes in sentiment immediately before SUDEP. If SUDEP is driven by

periods of life-change and stress, as anecdotal accounts suggest, and sentiment measures

like LIWC can detect such experiences in social media posts, we should find sentiment

measures with time series that correlate between subjects in time windows shortly before

SUDEP. We find for subjects who post frequently on social media in the months before

SUDEP their posts demonstrate an increase in verbosity, functional words, and certain

sentiment measures like neutral Vader terms. We then examine the posts corresponding

to patterns seen before SUDEP qualitatively, to understand the sorts of life events and

topics discussed.

As a caveat, from such little data, we don’t draw definitive results in terms of predic-

tions. Additionally, the relationship between SUDEP and other seizures is unknown. It

is possible that periods of our data that appear similar in sentiment pattern to SUDEP

correspond to other seizures we don’t know about. However, our results will aid our re-

search group in recruiting more participants to explore behavior on social media around

both SUDEP and seizures.

1.4 Conclusion

By finding the components of population sentiment, we can better understand both

individual and collective moods, and make predictions that could inform public health

professionals, as well as patients with particular conditions. Chapters 2 proposes and

demonstrates the k-modal methodology to extract eigenmood components of collective

sentiment. Chapter 3 demonstrates the utility of the approach by contradicting the
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prevalent hypothesis of a long-standing sociobiology phenomenon in human reproduc-

tion, while providing compelling evidence for an alternative, cultural hypothesis. Chap-

ter 4 uncovers characteristic patterns in the sentiment of small patient cohorts with

a specific disease to make predictions about outcomes. This thesis demonstrates that

there are meaningful patterns to collective mood that are distinct from individual mood

states. These patterns will be shown to be useful in public health contexts, but will likely

be of interest for a variety of problems, possibly including tracking political sentiment,

economic activity, and other social concerns.



Chapter 2

Eigenmood Twitter analysis:

Measuring collective mood

variation

Much of this Chapter comes from a paper In Preparation [88] and includes writing from

co-authors Marijn ten Thij, Luis M. Rocha, and Johan Bollen

2.1 Abstract

Sentiment analysis of large scale social media data provides a window into the collec-

tive emotions of millions of individuals, allowing cognitive and behavioral modeling at

previously unseen scales. However, sentiment analysis of online content may confound

prevailing term frequencies in a language with collective emotions. We demonstrate

how to separate collective emotion signals from online sentiment with a singular value

decomposition of diachronic sentiment matrices. We refer to such decompositions as

20
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‘eigenmoods‘ since their multi-dimensional features represent various components of col-

lective emotions beyond the baseline sentiment of word use in a language. This approach

can identify diverging ‘eigenmoods‘ as separable components of collective affect in large

groups of individuals and the variegated dynamics of individual mood states. Our results

point towards the possibility of extracting collective and individual mood states from

online text, disentangling prevailing term frequencies and ephemeral topical language

changes from the underlying collective and individual emotions.

2.2 Introduction

Mood is an important driver of behavior, cognition, and language. The relationship

between language and mood creates opportunities to measure mood from language.

The analysis of natural language, in particular written text, for indications of mood or

sentiment has therefore become a common, but non-trivial natural language processing

(NLP) task called “sentiment analysis” (SA). A plethora of SA techniques to perform

sentiment rating or classification of written text has emerged in the past decades, rang-

ing from unsupervised lexicon matching [1, 3, 8, 16] techniques, often coupled with

grammatical analytics to handle negation and hedging[20], to sophisticated supervized

machine learning techniques [89].

Lexicon matching in particular remains a very common approach to gauge text sen-

timent: it is highly scalable, robust and well-validated, and straightforward to adapt to

specific application areas through the design of dedicated lexicons. Generally, a group

of test subjects assigns each word in a lexicon a score or rating for a number of emo-

tional dimensions, for example, Valence, Arousal and Dominance [16], Happiness [8], or

a variety of other psycho-social indicators [1]. By combining the lexicon values of the
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words in a document we can determine its overall sentiment rating, e.g. the average of

the sentiment loadings of its constituent words.

This technique can be applied to individual texts, the collection of texts generated

by an individual as an assessment of their long-running emotional state[90, 91], for the

texts generated by a cohort of individuals [92], and even entire societies from online

diachronic collections of text, e.g. daily tweets posted in the US[8, 93]. SA approaches

have in particular found applications in the analysis of social media data which offer an

increasingly detailed large-scale and fine-grained record of the behavior of a considerable

fraction (about one-seventh) of the world’s population [94].

However, an interesting problem emerges when we consider the documented tendency

of languages to exhibit very skewed word frequency distributions, i.e. the frequency of

words is generally inversely proportional to its rank in the frequency table [95]. In fact,

the first 100 most frequent words in the English language comprise more than 50% of

all written English. Given the stability of these distributions over corpora and time,

the frequency distribution of words in a language will result in sentiment ratings that

are predominantly shaped by prevailing term frequencies in the language, instead of

actual changes in individual or collective mood states. This problem also present itself

when we consider specific socio-cultural events, such as New Years Eve. It is common

to express specific greetings at such times, e.g. “Happy New Year”, hence the positive

sentiment of constituent words (‘happy”, “new”, etc) of such greetings will confound

language sentiment ratings with temporo-spatial lexical artifacts.

Here, we propose to use singular value decomposition (SVD) to separate the effects

of prevailing term frequencies in a language from actual mood states. This approach en-

ables us to separate mood changes from the dominant and uninformative term frequency
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distributions in a language. We further show that such an analysis can be performed

to texts that are in the regions for which we see the largest differences in the observed

mood dimension. This way, we can quantitatively find texts that are the best examples

of the change in the mood of the users in the data set. This approach can even be

performed on the collection of an individuals’ tweets over time to investigate whether

or not there longitudinal changes have occurred in the individuals’ mood profile[91].

We will demonstrate that sentiment analysis of social media is obscured by the per-

ceived mood of regular language. Furthermore, we will demonstrate how this influence

of regular language can be removed to reveal the precise components of mood that are

associated with the phenomena of interest.

These eigenmoods are sets of components (singular vectors) that explain a significant

proportion of the time-series variation of mood associated with a phenomenon of interest.

For example, during the COVID-19 pandemic many tweets may contain the word ”virus,

which has a low valance rating, but they could be optimistic messages of hope or support.

The goal of eigenmoods is to separate the former (decontextualized language) from

the latter (signals of affect). As such, these eigenmoods reveal the otherwise hidden

components of ”underlying” mood signals, allowing for more fine-grained assessments of

individual- and population-level emotions associated with health behaviors of interest.

Based on this evidence, the underlying hypothesis of our methodology is that re-

moving the first singular vector is equivalent to removing the base mood contribution

attributable to regular language use. Conversely, not removing this first singular vector

obscures the study of phenomena regarding mood on social media, as mood variations

central tendency merely reflects prevailing language use. Removing the first singular

vector better reveals variation in the phenomenon of interest.
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This opens op many opportunities to further investigate the effects of specific events

on individual mood state, an approach typified in [91]. Furthermore, the development of

analytical methods that can extract informative components of mood and high-quality

sentiment signals from collections of tweets pertaining to the biomedical, and cognitive

discourse of large populations may support the evaluation of global well-being and health.

2.3 Language overdetermines sentiment observations

First, we examine how prevailing term frequencies in a language affect sentiment anal-

ysis by applying the same sentiment analysis technique, i.e. Hedonometer[8], to three

different corpora of Twitter content. Each corpus consist of large-scale collections of

individual Twitter timelines, i.e. all tweets posted by a cohort of individuals over time,

for groups of individuals that (1) were located in New York City during the COVID-

19 pandemic N = 14, 130, 720 [96], (2) who reported a clinical diagnosis of depression

N = 593, 993, and (3) a random cohort of individuals N = 1, 982, 311 [92]. This al-

lows the sentiment analysis between cohorts and within-subjects, illustrating the issues

with applying sentiment analysis to large corpora of social media content to measure

diachronic changes in public or individual sentiment.

Each individual tweet is subjected to a sentiment rating on the basis of the Hedo-

nometer lexicon of N = English words that were rated by N human subjects (Amazon

Mechanical Turk). Each tweet’s sentiment rating is calculated as the average Hedo-

nometer ratings of its constituent words. Chapter 2.1 shows the resulting distribution of

Tweet sentiment ratings. We find that the distribution of Hedonometer scores per tweet

differ little across the three corpora, even though the equality of the distributions can be

rejected on the basis of a pair-wise KS two sample test with Bonferroni correction [97],
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D cohort R cohort COVID-19 NYC
D cohort nan KS = 0.0213∗∗∗ KS = 0.0711∗∗∗

R cohort nan nan KS = 0.0724∗∗∗

COVID-19 NYC nan nan nan
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Figure 2.1: Kernel Density Estimate (KDE) of the per document Hedo-
nometer score for all considered data sets. The table above the panel shows the
outcomes of two sample KS-tests between data sets. To account for multiple compar-

isons, we use a Bonferroni correction.

see Chapter 2.1. This is not surprising, given the large amount of observations (tweets)

in each corpus, and the fact that these data sets are obtained at different points in time

with very different topic and sample composition criteria.

The distributions shown in Chapter 2.1 visually resemble a normal-distribution, pos-

sibly as a result of how the score per tweet is calculated as the sum of individual word

lexicon ratings, resulting in an overall distribution that resembles a normal-distribution,

centered around the mean of the Hedonometer word-score distribution [7, 8, 98]. The

Anderson-Darling test for normality is rejected for all considered data sets (COVID-19

NYC: A2 = 128, 939.377∗∗, D cohort: A2 = 10, 358.988∗∗, R cohort: A2 = 31, 346.166∗∗).

Subsequently performing a one-sided Mann-Whitney U test, we find that there is a pos-

itivity bias in the observed mood (COVID-19 NYC: U = 27, 417, 406, 955, 105∗∗∗, D

cohort: U = 210, 506, 706, 133∗∗∗, and R cohort: U = 2, 707, 934, 370, 946∗∗∗), a phe-

nomenon that has been observed previously across several sources [7, 99].
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2.4 Mood distribution over time

We observe nearly identical distributions of twitter sentiment, leading to comparable

estimates of expected means for all three corpora, which concist of entirely different col-

lections of social media posts by different cohorts of individuals. Most common sentiment

analysis tools, like the Hedonometer, would likely fail to uncover potentially important

sentiment or mood differences between and within individuals and cohorts, even between

disparate corpora that are focused on different topics, localities, and samples.

Applications of sentiment analysis to measure public mood states from online text

data, such as a stream of Tweets, are generally diachronic, i.e. they are aimed at

detecting changes in public sentiment or mood over time. For that reason here we also

examine the variability of the mood distribution over time in the mentioned corpora

using the same sentiment analysis tool.

Rather than drawing conclusion from changes in the estimated average of daily sen-

timent, here we determine the 83% confidence intervals (CIs) of the observed sentiment

scores on a daily basis by finding the 8.5th percentile to the 91.5th percentile of sentiment

scores

Statistically significant differences can be inferred at the level α < 0.05 when two

83% CIs do not overlap [100]. For all data sets, we find that the overlap of the daily

CIs is at least 60% of the complete CI (COVID-19 NYC: ōd = 92.65%, minod = 83.07%;

D cohort: ōd = 75.25%, minod = 59.55%; R cohort: ōd = 86.54%, minod = 78.26%).

Given this large overlap of day-to-day CIs of mood distributions, we can not reject the

null-hypothesis of no significant differences between daily mood values, and can infer no

actual changes in observed daily sentiment values. In other words, when we consider the

variance of mood estimations on a daily basis, very few days are found to have a mood



Eigenmood Twitter analysis: Measuring collective mood variation 27

Figure 2.2: Caption

value that differs significantly from that of other days, indicating no changes in mood

using this common sentiment analysis application.

2.4.1 Unraveling the diachronic eigenmood components of mood dis-

tributions

We can collate the mentioned distributions of daily mood values into a timemood matrix

whose entries are the number of tweets observed at a given discrete time interval and

given sentiment value. For our current analysis, we bin tweets at daily intervals and

mood bins at intervals of 0.1 ∈ [0.95, 9.05] (Hedonometer scores are the average word

ratings per tweet ranging from 1 to 9). Panel A of Chapter 2.2 visualizes such a column-

normalized mood matrix, in which the counts per bin are divided by the total number

of tweets on a daily basis.

This matrix indicates, again, a lack of any significant changes in daily mood distri-

butions which are universally characterized by a strong central tendency that remains

stationary over time (continuous horizontal line of maximum sentiment at bin s = 5.35).
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2.5 Approximating mood

To disentangle different diachronic aspects of the mood as indicated by matrix M we

determine its Singular Value Decomposition (SVD), defined as

M = U · Σ · V T , (2.1)

in which Σ is a matrix that has the singular values of the mood matrix as entries on the

diagonal and zero values elsewhere.

Based on the SVD, we define the approximation of the mood matrix of a dimension k

as follows: we insert the k-th singular value of M into the k-th position on the diagonal of

a further zero-valued matrix, denoted by Σk. The approximation of the k-th dimension

is then defined as

M̃k = U · Σk · V T . (2.2)

Note that we can easily extend this approximation to include multiple dimensions.

Panels B, D and E of Chapter 2.2 show examples of approximations of the mood matrix.

Performing this analysis for our Twitter corpora, we find that almost all of the

variance in the data is explained by this first component (D cohort: 97.85%, R cohort:

99.03%, and COVID-19 NYC: 99.91%). Panel C of Chapter 2.2 displays the percentage

of variance that is explained by each dimension in the COVID-19 NYC data set.

2.6 Similarity of mood distribution and approximation

To asses the similarity between the actual mood matrix and the approximation, we

further analyze the first dimension approximation of the mood matrix M̃1. Specifically,
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we quantify the degree to which the first singular vector (FSV) approximation is similar

to the actual distribution of mood in the data set.

A Kolmogorov-Smirnov (KS) test to compare the approximated distribution with

the original indicates that the average of the FSV approximation is almost identical to

the overall distribution across the various Twitter cohorts, as the KS statistic of each

comparison is 0.0006, 0.0003, and 0.0001 for the D cohort, R cohort, and COVID-19

NYC, respectively.

Effects of natural term frequencies

As we are considering lexicon matching techniques, the similarity between FSV approx-

imation and the complete data sets is very likely to be related to the lexicon that is

used. One explanation that aligns with this finding, is the fact that each word that

has a score in the lexicon has a natural probability of occurring in natural language.

Combining this with the fact that removing frequently used words increases subjective

well-being predictions [101], we conclude that the common signal that is captured the

FSV approximation is the overall distribution of mood that is caused by the product of

the natural term frequencies and the scores that are assigned to these terms. Specifi-

cally, the FSV approximation captures the effects of the prevailing word frequencies in

natural language.

Cohort JS pf
D 0.128 0.075

R 0.114 0.034

Covid-19 0.118 0.015

Table 2.1: JS is the Jensen-Shannon Divergence between the first singular vector as
a distribution and word-level happiness score distribution in the Brown corpus, pf is
the probability of finding a smaller JS, estimated from 100,000 random reshuffles of

per-word happiness scores in the Brown corpus
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If the FSV approximation is indeed an approximation of the distribution of sentiment

due to natural word frequencies, we may expect it to be similar to the distribution

of single-word sentiment in other corpora. Here we explore the Brown corpus as an

alternative source of natural language word frequencies. The Brown corpus is a collection

of texts across a variety of categories including news, reviews, fiction, etc. originally

collected in 1961 [102]. We can measure the similarity between the FSV approximation

and the single-word sentiment distribution by taking the Jensen-Shannon divergence

(JS), a measure of the dissimilarity of two probability distributions, assigning values

from 0 (the same) to 1 (no similarity) [103]. The results are shown in Table 2.1, where

we see the largest divergence as 0.128 bits between the D Twitter cohort and the single-

word sentiment distribution in the Brown corpus. We investigate how likely such a

divergence would be by chance pf through a null-model of random word frequencies,

estimated by sampling 105 random shuffles of the observed word frequencies. We find R

and Covid − 19 cohorts both are significantly similar to the single-word Brown corpus

distribution at p < 0.05; there was only a 3.4% and 1.5% chance respectively of finding

a smaller JS divergence with random word frequencies. Despite the changes in language

use over the last sixty years, we still find the that the FSV approximates the sentiment

distribution in words better than we would expect by chance, except in the case of

the D cohort, perhaps indicating that those with such a mental condition exhibit more

significant changes in the frequency of sentimental word use.

These results are not specific to these Twitter cohorts and selection of sentiment

tool. We show similar results for a 10% random sample of Tweets between 2010 and

2014 in Appendix A.1.
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2.7 Artificial Toy Example

To better understand what the Eigenmood decomposition finds when applied to binned

sentiment distributions over time, especially in the presence of a strong base language

distribution, we apply the method to artificial data. The data is generated from a

known, and controlled, mixture model, binned, and the matrix decomposition methods

are applied to the data.

Data Generation

The data is generated by drawing from a mixture of Gaussian distributions over time.

Data is limited to the range between 1 and 9, numbers drawn outside this range were

discarded and redrawn. Numbers had a 30% to be drawn from a base distribution Gbase

with mean 5 and standard deviation 2, Gbase = Gaussian(µ = 5, σ = 2) to simulate

a basic language distribution. Two additional Gaussian distributions, Glow and Ghigh

were each drawn from with a 35% chance, to represent a transient bimodal distribution.

Glow and Ghigh both have scale 2, but a mean that changes in time according to a sine

wave, moving away from 5 until the mean of Glow is 2 and the mean of Ghigh is 8, and

moving back together. The distance between these means is graphed in Fig 2.3. These

distributions are thus functions of time t, relative to the total length of simulated time

tmax. The distributions are then Glow(t) = Gaussian(µ = 5− 3 · sin(t/tmax · π), σ = 2)

and Ghigh(t) = Gaussian(µ = 5+3 ·sin(t/tmax ·π), σ = 2). The probability of a number

1 < x < 9 being drawn from this simulation at a given point in time is given by Equation

2.3.

p(x|t) = .3 ·Gbase(x) + .35 ·Glow(x, t) + .35 ·Ghigh(x, t) (2.3)
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Figure 2.3: Top:Left:Distance between bimodal means over simulated time. Right:
Heatmap of the data with columns representing bins and rows representing time Bot-
tom: Left-to-Right: The histogram of simulated sentiment at time step 0, 49, and

99

10,000 samples were drawn from this simulated mixture at each of 100 time steps.

These numbers were then binned into 25 equally sized bins between 1 and 9, and the

counts in each bin were standardized to a probability distribution, such that the value

in each bin summed to one at each time step. A heatmap of bins values over time is

shown in Fig. 2.3, as well as histograms at the beginning, middle, and end.
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SVD of Artificial Sentiment Over Time

We take the SVD of the artificial sentiment distributions shown in Fig. 2.3. This de-

composition produces paired left and right singular vectors, the left representing char-

acteristic time patterns, or Eigenbins, also interpreted as the relative weight given to

each right singular vector over time. The right singular vectors in turn represent char-

acteristic patterns in the distribution for the given time period, e.g. if the time period

is divided into weeks these singular vectors could be interpreted as Eigenweeks. The

first three components are shown in Fig. 2.4. The first singular vector is unimodal,

but without the curved tails of a Gaussian; it is most emphasized at the beginning and

end of the simulation. The second singular vector is similarly unimodal, but has both

positive values in the middle and negative values at the tails, allowing it to distinguish

differences in bins; at the beginning and end of the simulation it adds weight to the cen-

tral peak while subtracting from the extreme bins, while in the middle of the simulation

it subtracts weight from the central bins and adds weight to the extremes. The third

component emphasizes a middle bimodal distribution that occurs most prominently at

the quarter and three-quarter points in time, removing weight from both the middle and

extreme bins. Two further components are shown in Fig. 2.5, but they are mostly noise.

The scree plot for the SVD is shown in Fig. 2.6 Left.

The data reconstructed without the first component is shown as a heatmap in Fig.

2.6 Right. We can see that the reconstructed data captures the main changes in the

distribution, the low and high Gaussian draws, removing the base distribution from the

data.
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Figure 2.4: First 3 SVD Components. Top: right singular vectors, represent char-
acteristic distribution patterns. Bottom: left singular vectors, represent characteristic
time patterns, also interpreted as the relative weight given to each right singular vector

over time.

Figure 2.5: First 3 SVD Components. Top: right singular vectors, respresent char-
acteristic distribution patterns. Bottom: left singular vectors, represent characteristic
time patterns, also interpreted as the relative weight given to each right singular vector

over time.

2.8 Sentiment Correspondence with Covid-19 Mortality

To demonstrate how Eigenmood components can aid in modeling other phenomena,

we model mortality during the Covid-19 pandemic with and without sentiment and

Eigenmood components as exogenous factors.
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Figure 2.6: Left: The scree plot of relative importance for each vector. Right: The
artificial data reconstructed for without the first component.

Data Collection

Data were downloaded from an open-access repository of all English-language COVID-

19 related tweets published in the United States beginning January 22, 2020. Broadly,

this repository aims to “contribute towards enabling informed solutions and prescribing

targeted policy interventions” by making this data freely accessible for analysis [96].

For purposes of this study we sought to create two time-specific corpora using posts

available through the repository. First, we collected all tweets published in this corpus

between January 22, 2020 (the first day with available data and roughly one week prior

to the first confirmed US COVID-19 case) through April 10, 2020. Next, we downloaded

personal twitter timelines of unique social media users who contributed to the corpus and

also resided within the 20 US cities with the most COVID-19 cases per 100,000 people

according to their Twitter profile location, which we refer to as user-timeline data; n =

354,738 users, 380,361,628 tweets within the time period 2020-01-05 to 2022-03-26. The

user-timeline data was used for more specific time-series analyses. The cities included in

this list were: Atlanta, GA; Baltimore, MD; Boston, MA Charlotte, NC; Chicago, IL;

Cleveland, OH; Denver, CO; Detroit, MI; Houston, TX; Indianapolis, IN; Las Vegas,
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NV; Los Angeles, CA; Miami, FL; Nashville, TN; New Orleans, LA; New York, NY;

Philadelphia, PA; San Francisco, CA; Seattle, WA; Washington, DC. In tables below,

we label models using data from each city by the state abbreviation, except in the case

of Los Angeles and San Francisco, both in California, which we label CA LA and CA

SF.

Eigenmood around Covid

For each tweet in the Covid-19 user timeline data, we remove all tweets containing covid-

related words to attempt to limit our analysis to the underlying mood, and not just

reporting on the pandemic. We take the VADER score of each tweet, and remove from

the distribution all those that did not match the VADER lexicon and were thus assigned

a score of 0. The data were binned into 41 buckets of size 0.05 of VADER ranging from

-1.025 to 1.025 to create a discrete distribution in sentiment scores each day. This was

summed weekly, from Sunday to Saturday, and normalized to get a binned distribution

each week. This matrix was decomposed using a Singular Value Decomposition as

described above to obtain eigenbins, the contribution of each eigenweek component of

mood in time. Mortality data was collected from the CDC website [104] to collect the

total count of mortality by all causes in each state aggregated weekly from Sunday to

Saturday.

ARIMA Models of All Causes Mortality Data

We focused on the period from 2020-01-05 to 2022-03-26. To model trends in mortal-

ity we trained an autoregressive integrated moving average (ARIMA) model. ARIMA

models are frequently used in econometrics to model univariate time series, using a
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number p of autoregressive terms looking backwards in time, an order of integration d

to difference the time series for stationarity, and a number of moving average terms q

directly regressing on errors in prior time steps [105][106]. ARIMA models have also

been successfully used to model the spread of Covid-19 [107, 108]. Mood variables, both

mean value each week and eigenbins, are treated as exogenous variables in the regression,

differenced once to meet stationarity requirements. We divided the period of data into

a training data set of 35% of the data (2020-01-18 to 2020-10-24, note the start is the

second week of full data collection to account for differencing) a validation set of 35%

of the data (2020-10-31 to 2021-07-31), and a test set of 30% of the data (2021-08-07 to

2022-03-26). The training data was used to create the initial SVD of the sentiment, in a

sense learning the component eigenweeks. The data in the validation and test set were

then projected onto those eigenweeks in order to continue each corresponding eigenbin

into the validation and test set without allowing future data to influence the learning of

the eigenweeks. The validation set was used to select the best hyperparameters of the

model according to the best performing R2 value of one-step-ahead predictions in the

validation set. A grid search was performed over the hyper-parameters p, and q of the

ARIMA model from 1 to 3 for p and from 0 to 3 for q, to select the best performing

model without exogenous mood variables. Additionally, for models with included mood

variables, a hyperparameter was selected to either use mood lagged by one week or con-

temporaneous mood. For models with eigenbin mood variables, we additionally selected

the best 2 components of the first 11 based on performance on the validation set. Models

were then retrained on the combined training and validation sets, the performance for

this training is reported in Table 2.2 and the performance of the one-step-ahead forecast

from these models on the test set is reported in Table 2.3

As we can see from Table 2.2, in almost all cases the selected eigenmood components
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State NoMood MeanV ader SelectedMoodComponents
GA 0.905 0.908 0.910
MD 0.869 0.873 0.884
MA 0.901 0.901 0.907
NC 0.874 0.876 0.880
IL 0.915 0.916 0.917
OH 0.941 0.943 0.934
CO 0.815 0.816 0.840
MI 0.817 0.818 0.847
TX 0.913 0.914 0.924
IN 0.891 0.892 0.897
NV 0.813 0.816 0.834
CA LA 0.974 0.973 0.974
FL 0.864 0.865 0.868
TN 0.889 0.893 0.901
LA 0.809 0.806 0.823
NY 0.883 0.884 0.886
PA 0.933 0.935 0.942
CA SF 0.974 0.975 0.971
WA 0.531 0.510 0.518
DC 0.594 0.594 0.600

Table 2.2: R2 values for validation selected models trained on the full training and
validation set on in-sample 1-step ahead predictions for the full training and validation

set. Bold values denote the best performance for a state

produce the best fit on the in-sample predictions. In two cases, for Ohio and California

with mood based on tweets from San Francisco, the mean Vader score outperforms the

selected eigenmood, while in only one case, Washington, the model without exogenous

mood components has a better fit of the data.

As shown in Table 2.3, for 16 of the 20 cities investigated, including either mean

sentiment or selected mood components as exogenous factors improves the forecast of

the model on the held-out test set. However, in only 6 cases do selected components

perform the best, while in 10 cases inclusion of the mean Vader sentiment has the best

performance (in 8 cases selected mood components outperform no sentiment, while in 12

cases mean Vader sentiment outperforms no sentiment). More details on these models

are included in Appendix A.8, including full regression tables for each model.

Mortality during the Covid pandemic is difficult to model, with large peaks that
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State NoMood MeanV ader SelectedMoodComponents
GA 0.887 0.834 0.891
MD 0.668 0.699 0.416
MA 0.851 0.851 0.857
NC 0.567 0.570 0.547
IL 0.848 0.849 0.848
OH 0.862 0.858 0.897
CO 0.861 0.862 0.805
MI 0.895 0.882 0.887
TX 0.881 0.880 0.884
IN 0.845 0.846 0.849
NV 0.636 0.650 0.601
CA LA 0.902 0.903 0.910
FL 0.933 0.930 0.931
TN 0.714 0.731 0.715
LA 0.828 0.830 0.803
NY 0.795 0.810 0.801
PA 0.905 0.905 0.851
CA SF 0.902 0.916 0.875
WA 0.632 0.624 0.604
DC 0.253 0.253 0.222

Table 2.3: R2 values for validation selected models trained on the full training and
validation set on out-of-sample 1-step ahead predictions for the held-out test set. Bold

values denote the best performance for a state

appear and disappear suddenly, in and out of training - test splits. In general, adding

sentiment information provides more information for the model leading to better model

fit. However, it is difficult to generalize to forecast far into the future without refitting

the model. The mean sentiment allows for better generalization to unseen data, as seen

in Table2.3, but in near-term forecasts we can usually find eigenmood components that

allow for better model fit, as seen in Table 2.2. Additionally, the training/validation/test

split disadvantages the SVD method of finding eigenmood components by limiting the

training of the components themselves to the training set, such that the future test set is

more distant in time from the data used to create the eigenweek loadings. Retraining the

model more frequently, perhaps at every time step, as well as updating the components,

may allow for better one-step-ahead forecasts using eigenmood components. We leave

this for future work.
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2.9 Discussion

Observing the mean sentiment in a corpus of written artifacts provides a good deal of

emotional information, however, it is only part of the story. Examining how individual

word frequencies affect this mean is useful to observe changes in an individual day’s

word frequency compared to the natural frequency in language, but this is very fine-

grained. A singular value decomposition offers a more comprehensive approach, splitting

a distribution into components that describe many different days. We have shown that

the first component closely represents the overall distribution of sentiment in natural

language and dominates distribution of sentiment each day. By removing this component

we can construct clear visualizations of changes in the distribution of sentiment over

time, and we have shown how the later components of the decomposition can be useful in

understanding other phenomena, although these components have difficulty extending to

out-of-sample data. In the next chapter, we will show how an Eigenmood decomposition

can be used to characterize holidays and help to investigate long-standing hypotheses

about population-level behavior.



Chapter 3

Human Sexual Cycles are Driven

by Culture and Match Collective

Moods

This majority of this Chapter is a reproduction of a paper published in Scientific Reports

[109] and includes writing from co-authors Pedro Leal Varela, Johan Bollen, Luis M.

Rocha, and Gonçalves-Sá.

3.1 Abstract

Human reproduction does not happen uniformly throughout the year and what drives

human sexual cycles is a long-standing question. The literature is mixed with respect

to whether biological or cultural factors best explain these cycles. The biological hy-

pothesis proposes that human reproductive cycles are an adaptation to the seasonal

(hemisphere-dependent) cycles, while the cultural hypothesis proposes that conception

41
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dates vary mostly due to cultural factors, such as holidays. However, for many countries,

common records used to investigate these hypotheses are incomplete or unavailable, bi-

asing existing analysis towards Northern Hemisphere Christian countries. Here we show

that interest in sex peaks sharply online during major cultural and religious celebrations,

regardless of hemisphere location. This online interest, when shifted by nine months,

corresponds to documented human births, even after adjusting for numerous factors such

as language and amount of free time due to holidays. We further show that mood, mea-

sured independently on Twitter, contains distinct collective emotions associated with

those cultural celebrations.

Our results provide converging evidence that the cyclic sexual and reproductive be-

havior of human populations is mostly driven by culture and that this interest in sex is

associated with specific emotions, characteristic of major cultural and religious celebra-

tions.

3.2 Introduction

Human reproduction shows a yearly cyclical pattern and whether this periodicity is

driven primarily by cultural or by biological factors has been an open question for several

decades. In Western, Northern Hemisphere countries, births tend to peak in September,

corresponding to early winter conceptions [86]. These conception dates are aligned

with the December solstice which has been taken as evidence for the existence of an

environment-induced biological clock that drives human reproduction cycles [110, 111].

Proposed evolutionary explanations include temperature [112], libido, or the availability

of food [86, 113]. However, this conception peak also coincides with religious celebrations,

like Christmas, suggesting that culture drives the observed birth cycles. Culture and
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biology certainly influence each other, and it is very likely that both influence sexual

drive. However, whether biological or cultural factors best explain the reproduction

cycle has long been debated in the literature, with biological explanations dominating

the argument [86].

The biological hypothesis, proposes that human reproductive cycles are an adap-

tation to the seasonal cycles caused by hemisphere positioning in the yearly orbit of

the Earth around the Sun. If true, reproductive periodicity should be similar among

Northern Hemisphere countries, less pronounced closer to the equator, and reversed in

Southern Hemisphere countries [114]. On the other hand, the cultural hypothesis pro-

poses that conception dates vary mostly due to cultural factors, such as holidays or

seasonal marriage patterns [111]. If true, we should see similar sexual cycles in similar

cultures independent of hemisphere. To study these hypotheses we need to measure sex-

ual activity on a planetary scale. Common proxies for such measurements include birth

records, incidence of sexually transmitted diseases, or condom sales [115]. However, for

many countries these records are inaccurate with respect to the timing of sexual activity

[116, 117] and a focus on hospital records (for births or sexually transmitted diseases)

would largely restrict analysis to “Western” countries, where such data tends to be

most commonly available. Thus, previous indicators do not offer sufficiently accurate

data from across the globe to help distinguish between the two hypotheses.

The recent availability of large-scale population data from web searches and social

media now allows us to study collective social behavior on a global scale. In this work, we

gauge interest in sex directly from Google searches and characterize seasonal population

sentiment from the analysis of Twitter feeds. We show that analysis of this large-scale

online activity can be used as proxies for real-life actions and help answer longstanding

scientific questions about human behavior.
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Figure 3.1: Weekly queries for the term “sex” for a group of representative
western Northern countries. The black line represents the averaged queries in a
10-year period, obtained from Google Trends, which is normalized by overall search
volume. These countries are: Austria, Canada, Denmark, Finland, France, Germany,
Italy, Lithuania, Malta, Netherlands, Poland, Portugal, Spain, Sweden and the United
States of America. Shaded grey represents the standard deviation. The red vertical

line marks Christmas week.

3.3 Results

3.3.1 Worldwide Variations in Sexual Interest

To measure interest in sex, for each country, we retrieved the frequency by which peo-

ple searched for the word “sex” using Google Trendstm (GT) [118] (Methods 3.5.1,

3.5.2,3.5.3); henceforth referred to as “sex-searches.” Interestingly, even in countries

where English is not an official language, the English term “sex” is either more searched

for than the corresponding word in the local languages or they are strongly correlated

(Supplementary Table S1). Moreover, the terms most associated with searches for “sex”

in GT refer to direct interest in sex and pornography (Supplementary Table S1). There-

fore, GT searches for the term “sex” are a good proxy for interest in sexual behavior in

the countries analyzed in this study.

Fig. 3.1 depicts GT weekly sex-search data for 10 years from January 2004 to Febru-

ary 2014 for a set of Northern countries, which celebrate Christmas on December 25th.

Yearly maximum peaks occur during Christmas week (red vertical lines), as previously

observed for the USA [119]. While one may think that this increased interest in sex
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results simply from more free time during the holiday season, GT data is normalized by

overall search volume [118]; even in a situation of increased general online activity, the

increase in sexual interest is higher. Conversely, we could expect the holiday season to

lead to a decrease in overall searches, led by school vacations for instance, originating

an artificial peak for sex-related interest. However, we do not observe similar increases

in weekly sex-searches for other widely observed holidays, such as Thanksgiving in the

USA or Easter in France (Fig. S1A and S1B). Furthermore, a putative decrease in

overall searches is unlikely, as a decrease in searches for school-related material can be

compensated by a strong increase in searches for “presents” or “recipes”. In fact, when

we control for search-volume of very common words, such as “on”, “and”, or “the”, there

is some variation around the holiday period but it is in different directions for different

search terms (Fig S2A and S2B), probably resulting in an overall neutral change. There-

fore, and although other dates lead to an increase in sex-searches (Fig. S1A and B), the

Christmas holiday is uniquely associated with the highest peaks in sex-searches observed

in these Northern countries. It is also known that, in Western Northern countries, con-

ceptions peak around Christmas, in what some refer to as the “holiday effect” [120].

Indeed, the observed sex-search peaks match birth rate increases for this set of countries

when shifted by nine months (Fig. S3A), which further confirms GT sex-searches as a

good proxy for sexual activity.

Compared to the observation of sex-search peaks in Northern countries that celebrate

Christmas on December 25th (and corresponding increase in September birth rates where

such data is available), the two hypotheses outlined above would predict quite distinct

observations for other cultures and hemisphere locations. If the biological hypothesis

is correct, all Northern countries should have similar sex-search peaks around the same

time, and these peaks should occur in a counter-phase pattern (six months later) in all
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Southern countries—irrespective of culture. On the other hand, if the cultural hypothesis

is true, these peaks should appear anywhere Christmas is celebrated—irrespective of

hemisphere—and other similar celebrations in different cultures should lead to sex-search

peaks in other times of the year.

To test these predictions, we extracted GT sex-search time-series data for all 129

countries for which GT offered consistent data. Countries were categorized according to

hemisphere (North or South) and their predominant religion [121, 122]. Countries where

at least 50% of the population self-identifies as Christian were considered culturally

Christian countries, and similarly for Muslim countries. Other countries, where neither

of these religions is dominant, were grouped separately; Supplementary Table S2 shows

the complete list of countries and categorization.

Both Northern and Southern countries show a prominent peak in sex-searches around

Christmas and we observe no counter-phase pattern corresponding to the southern hemi-

sphere winter solstice of June 21st (see Fig. S4A, Fig. S5C, and Fig. S5D). In fact, there

is a strong significant correlation (R2 = 0.54, p < 0.001) between the mean sex-search

time series of Northern and Southern countries (Supplementary Table S3). Since most

Northern and Southern countries for which we have data identify as Christian (80 of

129), the observed correlation suggests that a cultural effect, rather than hemisphere

location, drives the Christmas sex-search peak. Indeed, the birth data available for

Christian, Southern countries peaks with Christmas sex-searches when shifted by nine

months in much the same way as for Christian, Northern Countries, even though it is

summer in the former and winter in the latter (Fig. S3). Notice further that there is

neither a sex-searches increase in December nor a birth peak in September for Northern

countries that do not celebrate Christmas on December 25th (Fig. S7). As reliable

birth data is not generally available, particularly for Southern and Muslim countries,
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Figure 3.2: Weekly queries for the term “sex” in culturally different coun-
tries. (A) Normalized and averaged queries for all available countries identified as
Christian (dark red line). (B) Normalized and averaged queries for all available coun-
tries identified as Muslim (dark green line). (C) Searches in all Christian countries
centered around Christmas week (26). (D) Searches in all Muslim countries centered
around Eid-al-Fitr week (25). See Supplementary Table 2 for country identification and
availability on GT. The vertical red lines mark Christmas week, the shaded light green
area represents Ramadan, with the darker green lines marking Eid-al-Fitr (solid) and
Eid-al-Adha (dashed). Shaded areas around the lines in C and D show the standard

deviation.

and is only available for four Southern countries, all of them predominantly Christian,

(Methods 3.5.6, Supplementary Table S9 and Figs. S3 and S6), we use GT sex-search

data instead to observe many more countries and address the two hypotheses.

Parsing all countries by religion (Fig. 3.2A&B, Fig. S4 and Supplementary Table

S3), it is clear that the mean sex-search time-series are periodic but uncorrelated between

Christian and Muslim countries (R2 = 0.19, p < 0.001). The difference in sex-search

behavior between these two sets of countries is further revealed in Fig. 3.2C&D, where

we averaged the sex-search yearly time-series across all ten years centered on Christmas
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week (for Christian countries) or centered on Eid-al-Fitr, the major family holiday that

ends Ramadan (for Muslim countries). In Christian countries, the only clear peak occurs

during the Christmas week. In contrast, in Muslim countries there is a peak during the

week of Eid-al-Fitr and a second peak during the week of Eid-al-Adha, the other major

religious and family celebration in Muslim culture; also noteworthy is a steep decrease

during Ramadan, consistent with that period of general abstinence (as further discussed

below). Both of these groups of countries clearly show sex-search peaks associated with

distinct cultural celebrations, rather than with hemisphere. Indeed, it is worth noting

that the Muslim calendar does not follow the solar calendar: every year Ramadan shifts

by 10 days relative to its date during the previous Gregorian calendar year. Nevertheless,

sex-searches peak during the moving week of Eid-al-Fitr (and Eid-al-Adha) in Muslim

countries. The moving sex-search peaks associated with major religious events in Muslim

countries further emphasizes the cultural driver behind such collective behavior.

To resolve the incompatible predictions of the biological and cultural hypotheses we

made country-specific comparisons between hemisphere and culture, beyond the group-

average behavior described above. We averaged the yearly sex-search time-series for

each of the 129 individual countries across all years in four different ways: centered

on Christmas week (fixed relative to the solar calendar), centered on Eid-al-Fitr week

(moving relative to the solar calendar), and centered on each of the solstices, fixed

on June 21st and December 21st (Methods 3.5.4, Supplementary Tables S4-6 and Fig.

S5). We then measured the response of countries to a holiday as the sex-search z-

score deviation above the mean at Christmas, Eid-al-Fitr and the two solstice weeks

(Methods 3.5.5 and Supplementary Table S7). Fig. 3.3 shows a world map with color-

coded countries: shades of red indicate countries whose highest sex-search deviation

from mean occurs during the Christmas week, and shades of green indicate countries
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Figure 3.3: World-wide sex-search profiles. The world map is color-coded ac-
cording to the z-score of each individual country’s sex-search time-series. Shades of
red represent a higher z-score (larger increase in searches) during Christmas week (on
Christmas-centered data). Shades of green represent a higher z-score (larger increase
in searches) during Eid-al-Fitr week (on Eid-al-Fitr centered data). Light grey denotes
countries with no significant variation above mean in either of these weeks. Dark grey
countries are those for which there is no GT data available. Black line represents the

equator separating the hemispheres. Built using: https://mapchart.net/.

whose highest sex-search deviation from mean occurs during Eid-al-Fitr week (Methods

3.5.7). It is clear that this response yields a map organized according to culture rather

than hemisphere.

We then compared this new country classification (according to the individual coun-

tries’ sex-search profile, Supplementary Table S7 and Methods 3.5.14) with our previ-

ous identification based only on the proportion of the population that self-identified as

Christian, Muslim or Other (Supplementary Table S2) (13,14). Out of the 30 countries

originally identified as Muslim (14), 77% show a significant increase (z¿1) in sex-searches

during the week of Eid-al-Fitr, and out of the 80 countries originally identified as Chris-

tian (13), 80% show a significant increase (z¿1) during the Christmas week, regardless

of the hemisphere. It is important to note that this correspondence is even higher (91%)

when we identify as “Other” the ten Christian countries that do not celebrate Christmas
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on December 25th. In fact, we do not see an increase in sex searches around December

25th in any of these Northern Russian and Serbian Orthodox Christian countries, which

celebrate Christmas in early January, and this further supports the cultural hypothesis

(Methods 3.5.2, 3.5.14, Supplementary Figure S7). Moreover, only 14% of Southern

countries showed a significant increase in sex-searches during the June solstice (Supple-

mentary Tables S7 and S8B), demonstrating that there is no significant counter-phase

sex-search peak in the southern hemisphere, contradicting the biological hypothesis.

3.3.2 Trends in Holiday Moods

The Christmas and Eid-al-Fitr holidays carry significant cultural and religious meaning,

but they are not directly associated with sex. It is, in fact, very counter-intuitive to

think of Christmas and Eid as the times of the year with the most online searches

for sex. However, these events may trigger specific and collective moods, leading to a

striking correspondence between these holidays and sexual interest. To investigate the

emotional factors involved we measured changes in public sentiment on Twitter [3, 4, 8].

The analysis was performed before, during, and after Christmas and Eid-al-Fitr in a

set of seven countries with sufficient Twitter traffic in our data: Australia, Argentina,

Brazil, Chile, Indonesia, Turkey, and the USA (Methods 3.5.9 and Fig. S8). Although

it is not possible to know whether the Google and Twitter populations are the same per

country, given the large volume of Google searches and tweets, it is very likely that they

provide a significant sample of the same populations.

Twitter sentiment was quantified by rating a random 10% sample of all tweets posted

between September 2010 to February 2014 using the Affective Norms for English Words

(ANEW) lexicon [6] (Methods 3.5.8 and 3.5.9). The ANEW lexicon consists of 1,034
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English words that carry a sentiment score along three dimensions: Arousal (a), Dom-

inance (d), and Valence (v), corresponding respectively to whether the word makes

human raters feel calm vs. excited, controlled vs. in-control, and sad vs. happy. The

sentiment value of a single tweet is defined as the mean ANEW score of its words. We

translated the lexicon to Spanish and Portuguese to capture public sentiment in those

languages as well, but did not have the ability to translate into additional languages. To

avoid bias from holiday-related language, we ignored all words used in traditional greet-

ings for all known holidays in the World (Supplementary Table S13); we also removed

the word ”Christmas” and “valentine” from the lexicon, which does not include other

holiday names.

We first observed that the weekly volume of sex-searches significantly correlates with

the mean weekly sentiment derived from the three ANEW dimensions in a multiple lin-

ear regression (Methods 3.5.15, Supplementary Table S10). In every country, valence

yields a positive coefficient, while dominance a negative coefficient; thus the happier but

less in-control the population mood is, the more sex-searches tend to increase in every

country (Methods 3.5.10 and 3.5.15). Interestingly, while public sentiment displays a

strong linear relationship with sex-search volume when all mood dimensions are consid-

ered, there is little correlation with each ANEW dimension on its own (Supplementary

Table S11).However, the observed linear correlation does not allow us to characterize

the population mood in the target cultural celebrations. To investigate if days that are

similar in mood to Christmas in Christian Countries or to Eid-al-Fitr in Muslim Coun-

tries also tend to observe increased volume of sex-searches, we need a more nuanced

characterization of the mood profile each week.

Because collective mood sentiment, as measured here, is derived from many tweets

of large and diverse populations, it can contain distinct and informative components.
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Thus, we employed an eigenvector-based analysis (20) to characterize the distribution of

sentiment values, rather than just average sentiment. We thus obtain the components

of public sentiment that explain most of the variance in the data not attributable to

regular language use, hereafter referred to as “eigenmoods.” Specifically, an eigenmood

is a small set of components (eigenvectors) of a matrix. In this matrix, the rows denote

sentiment scores in a given range or bin, and the columns denote the weeks (Methods

3.5.11 and 3.5.16), and elements are the number of tweets during a week that fall in that

bin. Thus, an eigenmood is not an average sentiment value (per week in our analysis),

but rather a change in the distribution of sentiment that explains a significant proportion

of the variation in the time-series data [123].

We found that two components were sufficient to describe public sentiment associated

with each holiday and country – a characterization that is independent of sex-search

volume, and relies only on measurement of sentiment on Twitter (Methods 3.5.10, 3.5.11,

3.5.12,3.5.16,3.5.17,3.5.18 and Supplementary Fig. S10 and Fig. S11). Fig. 4 (Column

A), Fig. S9 and Fig. S14 show the sentiment distribution of the selected eigenmoods that

best characterize the holidays of interest, per every week of the year; redder (greener)

colors represent increased (decreased) numbers of tweets falling in the respective mood

dimension bins – e.g., for valence, upper bins on vertical axis denote increased happiness

and lower bins denote increased sadness. The sentiment distributions of rows 1, 2, and

3 in Fig. 4 column A are centered on Christmas for USA (Northern, Christian) and

Brazil (Southern, Christian), and Eid-al-Fitr for Indonesia (Southern, Muslim). While

the eigenmood that describes Christmas in the USA uses only the valence dimension of

ANEW, the best eigenmood for Christmas in Brazil requires valence and arousal, and for

Eid-al-Fitr in Indonesia requires valence and dominance. The sentiment distribution of

these eigenmoods per week clearly shows that significant and unique changes in sentiment
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Figure 3.4: Mood distributions and their correlations with sex-searches.
Rows: 1 – USA centered on Christmas, 2 – Brazil centered on Christmas, 3 – In-
donesia centered on Eid-al-Fitr. Columns: A – Heatmaps of sentiment distribution
reconstructed from selected eigenmoods. Vertical axis specifies the bins of the ANEW
distribution for a given mood dimension, from low (bottom) to high (top) values. Eigen-
mood components were selected to best characterize the respective holiday and country
(after removing the first component). In the case of the USA (Row 1), the two selected
components both fall in the “valence” dimension and are labelled valence1 and valence2;
for Brazil (Row 2) and Indonesia (Row 3) the first component also falls in the “valence”
mood dimension, but the second falls in the “arousal” and “dominance” dimensions,
respectively. Horizontal axis specifies the week of the centered, averaged year (52 weeks
for the Gregorian calendar, 50 for the Muslim Calendar). The dotted line in the center
marks the holiday of interest, on week 26 for Christmas, or week 25 for Eid-al-Fitr.
Color represents the weight of the eigenmood per bin per week. B – Projections of
weeks into the space formed by the selected eigenmood components. Each axis speci-
fies the projection of week onto each component that defines the eigenmood. See text
for details and supplemental materials for more information on component selection.
C – Linear regressions between GT sex search volume (vertical-axis) and similarity to
holiday center in the Twitter eigenmood space depicted in column B (horizontal-axis)
for averaged weeks. The weeks of Ramadan are shown with increasing color intensity
from more yellow to more green as they approach Eid-al-Fitr. The R2 values for the
regressions are 0.380 for Christmas in the USA, 0.504 for Christmas in Brazil, and 0.407

(0.637 without the Ramadan weeks) for Eid-al-Fitr in Indonesia.
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occur during the target holidays. In all these cases, the public mood of the holiday in

question generally shifts to “happy” bins (more red in higher valence) and away from

“sad” bins (more green in lower valence). In Brazil, the mood also shifts to more “calm”

bins during Christmas week (more red in lower arousal), and in Indonesia it also shifts

to neither “in-control” nor “controlled” bins during the Eid al-Fitr week (more red in

mid dominance). More detailed characterization of eigenmoods and their selection for

each country is provided in Supplementary Material ( Methods 3.5.16,3.5.17,3.5.18, Fig.

S12-13).

Fig. 4, column B, shows all weeks in the data projected onto the selected eigenmood

space of two components for each country. It is clear that in this space Christmas weeks

(red diamonds) cluster together for the USA and Brazil, and Eid-al-Fitr weeks (green

circles) cluster together for Indonesia, demonstrating that the eigenmoods are consistent

in different years for each holiday in each country. Fig. 4 column C depicts the linear

regression between sex-search volume as calculated before (vertical axis), and mood

similarity to the target holiday in the respective eigenmood space (horizontal axis) for

all weeks in the data set denoted by black circles in the plot (Methods 3.5.19). We observe

a significant correlation for all countries studied, with R2 ≥ 0.38 for Christmas in all

Christian Countries and R2 ≥ 0.34 for Eid-al-Fitr in all Muslim Countries, irrespective

of hemisphere (Supplementary Table S12). Thus, in Christian countries we can say that

the more the public mood of any week resembles the Christmas eigenmood, the larger

the volume of observed sex-searches tends to be. Similarly, in Muslim Countries the

more public mood is similar to the Eid-Al-Fitr eigenmood, the larger is the volume of

sex-searches. In the case of both Muslim Countries studied (Indonesia and Turkey),

there is a striking result pertaining to Ramadan: those 4 weeks (4 lowest green triangles

in Fig. 4C, bottom right, for Indonesia), have the lowest sex-search volume by far in
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the data, consistent with the period of abstinence that marks Ramadan (see also Fig.

2B, Fig. 2D). The public mood during these weeks of Ramadan is also quite distinct

from the Eid-al-Fitr mood (horizontal axis in Fig. 4C, bottom right), but, becomes

more similar the closer the week is to Eid-al-Fitr in time; and as the mood becomes

closer to the Eid-al-Fitr mood as Ramadan approaches its end, the sex-search volume

also increases. Naturally, due to the low, outlier sex-search volume during Ramadan

weeks, the linear regression is much stronger if those weeks are removed, with R2 ≥ 0.64

(Supplementary Table S12).

Thus, not only there are specific moods associated with Christmas and Eid-al-Fitr,

the eigenmoods that best characterize these holidays significantly correlate with in-

creased interest in sex throughout the calendar. This is true in all countries studied, in

both hemispheres and cultures. Moreover, and although these moods, occur at differ-

ent times in different cultures, they seem to be similar in essence and, in general, the

“happier” the mood, the more it associates with sex interest.

We have shown that components of mood corresponding to major cultural holidays also

correspond to sex searches online, but did not fully investigate whether one variable

causes the other. Granger Causality [124] is a widely used method developed for eco-

nomic data that argues that we can perform a statistical test between two time series for

“causal” relationships. This method argues that if lagged values of one series X offer a

significant improvement when included in a linear model with lagged values of the other

Y, we have evidence to reject a null-hypothesis that Y is not Granger-caused by X, and

say that X Granger-causes Y.
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arousal
mean

dominance
mean

valence
mean

holiday
similarity

variable g-cause
sex-search 0.0981 0.0136* 0.0164* 0.003 47**

sex-search g-cause
variable 0.0446* 0.360 0.459 0.0480*

Table 3.1: Mean and Holiday Similarity Granger-Causality p-values. * indicates
p < 0.05, ** indicates table Bonferroni corrected p < 0.00625

In Table 3.1 we have the p-values for granger causality tests between the time series

of mean ANEW values against the time series of sex searches for the United States.

Dominance and Valence sentiment means Granger-cause sex searches at p < 0.05, and

holiday eigenmood similarity Granger-causes sex searches at p < 0.00625, while sex

searches significantly Granger-cause arousal mean and holiday similarity at p < 0.05.

More analysis is included in Appendix B.1.

3.4 Discussion

Taken together, our analyses provide strong converging evidence for the cultural hypoth-

esis: human reproductive cycles are driven by culture rather than biological adaptation

to seasonal cycles. Furthermore, the observed peaks of interest in sex occur around

family-oriented religious holidays, across different hemispheres and cultures, and the

measured collective mood on these holidays correlates with interest in sex throughout

the year, beyond these holidays. This correlation suggests that the cultural driver of re-

productive cycles depends on the collective mood of human societies, though establishing

such causality warrants further study. It is also worth noticing that while other major

holidays in each country lead to increased sex-search volume (e.g. Eid-al-Adha), not all

holidays exhibit this effect (e.g. Easter and Thanksgiving), suggesting that certain hol-

idays have unique eigenmoods which lead to increased interest in sex at the population

level. Thus, specific mood states–typically happier, calmer, and neither in-control nor
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controlled–are associated with interest in sex, and this collective emotion is universal

and maximized during cultural celebrations such as Christmas and Eid-al-Fitr. The

fact that the Muslim holidays do not follow a solar calendar, with the interest in sex

varying according to the religious calendar, provides additional support for the cultural

hypothesis.

It is clear from this work that culture (particularly the religious calendar) best ex-

plains the pattern of sexual interest. Naturally, it is important to stress that if collective

mood states drive interest in sex at the individual level, there must ultimately be a

common biological response to the cultural, contextual driver. Several hypotheses can

be entertained – though not adaptation to seasonal cycles. For instance, some studies

show that depressed people lose interest in sex and that “happy moods,” such as those

uncovered for Christmas and Eid-al-Fitr, are usually more conducive to sexual arousal

[125, 126]. Increased food consumption has also been shown to have a relationship with

sexual maturation and interest [127, 128], however, we do not see similar increase in sex-

searches during other holidays associated with high food intake, such as Thanksgiving

in the USA or Easter in France. And given the children and family focus of both Christ-

mas and Eid-al-Fitr, it is reasonable to consider psychological and symbolic triggers to

the observed behavior, but the neurological and biochemical pathways involved in such

responses are as yet unknown.

That the culturally motivated surge in sexual interest can be so easily anticipated and

measured has implications for public health and policy. Hospitals should be prepared

for an increase in STD testing and possibly even abortions in the weeks following such

holidays and when the corresponding collective mood is observed at other times of the

year.
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Overall, this work emphasizes the need for more world-scale studies and the impor-

tance of a better understanding of global collective behaviors at the level of individual

countries. These will enable better-informed decisions and the more effective fine-tuning

of policy towards the distinct needs of countries, cultures, and communities.

3.5 Methods

3.5.1 Google Trends Data

Google Trends (GT) provides a time series index of the search volume of a given Google

query (10). GT allows for searches in a selected region (country, state, city, etc.) and

for a selected time range starting in January 2004 for most countries. Google normalizes

the resulting query index relative to the total amount of query volume for a search term

in the chosen area, per week, so that the maximum query share of the time series is

set to be 100. GT queries are also broad matched, meaning that queries such as ”sex

videos” are counted in the calculation of the query index for ”sex”.

3.5.2 Country Selection and Categorization

We considered all countries for which GT is available and for which a search for “sex”

had a least two contributing cities and had enough time points to analyze at least four

consecutive holiday seasons (Christmas and Ramadan), thus starting at least in the last

week of 2009. This was the case for 129 countries in all continents. In the paper these

countries are identified either by their name or by the country code, as in Supplementary

Table S2.
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Countries were categorized according to their major religion and geographical lo-

cation (continent and Northern or Southern Hemisphere according to Wikipedia) and

this categorization is referred to “identification” in the main manuscript. A country

was considered “culturally Christian” when at least half of its population identified as

Christian (Catholic, Protestant, Orthodox, or other) (13). A country was considered

“culturally Muslim” when at least half of its population identified as Muslim (14). A

country was labeled as “Other” when the majority of its population didn’t identify as

either Christian or Muslim. In the case of countries that have parts of their territory in

both hemispheres, we used the location of the capital as the deciding criteria. Out of the

countries identified as Christian, eleven have a majority that follow either the Russian

or Serbian Orthodox Churches (namely: Belarus, Bosnia and Herzegovina, Bulgaria,

Georgia, Macedonia, Moldova, Montenegro, Serbia, Slovenia, Russia and Ukraine). In

ten of these countries (Bulgaria being the exception), Christmas is celebrated in early

January (of the Gregorian Calendar) and they could have been labeled as Other for the

proposes of this analysis.

3.5.3 Searches for “sex”

We downloaded the time-series corresponding to searches for “sex” for each of the avail-

able countries in GT as long as they had at least two cities contributing data, and had

enough time points to analyze at least four consecutive holiday seasons (Christmas and

Ramadan), thus starting at least in the last week of 2009. Supplementary Table S2

shows all countries included in the analysis. Because Google does not provide the ab-

solute number of searches and we do not have access to the normalization algorithm,

all the analyzed data is relative to the total search volume and it has been noticed by

ourselves and by others that there is some variation the output GT provide, from week
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to week. To limit this variation all of the analyzed data was downloaded on the same

week.

For a subset of 50 countries (on all continents) we downloaded GT data for 2 search

queries: (1) for the term “sex” and (2) for its translation in the local language. We

compared the volume of searches between the two queries and calculated their correlation

over time. Supplementary Table S1 shows the 25 countries and languages that retrieved

a sufficiently significant search volume in the local language to support our analysis.

We then calculated the “Search Volume Ratio”, as the number of searches for “sex”

divided by the number of searches for the corresponding translation. We also calculated

the Correlation between the two time series (“sex” and the translated word) as the

Pearson’s R.

GT also provides and ranks the top words associated with the search term and these

are also shown on Supplementary Table S1.

3.5.4 Centered Calendars

Data were organized into yearly “calendars” centered around the holidays of interest in

order to better compare time series across cultures, and to create better summaries of

averaged yearly time-series. Five “yearly calendars”, or sets, were constructed:

1. The first, a “Civil Calendar” starts on the first week that includes January 1st and

ends on the following December 31st.

2. The second was centered around the weeks that contain Christmas. In this paper

we refer to it as the “Christian Calendar”.
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3. The third was centered around the weeks that contain the Eid-al-Fitr celebrations.

In this paper we refer to it as the “Muslim Calendar”.

4. The fourth was centered around June 21st and is referred to as the “June Solstice

Calendar”;

5. The fifth was centered around December 21st and is referred to as the “December

Solstice Calendar”.

Each week of each calendar was given an index ranging from 1 to the maximum

number of weeks in that year. The first week GT indexes starts at the Jan 1 2004,

so all remaining weeks will start seven days from this first index. In our centered

calendars, the week containing Christmas and the solstices becomes week 26 and the week

containing Eid-al-Fitr becomes week 25. This is because both the “Civil”, “Solstices”

and “Christmas” calendars follow the Gregorian Calendar with 52.177457 weeks per year,

but the ”Muslim Calendar” follows a lunar calendar with 29.53 days per month, leading

to 354 or 355 days per year. Since the “Muslim Calendar” is consistently shorter than the

solar year, it shifts with respect to the Gregorian calendar, necessitating the removal

of these extra weeks as they contained no major event or holiday. Thus, Christmas

was specified as week 26 in a 52 week calendar (starting from week 1), and Eid-al-

Fitr as week 25 in a 50 week calendar. Occasional exception weeks were dropped from

analysis if they did not fit into these calendars, without greatly altering the analysis; see

Supplementary Tables S4-6 for the complete list. Supplementary Figure S5 shows the

plot of all countries, centered around the weeks that contain Christmas, Eid-al-Fitr or

January 1st, averaged according to their cultural identification (see above).
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3.5.5 Country Classification from sex-searches

If sex searches correspond to countries’ self-reported religions or locations (as described

in the Country Selection and Categorization section), we can use sex searches as a feature

to classify countries. Here we describe the process by which sex searches were used to

measure a country’s response to events: Eid al-Fitr, Christmas, the December Solstice,

and the June Solstice. These responses were used to evaluate sex searches as a feature

in a classification task. The centered time series described before were calculated for all

countries in Supplementary Table S2. For each country we obtained between 4 and 9

yearly time series for all years for which data is available. These yearly time-series were

averaged in five different ways per country: one following the civil Gregorian calendar,

one centered on Christmas week, one centered on Eid- al-Fitr week, one centered on June

21st, representing the June solstice, and the last centered on December 21st, representing

the December solstice. Average yearly time-series were created by first normalizing the

data by year, such that the highest valued week each year was given a value of 1, and

other weeks were expressed as a proportion of that maximum, in order to correct for

bias towards years with more searches. To identify weeks with peak sex-search behavior,

z-scores for each of these averaged time series were calculated as z = (x− µ)/σ where µ

is the mean and σ is the (population) standard deviation

We then pursued a simple classification of countries according to their behavior on

the Christmas and Eid-al-Fitr weeks. When the averaged Christmas-centered (Eid-al-

Fitr-centered) time-series for a country yields z ¿ 1 on the Christmas (Eid-al-Fitr) week,

the country was classified as a Christian Country (Muslim Country). If z ¡ 1 for both

the Christmas- and Eid-al-Fitr-centered time-series, then such a country is classified as

Other. If z ¿ 1 for both Christmas- and Eid-al-Fitr-centered time-series, the country was
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culturally associated with largest z. Results can be seen in Supplementary Table S7. A

similar procedure was followed to compare countries according to geographical location.

See also Supplementary Methods S1.

3.5.6 Birth Data

There are biases and problems with birth data. This data is particularly uncommon

in Muslim and Southern countries and is further confused in Muslim countries both

by the fact that religious events do not follow the solar calendar and that registration

dates do not accurately match actual birth dates (see Supplementary Materials Fig. 6).

Nevertheless, if online sex-searches correspond to an actual increase in sexual activity,

it should be possible to see an increase in births for countries where good records exist.

Monthly birth rates were collected from the United Nations Database [129] 1, See

Supplementary Table S9 for data.

For each country, each month was divided by the number of days in the month

(February months were divided by 28.25), then each year was normalized to its maximum

value. This removes any bias towards years with more births.

To compare monthly birth rates with GT results we were restricted by the time

range constraints of both data sets. We only have GT results from 2004 onwards and we

rarely have birth data beyond 2012. In Supplementary Table S9 shows the availability

of birth data for all countries used in this study.

There is also no increase in sex-searches or September births in Northern countries

that do not celebrate Christmas on December 25th (Supplementary Figures S7). In

1except for South Africa,
retrieved from http://www.statssa.gov.za/publications/P0305/P03052012.pdf
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addition, there is independent evidence that, even within the same country, religiously

distinct populations–such as the Muslim and Jewish populations of Israel–have different

conception patterns that correlate with their religious holidays [130].

3.5.7 World Map

Countries were color coded according to the z-scores presented in Supplementary Table

S7. The World Map was built using the online tool: https://mapchart.net/

3.5.8 ANEW

The sentiment in tweets was quantified according to the Affective Norms for English

Words (ANEW) lexicon [6, 131]. The ANEW assigns a number between 1 and 9 along

three dimensions to 1034 words. These dimensions are arousal (a), dominance (d), and

valence (v). The scores were determined though a survey as the mean score participants

assigned each word. The valence scores correspond to whether (from 1 to 9) the word

made participants feel sad to happy, arousal from calm to excited, and dominance from

controlled to in-control For example, the word “laughter” has a valence score of 8.5,

while “leprosy” has a score of 2.1. A basic translation to Spanish and Portuguese was

performed through Google Translate and refined by speakers.

3.5.9 Twitter Data

The source of the twitter data used comes from IU’s twitter garden hose feed, a 10%

sample of all tweets. Geo-location data in combination with shape objects [132] allowed

the country from which a tweet came to be determined for many tweets. We focus on

tweets collected between September 2010, when the collection stabilized, and February
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2014, when the tweet collection dropped, complicating homogeneous analysis of the data.

We analyzed seven countries that yielded a sufficiently large number of tweets per week

(about ten thousand): Argentina, Australia, Brazil, Chile, Indonesia, Turkey, and the

USA. This includes countries in both hemispheres, both culturally Christian and Muslim,

and with both English and Other official languages. Individual country’s tweets are only

examined after their collection had stabilized, starting in September 2010 for the US,

Australia, and Chile; May 2011 for Indonesia, Brazil and; June 2011 for Argentina, and

September 2011 for Turkey. Days were defined according to Greenwich Mean Time, and

weeks from Sunday to midnight Saturday. The overall number of weekly collected tweets

are shown in Supplementary Fig. S8, ranging from nearly a million scored tweets per

week from the USA and Brazil, to only about ten thousand scored tweets from Turkey

and Australia. The proportion of scored tweets to all collected tweets is usually quite

small, usually below 5%.

An individual tweet’s sentiment score was determined by finding all words within

the tweet that matched the ANEW lexicon, and taking the average of their scores in

each dimension. In the case that multiple languages were matched, the scores from the

language with the most matched words were used. In case of a tie, the average scores

over the tying languages were calculated. To better find the actual sentiment during

the holidays without generic seasonal greetings, we don’t score words if they appear in

generic holiday greetings, such as “happy holidays”, and we remove the ANEW words

Christmas and Valentine from the lexicon entirely. The list of holidays whose greetings

we removed were collected from http://www.officeholidays.com/. The complete list of

phrases we removed from score calculation is included in Supplementary Table S13.
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3.5.10 Mean Sentiment Correlations with Sex-Search Volume

To see if sentiment in tweets correlates with sex search volume we computed the ordi-

nary least squares estimate of a multiple linear regression for each country, using the

time series of mean tweet sentiment each week along the three ANEW dimensions as

independent variables, with the weekly volume of sex searches as the dependent vari-

able. To compute the weekly mean sentiment time series for ANEW dimension, we first

calculated the mean tweet sentiment score for each day and then calculated the mean

sentiment of the week such that each day has an equal weight in the weekly average.

3.5.11 Singular Value Decomposition for Eigenmood Analysis

Aggregating all sentiment in tweets into a mean value discards information in the distri-

bution of sentiment across tweets. Therefore, we use binned distributions of sentiment

across tweets in the following analysis. We focus on a 25-binned distribution of tweet

sentiment between the lowest and highest possible ANEW score as a moderately-grained

distribution, with fine enough resolution to capture some detailed structure while ag-

gregating an adequate number of tweets per bin, 400 on average for a collection of 104

tweets.

We applied a singular value decomposition (SVD) (20) to the binned distribution

of ANEW scores over time. Our matrix M has columns representing bins, and rows

representing weeks. The left and right singular vectors then have an interpretation

as the “eigenbins” and “eigenweeks” respectively. We will also refer to the singular

vectors as components. The first component explains the vast majority of the variance,

and is similar to the base distribution of the language, as expected from the Brown

corpus, shown in (19). The second component explains a trend over time, while further
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components correspond to other fluctuations, including yearly variations for holidays.

For more information see also Methods 3.5.16.

3.5.12 Data Reconstruction

To analyze how sentiment varies, rather than its basic distribution in language use, we

reconstructed the original data without the first component. After recalculating the

relative variances, we can remove noise by also removing the components explaining the

least variance. Reconstruction, then includes only those components that explain 95% of

the remaining variance after the first component is removed. This leaves cyclic patterns

and outlier weeks deviating strongly from the baseline sentiment distribution, which we

visualize as a heatmap of the distribution over time in. We average over all full years

in the data for multiple countries, centered on the week of a strong cultural holiday, to

emphasize the change in these distributions, as shown in Supplementary Fig. 14. For

more information see also Methods 3.5.17.

3.5.13 Eigenmood Selection

To investigate the distribution of sentiment in a country during a holiday, we selected

an eigenmood composed of the two components that best characterized the mood dis-

tribution on the holiday. Supplementary Figure S15 and Methods 3.5.18. These two

components were selected to describe a country’s twitter sentiment on a holiday in the

following way. First, the average projection of the holiday was found over all years of

the data, as well as the standard deviation. The two eigenweeks with the highest abso-

lute value of the holiday’s projection minus its standard deviation were selected. The

standard deviation is calculated over very few points, but subtracting it from the mean
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allows us to know how small the magnitude of the projected vector we may expect. This

way, the mood of the holiday of interest can be expected to have a strong correlation

with the selected components and cluster closely together.

3.5.14 Notes on “misclassifications” for Country Classification from

sex-searches

Some of the countries identified as Christian celebrate the nativity according to Julian

calendar, with Christmas falling on January 7th or January 14th of the Gregorian cal-

endar. Such is the case of the Christian countries: Belarus, Bosnia and Herzegovina,

Georgia, Macedonia, Moldova, Montenegro, Serbia, Slovenia, Russia and Ukraine. Nei-

ther of these countries has a national holiday on December 25th nor shows an increase

in sex-searches around December 25th. Had these countries been labeled as “Other”,

the percentage of countries identified as Christian for which we see a significant increase

(z-score¿1) in sex-searches would have been of 91%. In addition to not celebrating the

Christmas on December 25th, some of these countries also have a sizeable percentage

of population that self-identifies as Muslim. Such is the case of Montenegro (29%),

Macedonia (39%) and Bosnia and Herzegovina (45%). From the 30 Muslim countries,

Pakistan was classified as Christian and 6 other countries didn’t make the threshold.

Pakistan is highly related to Christmas, probably due to the fact that there is a public

holiday on 25th December, which coincidentally celebrates the birthday of Muhammad

Ali Jinnah, founder of Pakistan. The other six countries also correspond to the ones

for which the quality of the sex-search data was the poorest. Keeping in mind that

we were looking for countries that culturally relate to a Christian or Muslim religious

background, all countries that didn’t make the threshold to be labelled as either are

classified as Other. Unsurprisingly, there are many countries who are originally labelled
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as Other and end up classified as either Christian or Muslim. European countries, such

as the Czech Republic, Estonia and the Netherlands, whose majority does not identify

as religious are classified as Christian, most likely due to the fact that these populations

celebrate the holiday as well, even if secular.

3.5.15 Mean Sentiment Correlations with Sex-Search Volume

As shown in Supplementary Table S9A, there is a highly significant, moderate fit

(R2 > 0.1) across all countries, demonstrating a significant correlation between vol-

ume of sex-searches and mean sentiment as measured by the three ANEW dimensions.

The coefficient of determination is generally stronger for Christian countries than Mus-

lim Countries. Similarly to the GT data, the multiple linear regression models can be

improved by averaging sentiment and sex-search volume across years using the 52-week

Christmas centered calendar for the USA, Australia, Brazil, Argentina, and Chile, ,

and the 50-week Eid-al-Fitr centered calendar for Indonesia and Turkey. This smooths

out extraordinary events that are picked up by sentiment analysis. The results of this

centered-data regression are presented in Supplementary Table S9B. The fit is highly

significant for all countries, and improves for all countries, (R2 > 0.26). In every case,

valence is yields a positive coefficient, while dominance a negative coefficient; so the

happier but less dominant the sentiment expressed by a country, the more sex-searches

tend to increase. As far as significance is concerned, t-tests reveal that the valence di-

mension is most often significant, followed by dominance, with arousal the least likely

to be a significant factor. Interestingly, as shown in Supplementary Table S10, when

we computed the ordinary least squares estimate of a standard linear regression on each

ANEW dimension independently, we obtained very poor (but significant) goodness of

fit, as measured by R2. Therefore, the mean value of each ANEW dimension on its own
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is a poor predictor of sex-search volume in all countries (with few exceptions such as

Arousal in Brazil). We can thus say that mean sentiment correlates with sex-search vol-

ume (Supplementary Table S9) but the timeseries of mean weekly values of each ANEW

dimension do not yield a nuanced characterization of sentiment correlated with interest

in sex.

3.5.16 Singular Value Decomposition

Singular value decomposition (SVD) is a method by which a matrix can be linearly

decomposed into ordered orthonormal components, each explaining as much of the linear

variation as possible, after the components that came before it. The SVD of any m× n

matrix M of real or complex numbers can represented as follows in Equation 3.1:

M = USV T (3.1)

Where U is an m × n matrix with orthonormal columns, V is an n × n matrix with

orthonormal columns, and S is an n × n diagonal matrix. The columns of U and V

are referred to as the left and right singular vectors of M respectively. These singular

vectors are eigenvectors of the matrices MMT and MTM respectively. The diagonal

entries of S, called the singular values of M , are the square roots of the eigenvalues of the

matrices MMT and MTM . By convention, the singular values are ordered from greatest

to least. The columns of U form a basis for the column space of M and the columns

of V form a basis for the row space of M . The right singular vectors are also known

in principal component analysis (PCA) as the loadings of the original variables (bins)

onto the new coordinate system. The relative variance explained by each component

can then be calculated for each component k as s2k/
∑

i s
2
i where sk is the kth diagonal
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component of S. It is important to note that matrices can be reconstructed with a lower

rank by setting elements of S to zero. Typically only the top l singular values are kept in

order to reduce noise and create the closest rank-l approximation of the original matrix

[63].

3.5.17 Data Reconstruction

It can be clearly seen from the data reconstruction averages in Extended Data Fig. 8

and Supplementary Fig. S6, that the distribution of sentiment shifts towards higher

bins during holidays, represented by redder high bins and greener low bins on holidays.

Christmas stands out in the USA (US), Australia (AU), and Brazil (BR). Eid-al-Fitr

stands out in both Turkey (TR) and Indonesia (ID), and in Turkey the beginning of

Ramadan is emphasized a few weeks before. The centering performed only looks at

weeks within the surrounding cultural year, such that Christmas is week 26 of a 52

week year (starting with a first week 1), while Eid-al-Fitr is week 25 of a 50 week year.

Other weeks are averaged in this range according to their displacement from the holiday

week (e.g., a week two weeks before the Christmas week in 2012 is averaged with weeks

two weeks before Christmas in all other years). This obscures the emphasis on holidays

using another calendar, such that Indonesia also has a strong signal on Christmas, but

these signals are averaged over multiple weeks when the calendars are misaligned. The

heatmaps for all countries centered on all holidays are included in Supplementary Fig.

S6.
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3.5.18 Eigenmood Selection and Characterization

The mean value of a holiday’s projection on various components for different countries

are shown in Supplementary Figures S2 and S3 for Christmas and Eid-al-Fitr respec-

tively, with the two components selected for each country highlighted in red. As de-

scribed, since the first component corresponds to the basic distribution of sentiment in

the language and overwhelms projections because of how much it explains, and the last

few components are mostly noise, we only look at the components explaining 95% of

the variance after the removal of the first. The second component usually describes a

variation over the whole time series of out data, thus it tends to have a large standard

deviation.

To better understand how the selected components describe the mood, we define

an interpretable linguistic variable [132]. The linguistic variable can take five fuzzy

values, ”low”, ”medium-low”, ”medium”, ”medium-high”, and ”high” with membership

functions defined over the 25 bins of the original twitter sentiment distribution. These

membership functions are shown in Supplementary Fig. S4 and were chosen such that

each original bin’s membership in all values sums to one, and the area under each

membership function is the same.

The response of the linguistic variable to the holiday in each selected eigenmood

is shown in Supplementary Figure S5 for the selected relevant holiday for each coun-

try. These responses were calculated by reconstructing the distribution bins with only

the eigenmood selected for the country and holiday, multiplying the reconstructed bin

value by its memberships, and summing over all bins for each linguistic value. These

responses can be interpreted as the change from the language’s base sentiment distribu-

tion on the holiday contributed by the selected eigenmood. The response characterized
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by the Christmas eigenmood in the USA is an increase in medium-high happiness, with

decreases in other levels of happiness, low and medium happiness in particular. How

mood changes on a major holiday varies between countries but generally we see that

the selected eigenmood describes increases medium-high or high valence on the holi-

days, with decreases in low, medium-low, and medium valence, as well as lower or more

moderate dominance and arousal. The behavior of the dominance mood dimension in

the week of Eid-al-Fitr in Indonesia highlights the importance of the more nuanced

mood measurement that eigenmoods afford. While the ANEW mean value measure-

ment above suggested a dominance decrease towards a less “in-control” mood, what we

have at Eid-al-Fitr is a shift away from the extremes to a collective mood state that is

neither very “in-control” nor very “controlled” – coherent with a happier and calmer

mood scenario typically found in these holidays for all countries. In other words, during

most weeks of the year, there is increased bimodal dominance activity in higher and

lower bins (simultaneously high “in-control” and “controlled”, respectively), but in the

week of Eid-al-Fitr, the dominance mood converges to a mid-level dominance (Fig. 4

column A, row 3, dominance panel).

3.5.19 Eigenmood correlations to sex-search volume in target holidays

As a measure of mood similarity between weeks in a space defined by a selected eigen-

mood, we use the dot product between their coordinates in this space [63]. This measure

increases between weeks with similar (positive or negative) projections onto the eigen-

weeks forming the space, becomes negative with opposite projections, and decreases in

magnitude with weeks that are not correlated with the eigenweeks and are thus pro-

jected near the origin. Due to the properties, it is important to select an eigenmood

that strongly corresponds to a week or weeks of interest, by containing high-magnitude
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values in the corresponding eigenbins. The similarity can then be expressed as w · c

where w and c are weeks projected into the eigenmood, which is equivalently the vector

of corresponding weighted eigenbin values. In comparison between weeks and a holiday

averaged over years, these vectors are the element-wise averages of the week’s projection

coordinates over the years. We report results with these averages, but these results are

robust to yearly, non-averaged data, as well as different selection criteria for the eigen-

moods (for example, allowing a greater number of components). The projection spaces

for each eigenmood are shown in Supplementary Fig. S7.

In general, weeks close in proximity in time will be more similar in eigenmood, but

certain weeks, often other holidays, more distant in time can have a high similarity

in eigenmood to the selected holiday. In the USA, for example, the weeks closest in

eigenmood to Christmas are, in order, the week of New Year’s Day, the other weeks of

December, and the weeks following July 4th, Father’s Day, and Memorial Day. National

Day in Chile is similar in eigenmood and sex searches to Chile’s Christmas. New Year’s

Day and Christmas in Indonesia are similar to Eid-al-Fitr’s eigenmood and high sex

searches. In Turkey, weeks in late June, early July, and the week following Eid-al-Fitr

are the most similar in terms of eigenmood and sex search volume to Eid-al-Fitr.

To investigate the relationship between a week’s similarity in eigenmood to a hol-

iday and the number of sex searches, we perform an ordinary least squares regression

between sex searches as the dependent variable, and similarity as the independent vari-

able. Displayed in Figure 4 and reported in Extended Data Table 2 are the results of

this regression as well as Brownian distance correlation statistics, a nonlinear measure

of correlation [133]. The plots of all linear regressions are included in Supplementary

Fig. S7.
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There is a fairly strong correspondence (R2 ≥ .380) between similarity in eigenmood

to Christmas and sex searches in the C countries: the US, Brazil, Australia, Argentina,

and Chile. The southern hemisphere Christian countries Brazil, Argentina, and Chile

also have a noticeable correlation with Eid-al-Fitr, however, the slope of the regression

is negative, implying that the less like the mood during the winter week of Eid-al-Fitr,

the more sex searches are conducted.

In Muslim countries Turkey and Indonesia, we were limited by having less Twitter

data and fewer tweets that match. However, there are significant correlations between

similarity to Eid-al-Fitr and increased sex searches. The linear correlation is reduced

compared to Christmas in Christian countries, since over time the weeks of Ramadan

become more similar in eigenmood to Eid-al-Fitr, the festival at Ramadan’s conclusion,

while the cultural pressure is one of abstinence, such that these weeks have unusually

low sex searches. In the case of Turkey in particular, the holiday of Eid-al-Adha, or the

Sacrifice Feast, also has high sex searches, but is different in eigenmood from Eid-al-Fitr.

The positive correlation between sex searches and Christmas eigenmood in Indonesia is

likely caused by the sizable Christian population living there and effects due to summer.

Turkey is an interesting case, since it has a very strong negative correlation between

sex searches and similarity to Christmas although the response to Eid-al-Fitr is smaller.

In part, this may be due to limitations in our data gathering and method application,

since our ANEW is only available in English, Spanish, and Portuguese. However, we still

have a good number of tweets from Turkey, so we look more closely at its eigenmood.

The projection of all weeks into its eigenmoods for Christmas and Eid-al-Fitr is shown

in Supplementary Fig. S7, which happen to be same in this case. The regressions

between sex searches and the similarity of averaged weeks to Christmas and Eid-al-Fitr

are shown in Supplementary Fig. S7. The mood associated with Eid is also associated
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with Ramadan, which emphasizes abstinence. During the weeks of Ramadan, there are

much fewer sex searches than usual, although the weeks are not too far different in

mood. In addition, there is a separate holiday, Eid-al-Adha, that is associated with a

second peak in sex searches, but with a different mood. Perhaps due to Turkey’s small

Christian population and winter timing, Christmas and weeks like it in eigenmood have

low sex searches and averaging over years decreases the effects of holiday traditions (like

Eid-al-Fitr) due to misaligned calendars.

3.5.20 Granger Causality

Toda and Yamamoto [134] noted and corrected an issue that can occur frequently with

time series - if the time series are not stationary, the results of a Granger causality test

are incorrect. Their correction is to add additional lags of the variables to the VAR

model, equal to the largest order of integration of any variable, but to exclude them

during the final statistical test. The basic steps are: find the order of integration m of

each variable, determine the number of lags for the VAR model from AIC, add lags to

correct for any auto-correlation, and run a wald test on the model minus the last m lags

to correct for non-stationarity [135][136].



Chapter 4

Small cohort of patients with

epilepsy showed increased activity

on Facebook before sudden

unexpected death

This Chapter is a reproduction of a paper published in Epilepsy and Behavior [137] and

includes writing from co-authors Rion Brattig Correia, Wendy R. Miller, and Luis M.

Rocha.

4.1 Abstract

Sudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death in

people with epilepsy. Despite the constant risk for patients and bereavement to family

members, to date the physiological mechanisms of SUDEP remain unknown. Here we
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explore the potential to identify putative predictive signals of SUDEP from online digi-

tal behavioral data using text and sentiment analysis. Specifically, we analyze Facebook

timelines of six epilepsy patients deceased due to SUDEP, donated by surviving family

members. We find preliminary evidence for behavioral changes detectable by text and

sentiment analysis tools. Namely, in the months preceding their SUDEP event patient

social media timelines show: i) increase in verbosity; ii) increased use of functional words;

and iii) sentiment shifts as measured by different sentiment analysis tools. Combined,

these results suggest that social media engagement, as well as its sentiment, may serve

as possible early-warning signals for SUDEP in people with epilepsy. While the small

sample of patient timelines analyzed in this study prevents generalization, our prelim-

inary investigation demonstrates the potential of social media data as complementary

data in larger studies of SUDEP and epilepsy.

4.2 Introduction

Sudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death for

people with epilepsy (PWE), and includes all epilepsy-related deaths not due to trauma,

drowning, status epilepticus, or other identifiable causes. The incidence of SUDEP is

about 0.35 cases per 1,000 person-years [138]. While research into the physiological

mechanisms underlying SUDEP continue to be thoroughly studied, and new SUDEP-

related guidelines for clinicians treating PWE have been published in order to minimize

SUDEP risk, SUDEP incidence remains steady [87, 139]. To date, the most espoused

preventive strategy for SUDEP remains seizure control via appropriate self-management

[140], and especially medication adherence, since a clear risk factor for SUDEP is a

higher frequency of seizures [104]. While these risk factors have been disseminated
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broadly, including to the public, SUDEP remains a leading cause of death for PWE,

leading organizations such as The Institute of Medicine, American Epilepsy Society, and

Epilepsy Foundation to call for increased study into SUDEP.

Apart from research related to the ways in which providers, patients, and their

families discuss SUDEP [87, 141], very little behavioral research has been conducted

to reveal potential behavioral or social attributes that may precede SUDEP. Should

such specific attributes exist, they would provide an area of preventive intervention for

SUDEP. In this study, we utilize digital behavioral data and investigate its potential

for uncovering behavioral signatures preceding SUDEP that could be leveraged as early-

warning signals to inform self-management interventions in PWE. As patients are known

to not fully recall important events or even display recognizable behavior change during

clinical consultations, digital behavioral data, such as social media data, can offer a

complementary view of patient behavior of clinical significance [94]. Specifically, we

use text and sentiment analysis to evaluate temporal changes in emotional states and

communication patterns of the subjects in the study. The methodology gives us the

unique opportunity to examine longitudinally the emotional states of a cohort of PWE

with a known outcome of SUDEP. Our preliminary results show that social media may

reveal behavioral experiences leading up to SUDEP, and thus guide areas for SUDEP-

preventing interventions. This study also demonstrates the successful use of alternative,

real-world data sources in studying SUDEP [94, 142].

Psychological stress is known to increase the risk of certain diseases, like the common

cold [143]. Directly related to PWE, stress and major life events are known to increase

the risk of seizures, which in turn can increase the risk of SUDEP [144, 145]. However,

direct physiological measurements of stress involves expensive and invasive tools. A
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compelling alternative is to measure stress and other cognitive states indirectly in self-

reported digital behavioral data, such as in social media posting on Facebook. This is one

of the focuses of the interdisciplinary field of affective computing, which has developed

methods to measure human emotion (including stress) via linguistic and other computer-

based features, such as keystroke dynamics [146]. For instance, Pennebaker [147] found

a correspondence between textual features and physiological signals of stress. Similarly,

Vizer, Zhou, & Sears [148] found that increased lexical complexity (diversity of words)

tends to correspond with increased physical or cognitive stress. However, such studies are

often conducted in controlled laboratory conditions, asking participants to write essays

with particular prompts. This is not the case with social media, where users write posts

spontaneously without being prompted in laboratory settings. Our assumption is that

stress and other mood states influence whether and how a social media post is written,

and can thus be measured via textual analysis of those posts. A substantial body of

literature already reports that social media data enables quantitative measurement and

prediction of various behavioral processes of biomedical relevance, i.e. a real-world data

source to study “humans as their own model organism” [94]. Indeed, social media data

has already been shown to be useful, alone or in combination with other data sources, for

a variety of other biomedical problems. For instance, data from Twitter and Instagram

helps in the detection of health conditions including the spread of flu pandemics [149],

warning signals of drug adverse reactions [150], human reproduction [109], and even

depression [151]. Social media users who self-reported their diagnosis of depression

have been shown to exhibit distorted modes of thinking (cognitive distortions) in their

writing, an early warning that can lower the burden of this underdiagnosed condition

and leading cause of disability worldwide [92]. A long list of successful applications using

social media data for biomedical and health-related problems is discussed in our recent
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review [94].

To infer relevant cognitive states in our cohort of deceased SUDEP subjects we use

textual and sentiment analysis of their social media posts. These methods were originally

developed to determine the positive or negative feelings expressed in natural language

texts towards specific product ratings, often used for marketing purposes [152, 153].

However, a number of sentiment analysis tools have been developed from psychological

experiments, and can be used to model the emotional states of authors based on their

written text [94]. In fact, sentiment analysis has been very useful to track various

individual and cohort specific behaviors of relevance to biomedicine, especially mental

health [92, 94, 109]. Similarly to other domains, these computational methods are likely

to be useful to characterize the behavior of SUDEP cohorts, including any possible

stress markers hidden in their social media discourse that can be leveraged to inform

interventions aimed at improving self-management, a key predictor of epilepsy-related

outcomes. Next, we detail the data gathering, textual methods, and three different

sentiment analysis tools we apply to our SUDEP cohort.

4.3 Materials and methods

We began by eliciting families from which a member was known to have died of SUDEP.

To do so, we advertised our research goals on the bulletin boards of the Epilepsy Foun-

dation website and epilepsy-related Facebook groups. We also distributed information

about our study to the Epilepsy Foundation’s SUDEP Institute, which passed on the in-

formation to members of SUDEP bereavement groups within the Institute. The Epilepsy
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Foundation website is one of the most popular sites for people with epilepsy. All pro-

cedures were evaluated by the Indiana University Institutional Review Board, who ulti-

mately deemed that the study was exempt/not human subjects research. Family mem-

bers self-referred to our study via email, and were given information about the study, its

goals, and were also informed that participation was voluntary. We received about 20

inquiries from families who wanted to donate social media content from their deceased

family members. From these, a majority of users had Facebook accounts, and only a few

had Twitter or Instagram accounts. Due to data availability we decided to focus our

analysis solely on Facebook timelines. This yielded a small cohort of n = 12 Facebook

timelines (four males and eight females) from which we had timelines to collect data

from. For six subjects we obtained full login information, and for the remaining we had

varying viewing access to timeline posts, as listed in Table 4.1.

Data collection for subjects with login information was conducted through an in-

house developed application using Facebook ’s official application programming interface

(API). Family members logged into the deceased Facebook account and accessed a spe-

cific app webpage. The app then collected all of the subject’s timeline posts, including

text, meta-data (e.g., date, posting device, etc), and the number of likes, comments

and shares. Similarly, when only viewing access to the subject’s timeline was available,

family members (or a researcher when family was unable/unavailable) were instructed

to scroll the deceased timeline, thus loading all posts, and export the subject’s timeline

content as an html file. A script developed in-house was used to process the html file,

collecting text, available meta-data, and number of likes, comments, and shares from

posts. Importantly, unlike the app-collected timelines that made use of subject’s login

information, timelines collected via the html-scraping script may not contain all sub-

ject posts, as privacy settings putatively put in place by the subject may have blocked
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the person collecting the data from viewing them in the first place. In addition, in

2009 Facebook made a significant change to their interface: the prompt to the post box

changed from “Update your Status”, followed by “<Subject name> is...” to “What’s on

your mind?”. Naturally, we believe this interface change may elicit a different response

from the user. To avoid any possible interface bias in our analysis, we only consider

subject posts that occurred after 2009, when the change took place. All collected data

were securely stored within our servers for further analysis. For each subject Table 4.1

lists basic demographic, subject posting time range, and any notable life event discussed

by the subject on their Facebook timeline in the month preceding their SUDEP, which

was manually annotated by the researchers.

The number of posts collected for each subject varies widely, from only 4 posts

written by Subject 12, all the way to 2,271 posts written by Subject 2 (see Table 4.1).

The average number of posts per subject is 726. In total, we collected and processed 8,717

posts with text that were written after 2009, when considering all 12 subjects. However,

because some subjects had very little number of posts—as is the case of Subject 12—we

opted to limit our analysis to subjects with more than 500 posts that contained text and

were written after 2009. In other words, next we only present results on subjects 1-3, 6,

8, and 10, a cohort of n = 6 subjects. These subjects are highlighted in Table 4.1.

Textual content of individual posts were processed using the dictionaries of three

sentiment analysis tools: Affective Norms for English Words (ANEW) [154], Valence

Aware Dictionary for sEntiment Reasoning (VADER) [155], and Linguistic Inquiry and

Word Count (LIWC) [156]. These three tools are widely used in the sentiment analysis

literature. In fact, VADER and LIWC were consistently among the best tools for 3-class

polarity classification (negative, neutral, or positive emotion) across a number of corpora

in a benchmark comparison study [23].
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Subj. Collection Sex Age Posts Window of posts* Notable life event before SUDEP

1 App F 23 1,410 2,526 New apartment, job, and city
2 App M 20 2,271 2,157 Releasing DVD copies of new movie
3 App F 18 844 2,071 Lonely as new college freshman
4 App F 24 273 1,865 Graduating a Master’s program
5 App M 14 51 911 Birthday
6 App F 15 473 843 Return from Europe trip
7 FoF F 29 62 2,334 n/a
8 Public F n/a 2,201 2,315 n/a
9 Public F n/a 10 52 Party and writing paper
10 Friend M 24 984 2,373 Recent concussion and recovery
11 FoF M 28 134 1,524 Hospitalization
12 Friend F 16 4 413 Braces Removed

Table 4.1: Demographics and data collection details for study subjects. Six subject
timeline posts were collected via a custom-built app accessed using subject’s login and
password information. Six subject timelines were collected via html scraping of pages
as visible to the public, to Facebook friends, or to friends of friends (FoF), as noted.
The number of posts column tallied only posts with written text after 2009 (due to a
significant Facebook interface change). * Column “window of posts” denote the number

of days between a subject’s first and last post.

Dictionaries were used to match against single words in subject posts. Matched

words were then scored over several sentiment and textual dimensions per post. For

instance, ANEW includes ratings from 1 to 9 in a dictionary of 1,034 words along three

dimensions: valence, from unhappy to happy; arousal from calm to excited; and domi-

nance from controlled to in-control. These ratings were originally collected from surveys

given to undergraduates in a psychology class using a 9-point Likert-like scale [154]. We

used ANEW to find the mean sentiment along these three dimensions for each post by

averaging the sentiments of each word, while neglecting words absent from the dictio-

nary. VADER [155] is a tool for measuring the intensity of positive or negative affect

through lexical scores modified by syntactical rules, and is readily available as part of the

Natural Language Toolkit for python [157]. In addition to dictionary-based sentiment

scores, VADER looks at nearby words and modifies sentiment scores based on 5 simple

rules: the presence of exclamations, capitalization, adverbs, negations, and contrasting

conjunctions. Using this tool, we computed normalized scores describing the intensity of

positive, neutral, and negative emotion present in each subject post. LIWC (pronounced
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Luke) is the third dictionary-based tool used. It was developed with a well-documented

procedure of consistent categorization between a majority of human judges. The latest

version of the software, LIWC2015, has dictionaries containing nearly 6,400 words and

evaluates text across nearly 90 linguistic and sentiment variables, including summary

variables, pronouns, articles, cognitive processes, time focus, personal concerns, and

informal language categories [156, 158].

4.4 Results

Assuming some type of stressor prior to SUDEP, which in turn could manifest as a

change in the subject’s digital verbosity, first we characterize the number of words per

subject Facebook post (word count) with a simple negative binomial regression. The

binomial regression tests whether there was a significant difference in the amount of

words per post when comparing posts written in two different epochs of the subject’s

digital behavior. More specifically, we compare the average number of words per post in

the two months (56 days) preceding the subject’s SUDEP against the average number

of words per post in the rest of the available timeline. We choose the last two months as

a conservative time range for a subject behavioral change that at the same time holds

enough examples (posts) for a robust statistical analysis—as a 10 samples minimum

is a frequently recommended heuristic for an accurate estimation of model parameters

[159]. However we note that posting behavior varies between subjects and we do not

know whether, or when, stressors proceedings SUDEP may appear for each subject. We

also tested different epochs, ranging from one to twelve weeks prior to SUDEP. Results

are consistent for subjects with sufficient data in the last period being considered, and

are shown in Fig. C.1. From our six analysed subjects, subjects 1, 2, 6, and 10 had
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significantly higher word count in the two months preceding their SUDEP. Subject 8

also had a higher word count in the last two months, albeit not significant at p < 0.05.

Conversely, subject 3 had a significantly lower word count in the last two months. Results

are shown in Table 4.2 and Figure 4.1 shows the average word count for each subject

timeline. Two regressions are fitted to the data highlighting the slope of the increase (or

decrease) in subject verbosity: one considering the complete subject timeline (dotted

line) and one only considering the last two months of posts (solid line).

subject nearly nlast µearly µlast timep

2 2,162 109 12.431 34.413 1.197e-32
1 1,547 54 9.592 17.889 4.146e-06
8 2,185 16 12.070 18.375 0.081
6 717 23 5.252 7.304 0.021
10 1147 7 13.983 23.571 0.048
3 834 10 11.125 4.100 0.001

Table 4.2: Significance tests for differences in word counts in posts during the last
two months preceding SUDEP compared to other posts. The mean word count for the
posts written during the last two months (µlast with nlast samples) are compared to
the mean word count of all other posts written by the subject before this period (µearly

with nearly samples). Significance is estimated from a negative binomial regression, with
p < 0.05 highlighted in bold. Subjects are ordered according to the rank-product of
the number of samples during the last month and the number prior to the last month.
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Figure 4.1: Subject verbosity measured by word count. Values are shown as
weekly average to improve readability. Dashed red line shows the trend over the entire
range of subject’s posts. Solid red line is the trend over the last two months of data

with darker color denoting the period length.

Since digital behavioral changes may be reflected not only in post length but also in
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how frequent posts are made, next we use a zero-inflated negative binomial regression

to examine whether the observed verbosity (word count) and frequency of posting prior

to SUDEP was significantly different from subject’s previous epochs. A zero-inflated

negative binomial regression is an extension of the binomial regression where there is

an assumption that a different process governs the likelihood that a subject makes no

posts in a day (zero word count), which is then modeled by a logistic regression. Results

are consisted and are presented in Table C.2; different epochs considered are shown in

Figure C.2. In general we see that both subjects 1 and 2 were more likely to post in the

two months preceding SUDEP, as well as writing longer posts. Perhaps due to increased

model complexity, changes in subject 6’s posting behavior are less significant, being less

likely to post in weeks preceding SUDEP with little difference in the number of words

written per day. Subject 8 and 10 were significantly less likely to post in the final weeks

before SUDEP, with a non-significant increase in words per day when they did. Lastly,

subject 3 did not have a significant change in the number of days with a post, but did

write significantly fewer words.

Having analyzed subject verbosity, we now turn to the sentiment of the text they

wrote. We remember each sentiment dimension is calculated by averaging per-word sen-

timent scores calculated for ANEW, LIWC, and VADER, three independent sentiment

tools. In the following Figures 4.2-4.4, line plots denote the average of a specific sen-

timent dimension measure over all posts each week. Some particular sentiment trends

can be observed in these figures. For instance, four of the six subject show an over time

increase in happiness sentiment, as measured by ANEW’s valence dimension (see dotted

lines in Fig. 4.2). Only two subjects, 3 and 10, show a decrease in happiness in the last

two months (solid line). Importantly, Subject 3 has an overall happiness increase but

the a sharp sentiment shift in the last two months, reflected by her described feelings of
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loneliness of being a college freshmen. On the other hand, subject 6 has an over time

happiness decrease, but a sharp happiness increase in the last two months, reflecting

a sentiment shift due to her European travels. Overall, despite some subjects having

reversed valence sentiment, when their complete timeline sentiment is compared to the

sentiment in the last two months of posting, they all have something in common: a

significant sentiment shift, as measured by the difference in slope of the two regressions.

To show this phenomena is not simply an effect of the sentiment tool of choice,

Figures 4.3 & 4.4 show subject use of emotion-neutral words and functional words, mea-

sured by VADER and LIWC, respectively. Functional words includes a broad category

of words such as pronouns (‘him’, ‘she’), articles (‘the’, ‘a’), conjunctions (‘and’, ‘but’),

interjections (‘oh’, ‘ah’), pro-sentences (‘yes’, ‘no’, ‘okay’), and others. We observe an

over time increase in the average number of such words used per post for 5 of the 6

subjects (see Fig. 4.4). In addition, for 4 subjects the amount of functional words used

increases substantially in the last two months of posting. In regards to emotion-neutral

words, five of the six subjects show an increase use of emotion-neutral words—a sen-

timent dimension that other tools, such as ANEW, ignores (see Fig. 4.3). However,

similarly to subject verbosity, all subjects have a drastic shift in the analyzed sentiment

categories when their complete timeline is compared to the last two months, again as

measured by the regression slope (see red lines in aforementioned plots).

4.5 Discussion

First, we would like to emphasize that we cannot claim SUDEP causation, or the pre-

dictive accuracy of these tools applied to the social media posts of living individuals.

However, the noticeable increase in functional words and the overall verbosity preceding
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Figure 4.2: Subject happiness measured by ANEW’s Valence score. Values
are shown as weekly average to improve readability. Dashed red line shows the trend
over the entire range of subject’s posts. Solid red line is the trend over the last two

months of data with darker color denoting the period length.
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Figure 4.3: Subject use of neutral words measured by VADER’s Neutral
score. Values are shown as weekly average to improve readability. Dashed red line
shows the trend over the entire range of subject’s posts. Solid red line is the trend over

the last two months of data with darker color denoting the period length.

SUDEP for a number of subjects is particularly suggestive of some detectable changes in

the digital behavior of subjects, and that may serve as early-warning signals correlating

with SUDEP. It is known that stress and major life events are likely to increase the risk

of epilepsy [144, 145], and that in turn may increase the risk of SUDEP. Several of our

subjects had major life changes in the weeks preceding their death, from concussions,

moving to another city, returning from an overseas trip, or feeling lonely as a new college
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Figure 4.4: Subject use of functional words measured by LIWC. Values are
shown as weekly average to improve readability. The dashed red line shows the trend
over the entire range of a subject’s posts, while the solid red line is the trend over the

last two months of data.

freshmen. In addition, the misuse of functional words has been associated with Aphasia,

a language impairment attributed to the Wernicke’s area, a brain area in the left (domi-

nant) temporal-parietal region characterized by EEG abnormalities in epilepsy patients

[160–162]. Unlike impairment to Broca’s area where patients speak slow, in hesitating

ways, and phrases are devoid of functional words, impairment to the Wenicke’s area

cause patients to speak warmly and fluidly but using functional words with no con-

tent at all [160]. We manually checked sentence construction in the last two months of

posting for our subjects and found no trace of functional words misuse aside from their

increased occurrence. Nonetheless, if an increase in verbosity or changes in functional

word use is indicative of stress or major life changes, the use of textual and sentiment

tools may allow for a predictive, quantitative measure in larger studies, complementing

current qualitative analyses. But we do stress that the lack of appropriate sample size

and a rigorous case-control in our current study hinders generalization of our findings

at this point. Nonetheless, our preliminary results serve to invite additional research

into this problem, especially to encourage attention to social media and other digital
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behavior data, thus contributing to better prediction of warning signals of SUDEP.

One possible avenue to evaluate the potential of sentiment analysis for predicting

SUDEP is to employ statistical machine learning models using the text and sentiment

analysis tools we described above. We attempted to build such models to predict changes

in the last day or week of posts in a subject’s timeline—instead of the last two months

of posts shown in regressions above. However, we encountered two common machine-

learning problems, especially in shorter window scenarios. The first was over-fitting and

the subsequent false positive prediction. Since sentiment tools possess many sentiment

variables (dimensions), it is easy to perfectly fit posts used in training the algorithm.

Yet, the resulting prediction/classification models do not generalize to predicting sub-

ject posts left out for testing. Stricter model regularization and dimensionality reduction

methods can help, but in the end, using shorter prediction windows results in a classifi-

cation scenario with a very large class imbalance with very few positive instances (i.e.,

posts preceding SUDEP) which does not allow automatic machine learning classification.

This is because most posts occur when subjects are deemed healthy, and only very few

instances can be safely set as being SUDEP related—those that happened right before

death. Given this problem of class imbalance, classifiers for automatic prediction are

not possible with our current dataset.

The second problem pertains to the labeling of posts as SUDEP-relevant. Assuming

that only the last posts before SUDEP are relevant, may miss prior days and posts

(positive instances) that may have been close calls for SUDEP. Without the proper

labeling of these instances, our algorithms are potentially missing several learning op-

portunities. The two-month window prior to SUDEP we used in the regression analysis

is reasonable for the observed cohort, allowing a reasonable amount of positive posts for

most subjects (see Table C.2). But the regression serves as an observation tool more
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than an automatic predictor. Indeed, at the current stage, social media analysis can

only enhance and provide a different perspective to other health data, such as electronic

health records, personal diaries, epilepsy warning devices, service animals, etc. A more

systemic and complete picture of SUDEP may emerge by combining these seemingly

heterogenous data sources.

Going forward, our goal is to combine clinical (e.g., physician notes, laboratory

exams, genetic profiling, questionnaire responses, electronic health records) with non-

clinical digital behavioral data (e.g. electronic diaries, discussion boards, email exchange,

phone usage patterns, social media posting and consumption) into research design. This

is planned via recruitment of epilepsy patients who consent the to the collection of their

digital behavioral data, such as social media IDs [94]. Our own work with focus groups

of epilepsy patients and their caretakers have demonstrated willingness to donate digital

behavioral data for studies. Indeed, as shown in the work we report here, this can be

even done postmortem to avoid an observer bias—patients changing their behavior by

knowing they are being observed. With enough subjects to account for the increase in

variables, the next step is to validate the predictive power of social media signals in case-

control experiments. We intend to focus on specific questions such as: why are subjects

writing or using certain words more often prior to their death? Can this be statistically

correlated with an increased risk of SUDEP? Can we pinpoint a behavioral phase shift

to inform self- and caretaker-management as an early warning? The preliminary results

we now report demonstrate the feasibility of extracting such signals. As we recruit

additional subjects in planned larger studies, it will be possible to answer these questions

more quantitatively and conclusively.

To compile additional digital behavioral data sources, our team is currently devel-

oping myAura [163], a personalized web service for epilepsy management. MyAura will
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include self-reported patient diaries, such as seizure tracking, food and water intake,

medication adherence, physician encounters, among others. One of its goals is to test

a variety of clinical and non-clinical temporal variables that may be proven useful in

epilepsy management. The use of patient donated social media timelines, as we have

shown here, can prove to be the next frontier in informing our understanding of SUDEP

and other epilepsy outcomes. MyAura will include the option for users to donate their

social media timelines, thus allowing the recruitment of larger patient cohorts. Find-

ings from analysis of the data of larger cohorts is likely to inform self-management

recommendations for PWE, including allowing for SUDEP-predicting behaviors to be

identified. For instance, patients with epilepsy could be monitored for an increased risk

for SUDEP. In addition, our text and sentiment analysis could be used to inform in-

dividualized self-management interventions based on patient’s posts and behaviors. At

the same time behavioral results can help direct physiologic studies, as cellular-level or

biomarker changes can, for example, ultimately be correlated with behavioral experi-

ences (e.g. cortisol and physiologic or psychological stress).

As a small pilot, our study has demonstrated the feasibility of mining social media

data for SUDEP (and other epilepsy-related) research, as well as very preliminary find-

ings regarding increased social media activity preceding SUDEP. While the sample size of

this study is too small to render generalizations in terms of SUDEP prediction, our work

here demonstrates the feasibility of a novel way of investigating epilepsy-related phenom-

ena, including SUDEP. This work also demonstrates the value in the interdisciplinary

collaboration between clinical/behavioral epilepsy researchers and informatics/complex

systems scientists.



Chapter 5

Conclusion

The sentiment expressed in our writing allows a window into our internal state, both at

an individual level and collectively. Social media has allowed the mass expression of this

sentiment, expressing otherwise unseen emotion and being in turn influenced by external

forces. Collective mood requires tools for understanding the parts that compose it, while

individual mood can reveal indications and warnings about our physical well-being.

I explored the first research question in Chapter 2: Can meaningful components

of collective mood states be extracted from time-series analysis of the sentiment of en-

tire populations measured on social media? I developed the Eigenmood methodology

of decomposing a binned distribution of sentiment over time through a Singular Value

Decomposition, and illustrated it through a toy example. Although mean sentiment is

frequently used as a summary of collective mood, it is dominated by the frequency of

words within natural language. Through an Eigenmood decomposition we can find a first

singular vector that accounts for the majority of the variance in the data and corresponds

to the frequency of sentiment in natural language, as verified against single-word senti-

ment frequencies in external corpora. The reconstruction of the original matrix without

94
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this first component provides visualizations of underlying phenomena, like decreasing

sentiment during the Covid-19 pandemic.

In Chapter 2 I also began the exploration of the second research question: Are com-

ponents of collective mood predictive of the future collective behavior of populations? I

also demonstrated that the inclusion of these mood components can aid in the modeling

of other population-level phenomena, such as mortality during the Covid-19 pandemic.

By using eigenmood components as exogenous variables in an ARIMA models for twenty

populous cities we can usually improve model fit on in-sample data beyond mean sen-

timent, however this method of decomposition has difficulty extending into the future,

finding that models with mean sentiment better generalize to out-of-sample data. In

nearly every case, however, including information of collective sentiment improves the

performance of the ARIMA model.

I continued the exploration of this question in Chapter 3. By taking advantage

of Google sex searches as a proxy of human reproductive interest, we were able to

investigate a long-standing debate between the biological and the cultural hypotheses of

human reproduction. By centering searches on major cultural holidays, distinct patterns

emerge dependent only on culture and not hemisphere or climate. These patterns find

a peak in sex searches on the major cultural holiday across countries, corresponding to

peaks in the best available birth data nine months later. The eigenmood methodology

allowed us to further understand this behavior. By finding an eigenmood representation

of each holiday for each country, we were able to show that throughout the year, the

more similar the collective mood was to the holiday eigenmood, the more sex searches

occur.

In Chapter 4, I investigated the final research question: Can characteristic temporal
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patterns associated with individuals or small cohorts could be used to predict specific

medical conditions? While previous chapters show how collective sentiment can be used

to understanding and predict aggregate statistics, in this chapter I investigated how

text and sentiment analysis of individual timelines can be used to understand individual

health outcomes. By examining the Facebook timelines of a small cohort of individuals

deceased due to SUDEP, we found preliminary evidence of changes in social media

posting behavior in the months preceding SUDEP. In particular for 5 of the 6 most

prolific posters, we found increases in verbosity during the two months preceding SUDEP

and for the remaining subject found a significant drop. Previous studies found that

stress leads to increased verbosity in laboratory settings; this increase in verbosity on

social media then lends some quantitative credence to otherwise anecdotal evidence that

SUDEP follows periods of significant stress. While we also found large changes in various

sentiment measures preceding SUDEP, we did not find consistent changes across our

subjects. The small sample size of our study prevents the drawing of broader conclusions,

but we hope it can serve as a pilot study to build upon with the MyAura project. With a

larger group of subjects, journalled data around seizures and corresponding social media

timelines the team will be able to continue this research towards a better understanding

of SUDEP.

The actions of large groups of people are often poorly understood and difficult to

predict, with conflicting narratives of cause and effect proposed by competing interests.

Collective action is often taken even when a rational basis for the collective good is

difficult to find. Perhaps a less rational basis exists for collective action. Perhaps instead

it is feeling that drives a collective forward, a collective mood state as an emergent

property that drives group decisions. It is my hope that the study of such collective

moods may allow us to better understand how the groups we are a part of will behave,
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and allow us to better see how we may make collective decisions.
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Gonçalves, and Fabŕıcio Benevenuto. Sentibench - a benchmark comparison of

state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1):1–23,

2016. doi: 10.1140/epjds/s13688-016-0085-1.

[24] How the general inquirer is used and a comparison of general inquirer with

other text-analysis procedures. URL http://www.wjh.harvard.edu/~inquirer/

3JMoreInfo.html.

[25] Y. R. Tausczik and J. W. Pennebaker. The Psychological Meaning of Words:

LIWC and Computerized Text Analysis Methods. Journal of Language and Social

Psychology, 29(1):24–54, 2010. ISSN 0261-927X. doi: 10.1177/0261927X09351676.

[26] George A Miller. More Than 166,000 Word Form and Sense Pairs. 38(11):39–41,

1995.

[27] T Wilson, J Wiebe, and P Hoffman. Recognizing contextual polarity in phrase

level sentiment analysis. Acl, 7(5):12–21, 2005. ISSN 0891-2017. doi: 10.3115/

1220575.1220619.

[28] Karo Moilanen and Stephen Pulman. Sentiment Composition. Proceedings of

the Fourth International Conference on Recent Advances in Natural Language

Processing (RANLP 2007), (M):378–382, 2007. ISSN 13138502. URL http:

//www.clg.ox.ac.uk/{_}media/people:karo:sentcompranlp07final.pdf.

[29] Hassan Saif, Yulan He, and Harith Alani. Semantic Sentiment Analy-

sis of Twitter. CEUR Workshop Proceedings, 917:56–66, 2012. ISSN

16130073. doi: 10.1007/978-3-642-35176-1 32. URL http://dx.doi.org/10.

1007/978-3-642-35176-1{_}32.

http://www.wjh.harvard.edu/~inquirer/3JMoreInfo.html
http://www.wjh.harvard.edu/~inquirer/3JMoreInfo.html
http://www.clg.ox.ac.uk/{_}media/people:karo:sentcompranlp07final.pdf
http://www.clg.ox.ac.uk/{_}media/people:karo:sentcompranlp07final.pdf
http://dx.doi.org/10.1007/978-3-642-35176-1{_}32
http://dx.doi.org/10.1007/978-3-642-35176-1{_}32


Bibliography 103

[30] Adnan Duric and Fei Song. Feature selection for sentiment analysis based on

content and syntax models. Decision Support Systems, 53(4):704–711, 2012. ISSN

01679236. doi: 10.1016/j.dss.2012.05.023. URL http://dx.doi.org/10.1016/j.

dss.2012.05.023.

[31] Taku Kudo and Yuji Matsumoto. A Boosting Algorithm for Classification of Semi-

Structured Text. Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 17–24, 2004.

[32] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment

classification using machine learning techniques. Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 79–86, 2002. ISSN 1554-

0669. doi: 10.3115/1118693.1118704. URL http://portal.acm.org/citation.

cfm?id=1118693.1118704.

[33] R. L. Robinson, R. Navea, and W. Ickes. Predicting Final Course Perfor-

mance From Students’ Written Self-Introductions: A LIWC Analysis. Journal

of Language and Social Psychology, 32(4):469–479, 2013. ISSN 0261-927X. doi:

10.1177/0261927X13476869.

[34] D. Nadeau, C. Sabourin, J. De Koninck, S. Matwin, and P. Turney. Automatic

Dream Sentiment Analysis. 2000. doi: 10.1023/B.

[35] John Pestian, John Pestian, Pawel Matykiewicz, Brett South, Ozlem Uzuner, and

John Hurdle. Sentiment Analysis of Suicide Notes: A Shared Task. Biomedical

Informatics Insights, 5:3, 2012. ISSN 1178-2226. doi: 10.4137/BII.S9042.

http://dx.doi.org/10.1016/j.dss.2012.05.023
http://dx.doi.org/10.1016/j.dss.2012.05.023
http://portal.acm.org/citation.cfm?id=1118693.1118704
http://portal.acm.org/citation.cfm?id=1118693.1118704


Bibliography 104
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[90] Johan Bollen, Bruno Gonçalves, Guangchen Ruan, and Huina Mao. Happiness is

assortative in online social networks. Artificial life, 17(3):237–251, 2011.

[91] Rui Fan, Onur Varol, Ali Varamesh, Alexander Barron, Ingrid A van de Leemput,

Marten Scheffer, and Johan Bollen. The minute-scale dynamics of online emotions

reveal the effects of affect labeling. Nature Human Behaviour, 3(1):92–100, 2019.

[92] Krishna C. Bathina, Marijn ten Thij, Lorenzo Lorenzo-Luaces, Lauren A. Rutter,

and Johan Bollen. Individuals with depression express more distorted thinking

on social media. Nature Human Behaviour, (5):458–466, 2021. doi: 10.1038/

s41562-021-01050-7.

[93] Danny Valdez, Marijn ten Thij, Krishna Bathina, Lauren A Rutter, and Johan

Bollen. Social media insights into us mental health during the covid-19 pandemic:

Longitudinal analysis of twitter data. J Med Internet Res, 22(12):e21418, Dec

2020. ISSN 1438-8871. doi: 10.2196/21418. URL http://www.jmir.org/2020/

12/e21418/.

[94] Rion Brattig Correia, Ian B Wood, Johan Bollen, and Luis M Rocha. Min-

ing social media data for biomedical signals and health-related behavior. An-

nual Review of Biomedical Data Science, 3:433–458, 2020. doi: 10.1146/

annurev-biodatasci-030320-040844.

[95] George K. Zipf. Human behavior and the principle of least effort. 1949.

http://www.jmir.org/2020/12/e21418/
http://www.jmir.org/2020/12/e21418/


Bibliography 112

[96] Emily Chen, Kristina Lerman, and Emilio Ferrara. Tracking social media discourse

about the covid-19 pandemic: Development of a public coronavirus twitter data

set. JMIR Public Health Surveill, 6(2):e19273, May 2020. ISSN 2369-2960. doi:

10.2196/19273. URL http://publichealth.jmir.org/2020/2/e19273/.

[97] Olive Jean Dunn. Multiple comparisons among means. Journal of the Amer-

ican Statistical Association, 56(293):52–64, 1961. doi: 10.1080/01621459.1961.

10482090. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.

1961.10482090.

[98] Isabel M. Kloumann, Christopher M. Danforth, Kameron Decker Harris, Cather-

ine A. Bliss, and Peter Sheridan Dodds. Positivity of the English language.

PLoS ONE, 7(1):e29484–e29484, 2012. ISSN 19326203. doi: 10.1371/journal.

pone.0029484.

[99] David Garcia, Antonios Garas, and Frank Schweitzer. Positive words carry less

information than negative words. EPJ Data Science, 1(1):3, 2012. ISSN 2193-1127.

doi: 10.1140/epjds3.

[100] Geoff Cumming and S. Finch. Inference by Eye: Confidence Intervals and How to

Read Pictures of Data. American Psychologist, 60:170–180, 2005.

[101] Kokil Jaidka, Salvatore Giorgi, H. Andrew Schwartz, Margaret L. Kern, Lyle H.

Ungar, and Johannes C. Eichstaedt. Estimating geographic subjective well-being

from Twitter: A comparison of dictionary and data-driven language methods.

Proceedings of the National Academy of Sciences of the United States of America,

117(19):10165–10171, may 2020. ISSN 10916490. doi: 10.1073/pnas.1906364117.

[102] W Nelson Francis and Henry Kucera. Brown corpus manual. Letters to the Editor,

5(2):7, 1979.

http://publichealth.jmir.org/2020/2/e19273/
https://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090
https://www.tandfonline.com/doi/abs/10.1080/01621459.1961.10482090


Bibliography 113

[103] Simon DeDeo, Robert XD Hawkins, Sara Klingenstein, and Tim Hitchcock. Boot-

strap methods for the empirical study of decision-making and information flows

in social systems. Entropy, 15(6):2246–2276, 2013.

[104] National Center for Health Statistics. Weekly provisional counts of deaths by

state and select causes, 2020-2022. https://data.cdc.gov/d/muzy-jte6, 2022.

Accessed: 6-June-2022.

[105] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:

forecasting and control. John Wiley & Sons, fourth edition, 2008.

[106] Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical

modeling with python. In 9th Python in Science Conference, 2010.

[107] Haneen Alabdulrazzaq, Mohammed N Alenezi, Yasmeen Rawajfih, Bareeq A Al-

ghannam, Abeer A Al-Hassan, and Fawaz S Al-Anzi. On the accuracy of arima

based prediction of covid-19 spread. Results in Physics, 27:104509, 2021.

[108] Domenico Benvenuto, Marta Giovanetti, Lazzaro Vassallo, Silvia Angeletti, and

Massimo Ciccozzi. Application of the arima model on the covid-2019 epidemic

dataset. Data in brief, 29:105340, 2020.

[109] Ian B Wood, Pedro L Varela, Johan Bollen, Luis M Rocha, and Joana Gonçalves-
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Appendix A

Chapter 2 Appendix

A.1 Eigenmood of ANEW

To demonstrate that the Eigenmood analysis is robust to selection of sentiment tool and

dataset, we also run it on an ANEW-scored sample of Tweets from 2010 to 2014. We

use a 10% random sample of Tweets from Twitter’s garden hose1 from June 1, 2010 to

Februrary 13, 2014 as our source of written sentiment. Each tweet was scored according

to the Affective Norms for English Words (ANEW) as described in [4]. The ANEW is

a lexical tool based on survey results that assigns 1034 English words a value from 1

to 9 along three dimensions: arousal, from calm to excited; dominance, from controlled

to in-control; and valence, from sad to happy [6]. Each tweet containing words in the

ANEW was scored with the average sentiment values of those words. We limit our

analysis to tweets geo-located in the USA, yielding about ten-thousand tweets per day,

and a 25-bin distribution of tweet scores along each dimension. Some choice of binning

is required for the singular value decomposition, and a 25 bin distribution was found to

be a good medium between resolution and sampling coverage.

1Data system supported by NSF Award No. IIS-0811994
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Our initial focus was on the Latin American countries, so we included a translation

of the ANEW to Spanish and Portuguese as well. To translate, each ANEW word was

passed through Google translate and verified by native speakers of the languages on the

team. If a tweet contained words matching multiple languages, the language with the

most matches was used to score the tweet, or the average of the language’s scores were

taken in the case of ties. Other ANEW translations are available from separate exper-

iments using native speakers in Spanish [14] and European Portuguese [15], however,

these studies as well as Warriner et al.’s analysis of these and other studies [16] and

Dodds et al.’s experiments with Amazon Mechanical Turk [8] show that generally there

is a good agreement between the affective norms assigned to english glosses, and those

assignment by ANEW, especially in the case of valence. For computational ease we thus

use the same ANEW scores for each language translation.

A.1.1 Singular Value Decomposition

A singular value decomposition splits a matrix of data into orthonormal bases for its row

and column spaces composed of left and right singular vectors respectively, along with

relative variance explained by each, their singular values. This is related to a principal

component analysis, where the right singular values are the principal component loadings

and the left singular vectors multiplied by the corresponding singular values are the

scores [63]. For each ANEW dimension, we create a matrix with rows corresponding to

days, and columns corresponding to the bins of the distribution. The resulting left and

right singular vectors can then be interpreted as eigenbins and eigendays respectively.

The eigendays are vectors with 25 elements that describe patterns in a day’s binned

distribution; when all eigendays are summed together with appropriate coefficients, they
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reproduce the distribution of any day’s data. Similarly, the eigenbins describe patterns

in a bin’s value over time.

A.1.2 Statistics vs Mean
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Figure A.1: Mean, Skew, and Bimodality coefficient over time for scored tweets from
the United States

Mean values are used as a measure of central tendency in order to summarize sen-

timent distributions in a useful manner. However, as seen in figure A.1, the sentiment

distribution is highly skewed, especially for valence. This negative skew is noted by [16],

while a positive skew appears for the most frequently used words in [7]. Due to this

skew, the median value is often chosen as a summary statistic since it is less influenced

by outliers. However, even the median cannot accurately report the fluctuations in the

distribution over time. Valence, the component that receives the most interest, also

has a substantial bimodality coefficient; the negative skew corresponds to a large sec-

ondary peak in negative sentiment. To account for the various shapes the distribution

assumes, we can turn to the eigendays and eigenbins found through a singular value
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Figure A.3: Mean with standard deviation error bars over time for scored tweets from
the United States

decomposition. Each eigenbin contains a time series of how much a particular change in

distribution shape, the corresponding eigenday, contributes to each day’s distribution.

The first eigenday corresponds closely to the overall distribution of sentiment in

written language, according to word frequencies in the Brown corpus, included with the

ANEW data [6]. This similarity is shown between their cumulative distribution functions

in Figure A.2. To measure how close this eigenday is to natural language frequency, we

normalized the eigenday to sum to 1 and found the Jensen-Shannon divergence (JS),

a measure of the dissimilarity of two probability distributions, assigning values from 0

(the same) to 1 (no similarity) [103]. The divergence is quite low, the highest being

0.031 bits for arousal as shown in Table 1. In fact, the chance that a random reshuffling

of word frequencies would result in a distribution so similar, estimated from 105 such

reshuffles, is negligible for all but arousal, which has a 0.050 chance. In addition, this

first component accounts for almost all of the variance in the data: 99% for arousal and

dominance, and more for valence. This suggests that the distribution of sentiment is

overwhelmed by the natural frequency of words. To really observe how it changes we

need to look at further components.
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Dimension JS pf
Arousal 0.031 0.050

Dominance 0.016 0.000

Valence 0.024 0.000

Table A.1: JS is the Jensen-Shannon Divergence, pf is the probability of finding a
smaller JS, estimated from 100,000 random reshuffles of word frequencies

A.2 Additional Results

A.2.1 Event Detection
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Figure A.4: Second Eigenday and Eigenbin for each ANEW dimension. Blue cir-
cles mark Super Bowls, red diamonds mark Valentine’s Day, and green squares mark

Father’s Day

To describe changes in mood over time, we look at Z-scores for statistics like standard

deviation and bimodality coefficient, as well as the mean, calculated over a trailing

window of the previous 90 days. Significant changes are defined as Z-scores with absolute

values greater than a threshold of 3. The emotional state of a number of days can be

described as exhibiting more interesting behavior than the mean sentiment alone would

suggest. For example, consider the Super Bowl, a major national American football

event. The mean for dominance only significantly changes the day after the 2011 Super



Appendix A: Chapter 2 Appendix 126

Bowl, falling with a Z-score of -3.968. However, its bimodality coefficient plummets

every year, with an average Z-score of -4.163, suggesting that expressions of dominance

are more similar than usual when the same major sporting event is watched by most

users. On Valentine’s Day, the mean arousal peaks with an average Z-score of 5.465,

however, for 2012 and 2013 the arousal bimodality coefficient also peaks with an average

Z-score of 3.603. While most people are excited by Valentine’s Day, a significant number

respond oppositely. Father’s Day only sees a significant change in mean sentiment values

during 2013. However, the bimodality coefficient for valence increases during 2012 and

2013 with a Z-score of 3.106, while the overall distribution of valence changes in a similar

way every year, as will be discussed later.

The second eigenday corresponds to long term changes over the course of the data,

but is also highly relevant to certain holidays, as shown in Figure A.4. Since major

holidays like Christmas, New Year’s Day, and the USA’s Independence Day are well

described by changes to the mean, we continue to focus on the Super Bowl, Father’s Day,

and Valentine’s Day. During the Super Bowl, Dominance reverses its trend over time and

emphasizes the middle bins of its distribution, accounting for the lessened bimodality.

This is surprising since words like “win” have a high dominance, and “humiliate” a low

dominance, suggesting that the overall feeling is dominated by more neutral dominance

words like “game” and “party”. The increase in a bimodal arousal sentiment during

Valentine’s Day is largely explained by the contribution of the second arousal eigenday,

emphasizing both higher bins and a very low bins which includes words like “sleep”

and “bored”. Similarly, the increase in valence bimodality on Father’s Day is described

by the second valence eigenday, emphasizing bins with happy words like “home” and

“family” as well as low bins including the words “lonely” and “hate”. We can also see

that although the change isn’t significant according to our rolling Z-score threshold,
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Valentine’s Day also emphasizes the same valence bins.

A.3 Twitter Data Collection

To measure and estimate collective mood states we analyzed the text of a large number of

tweets. Our data source is Indiana University’s connection to the Twitter garden-hose2,

which gives us access to a 10% random sample of the total volume of tweets Twitter

receives. While this random sample is known to have an occasional bias [164] we do not

detect or correct for the bias in this work. As shown in Fig A.5 The number of tweets

collected range from on the order of 106 tweets at the beginning of the collection, to

5 · 107 towards the end, while only about 107 contain words in the ANEW lexicon, . We

focus on tweets collected between September 2010, when the collection stabilized, and

Februrary 2014, when the tweet collection suddenly dropped, complicating homogeneous

analysis of the data.
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Figure A.5: Top: The number of tweets collected each day over time. “tweets” de-
notes the raw number of tweets, while “scored” denotes the number of tweets containing
a word matching the ANEW lexicon, Bottom: The number of tweets collected each day

over time for various countries.

2Data system supported by NSF Award No. IIS-0811994
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Subsets of this tweet collection were divided into days based on Greenwich Mean

Time (GMT), defining the beginning of a new day and end of a previous day at mid-

night GMT. Weeks were defined from Sunday to Sunday. These divisions are imperfect,

given differences in time zones across countries, but simplifies the analysis and is some-

what ameliorated when examining weekly data. Geo-located tweets were divided into

countries based on shape files3. As seen in Figure A.5, the number of scored tweets

collected for each country varies across orders of magnitude, with the US leading in

quantity with about 104 scored tweets collected per day. Each country’s tweets are only

examined after the collection has visually stabilized, starting in September 2010 for the

US and Australia, May 2011 for Indonesia, Brazil and Portugal, and September 2011

for Turkey and Egypt.

The feed from twitter is naturally noisy, with a changing number of tweets received

every day and a trend of increasing volume over the time period examined. Tweet

collection rarely fails for an entire day, collecting a partial amount of the days tweets.

These two properties make it difficult to distinguish a day in which tweet collection fails

from a day’s normal variation. To identify true failures in the tweet collection we use a

rolling Z-Score defined in Equation A.1:

Z(X, t, w) =
Xt −meanw(X)

σw(X)
(A.1)

Where X is the time-series of tweets, w is the trailing window, t is the index of given

day in X, meanw is the mean and σw is the standard deviation of the trailing w days

(from Xt−w to Xt−1)

3Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
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We have two time series describing the number of tweets collected on a given day,

the raw numbers of tweets Xtweets, and the number of scored tweets containing a word

matching the ANEW lexicon Xscored. Collection failures are defined as days in which

Z(Xtweets, t, 90) < −2 or Z(Xscored, t, 90) < −2. These are determined in an sequential

fashion for all t greater than 90, removing each collection failure as it is found (so

that the window is more precisely defined over the last 90 non-collection failure days).

To simplify analysis, weekly data ignores collection failures, since weekly aggregation

smooths over daily failures.

A.4 Scoring Tweets

To calculate numerical values for sentiment in a twitter feeds, we matched words in

tweets to words in ANEW. On each day, for each country, between the start of stabilized

collection until 2014-02-13 all words in all tweets were matched against the ANEW

lexicon. Each tweet containing words in the ANEW received scores along the three

ANEW dimensions equal to the mean of the corresponding scores of the matching words.

For weekly analysis, each bin receives the average of the daily bin probabilities each week,

giving equal weight to each day.

Since the original focus of the project was on Latin American countries, we performed

a basic expansion of the ANEW to match Spanish and Portuguese words. The trans-

lations were found by initially running each word through Google Translate, and then

refining the translations by hand. For basic language detection, we find the language with

the greatest number matches and assign the tweet a score based on that language. In

case of a tie, the average scores over the tying languages are calculated. To find the actual

sentiment during the holidays without generic seasonal greetings, we don’t score words
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if they appear in generic holiday greetings, such as “happy holidays”, and we remove the

ANEW words Christmas and Valentine from the lexicon entirely. The list of holidays

whose greetings we removed were collected from http://www.officeholidays.com/.

Aggregating all sentiment in tweets into a mean value discards information in the

distribution of sentiment across tweets. Therefore, we use binned distributions of sen-

timent across tweets in the following analysis. We focus on a 25-binned distribution

between the lowest and highest possible ANEW scored as a moderately-grained distri-

bution, with fine enough resolution to capture some detailed structure while aggregating

an adequate number of tweets per bin, 40 on average for a collection of 103 tweets.

We also examine an alternative distribution that lends itself to easier interpretation.

We can create a linguistic variable for each ANEW dimension, a variable whose values

are linguistic values [165], in this case: low, medium-low, medium, medium-high, and

high. Each value is a fuzzy set, defined as a membership function over the 100-binned

distribution of tweet ANEW scores as shown in A.6. These membership functions were

defined such that each function has the same area under its curve, while the memberships

of each original bin across linguistic values sum to one. By multiplying the probability

in each bin by its membership in linguistic values and summing the distribution of

memberships for each linguistic value, we can produce a probability distribution over

the values of the linguistic variable.

During analysis of the daily tweet sentiment, we also correct for data collection

failures. Simply throwing away collection failures would interfere with models of the

time series dependent upon previous days. To reduce the effect of these failures, we

replaced collection failures with a trailing mean. First, to ensure that it is necessary to

replace the data, we perform an additional identification check. For each X representing
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Figure A.6: The membership functions for the values the linguistic variable can take

the timeseries matrix of histogram vectors for an ANEW dimension, a singular value

decomposition is performed. The first component explains the most variation in the

data, therefore the first eigenbin b (explained below) can be used to determine how well

each day fits the first component. We consider it only necessary to replace the data

of a collection failure if there is an abrupt change in how well that collection failure

fits the first component compared to previous days, given by |Z(∆b, t, 90))| > 2 where

∆b denotes the one-day differences in the eigenbin. In these cases, the data for Xt is

replaced by the trailing mean (for each element of the vector) of all occurrences of same

day of the week as t in the past 90 days.

From these scored tweets we can examine statistics regarding collective moods over

time, such as the mean value for each ANEW dimension estimated from 25-bin distribu-

tions, as shown in Figure A.7. The means vary little over time, nor do the distributions

of ANEW scores visibly change when plotted as a heatmap in Figure A.8. As we will

argue below, this is due to the natural frequency of ANEW words in the language over-

whelming the distribution, washing out structure in sentiment.
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the US around Christmas 2012, Bottom: Heatmap of the linguistic variable weekly

distribution of tweet valence for the US around Christmas 2012

A.5 Singular Value Decomposition on binned ANEW dis-

tribution

Singular value decomposition (SVD) is a method by which a matrix can be linearly

decomposed into ordered orthonormal components, each explaining as much of the linear

variation as possible, after the components that came before it. The SVD of any m× n
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matrix M of real or complex numbers can represent M as follows in Equation A.2:

M = USV T (A.2)

Where U is m × n matrix with orthonormal columns, V is n × n matrix with or-

thonormal columns, and S is a diagonal matrix. The columns of U and V are referred

to as the left and right singular vectors of M respectively. These singular vectors are

eigenvectors of the matrices MMT and MTM respectively. The diagonal entries of S,

called the singular values of M , are the square roots of the eigenvalues of the matrices

MMT and MTM . By convention, the singular values are ordered from greatest to least.

The columns of U form a basis for the column space of M and the columns of V form

a basis for the row space of M . The right singular vectors are also known in principal

component analysis (PCA) as the loadings of the original variables (bins) onto the new

coordinate system. It is important to note that matrices can be reconstructed with a

lower rank by setting elements of S to zero. Typically only the top l singular values are

kept in order to create the closest rank-l approximation of the original matrix [63].

We applied the SVD to the binned distribution of ANEW scores over time. Our

matrix M has columns representing bins, and rows representing days (weeks). The left

and right singular vectors then have an interpretation as the “eigenbins” and “eigendays”

(“eigenweeks”) respectively. We will also refer to the singular vectors as components.

The relative variance explained by each component can then be calculated for each

component k as s2k/(Σis
2
i ) where sk is the kth diagonal component of S. The variance

explained by each component for the weekly 25-bin US distribution over each ANEW

dimension is displayed in Figure A.9. The first component explains the vast majority of

the variance.
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Figure A.9: Relative variance explained by each component

Each element of an eigenbin is the original day’s (week’s) coordinate along the axis

formed by the corresponding eigenday. This is equal to the cosine of the angle between

the original row and the eigenday. The multiplication of an element of an eigenbin by its

singular vector gives the projection of the original row onto the corresponding eigenday,

and in PCA this referred to as a principal component score. The reverse relationship

holds between eigendays and eigenbins as well. The first three components for each

ANEW dimension are shown in Figure A.10. Lines have been added to show that Eid

Al-Fitr, Thanksgiving, Christmas, and New Years deviate from normal days to either

correlate more or less with corresponding eigendays. We will suggest an interpretation

for the first three components. The first component captures the usual distribution of

ANEW sentiment in tweets given their natural frequency in the language, the second

component the general change in the distribution over time, and the third component

the cyclical yearly changes in the distribution.

While the first component explains the majority of the variation, it only explains the

usual frequency of ANEW words in written language. In the ANEW study, the frequency

of each term in the Brown corpus is included [6]. If we consider the first eigenday of

the 100-bin daily ANEW scores as a distribution itself, we can see its similarity to

the distribution of ANEW scores in the Brown corpus. The plots of the cumulative
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Figure A.10: Top to Bottom: Arousal, Dominance, and Valence components. Ver-
tical lines are holidays: Eid al-Fitr, Thanksgiving, Christmas, New Year’s Day, and

Valentine’s Day
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Figure A.11: Top to Bottom: arousal, dominance, and valence, projection and cor-
relation onto components

distribution for both the first eigendays and the Brown corpus are compared in Figure

A.2.

We also plot the projection and correlation of the original data onto eigenbins in

Figure A.11, and see once again that Holidays are clustered outliers, especially for valence

components.
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Figure A.12: Relative variance explained by each component, vertical line indicates
where at least 95% of the variance has been explained by the components to the left

A.6 Reconstruction

Since we are more interested in how sentiment varies, rather than its basic distribution

in language use, we reconstruct the original data without the first component. After

recomputing the relative variances explained after removing the first component, we

can remove noise by also removing the components explaining the least variance. Re-

construction, then includes only those components that explain 95 % of the remaining

variance after the first component is removed.

This leaves cyclic patterns and outlier days deviating strongly from the baseline

sentiment distribution, which we visualize as a heatmap of the distribution over time.

The reconstructed heatmap for the US centered around Christmas 2012 is shown in

Figure A.13

We can average over all full years in the data for multiple countries, centered on

the week of a strong cultural holiday, to emphasize the change in these distributions, as

shown in Figure A.14. It can be clearly seen from these averages that the distribution of

sentiment shifts towards higher bins during holidays, represented by redder high bins and

greener low bins on holidays. Christmas stands out in the USA (US), Australia (AU),

Brazil (BR), and Portugal and Spain (PT and ES). Portugal and Spain are combined
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Figure A.13: Top: Reconstructed heatmap of the 25-bin weekly distribution of tweet
valence for the US around Christmas 2012, Bottom: Reconstructed heatmap of the
linguistic variable weekly distribution of tweet valence for the US around Christmas

2012

in this figure due to low tweet counts. Eid al-Fitr stands out in both Turkey (TR) and

Indonesia (ID), and in Turkey the beginning of Ramadan is emphasized a few weeks

before. The centering performed only looks at weeks within the surrounding cultural

year, such that Christmas is week 26 of a 52 week year (starting with a first week

1), while Eid al-Fitr is week 25 of a 50 week year. Other weeks are averaged in this

range according to their displacement from the holiday week (e.g., a week two weeks

before the Christmas week in 2012 is averaged with weeks two weeks before Christmas

in all other years). This obscures the emphasis on holidays using another calendar, such

that Indonesia also has a strong signal on Christmas and Portugal and Spain have a

strong signal on Eid al-Fitr, but these signals are averaged over multiple weeks when

the calendars are misaligned.

A.7 Descriptive Statistics

Once we have scored tweets, we can compute descriptive statistics for the distribution of

ANEW scores on each day. Below are plots of the mean, standard deviation, skewness,

excess kurtosis, and bimodality coefficient for the distribution of ANEW scores over

US tweets. Three vertical lines are placed during each year to mark Thanksgiving,
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Figure A.14: Reconstructed Heatmaps for multiple countries, centered on cultural
holidays

Christmas, and New Year’s Day. For computational expediency, all descriptive statistics

were approximated from a 100-bin distribution of scores between the minimum and

maximum scores possible.

For a random variable T over the set of tweets on a given day, and E the expectation

operator, the descriptive statistics are defined as:

mean = µ = E[T ] (A.3)

standarddeviation(STD) = σ =
√
E[(T − µ)2] (A.4)

skewness = γ = E[(
T − µ
σ

)3] (A.5)
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kurtosis = κ = E[(
T − µ
σ

)4] (A.6)

excesskurtosis = κ− 3 (A.7)

bimodalitycoefficient =
γ2 + 1

κ
(A.8)
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Figure A.15: Mean over time for scored tweets from the United States
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Figure A.16: Standard deviation over time for scored tweets from the United States
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Figure A.17: Skewness over time for scored tweets from the United States
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Figure A.18: Kurtosis over time for scored tweets from the United States
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Figure A.19: Bimodality coefficient over time for scored tweets from the United States
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Figure A.20: Bimodality coefficient over time for scored tweets from the United States
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Figure A.21: Bimodality coefficient over time for scored tweets from the United States
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A.8 Arima Models for Covid Mortality

Full performance statistics on all datasets for validation selected models are listed below.

The fullTrain dataset is the combination of training and validation datasets. Order

refers to the ARIMA parameters, the first number is the number of previous lags used

as variables, the second the order of integration (differencing), the third the number

of moving average components. This summary of overall performance is followed by

visualizations of each selected model and its predictions as well as its full regression

table.

A.8.1 Selected Models and Performance Stats

state trainR2 validationR2 fullT rainR2 testR2 order
GA 0.798 0.911 0.905 0.887 (3, 1, 3)
MD 0.864 0.859 0.869 0.668 (1, 1, 2)
MA 0.914 0.801 0.901 0.851 (1, 1, 0)
NC 0.158 0.863 0.874 0.567 (1, 1, 0)
IL 0.866 0.935 0.915 0.848 (1, 1, 3)
OH 0.396 0.922 0.941 0.862 (3, 1, 3)
CO 0.597 0.872 0.815 0.861 (2, 1, 2)
MI 0.821 0.785 0.817 0.895 (1, 1, 0)
TX 0.863 0.920 0.913 0.881 (3, 1, 1)
IN 0.536 0.910 0.891 0.845 (2, 1, 0)
NV 0.506 0.811 0.813 0.636 (1, 1, 1)
CA LA 0.627 0.940 0.974 0.902 (2, 1, 3)
FL 0.911 0.800 0.864 0.933 (2, 1, 3)
TN 0.679 0.872 0.889 0.714 (1, 1, 0)
LA 0.769 0.846 0.809 0.828 (1, 1, 3)
NY 0.876 0.898 0.883 0.795 (1, 1, 0)
PA 0.847 0.949 0.933 0.905 (2, 1, 0)
CA SF 0.627 0.940 0.974 0.902 (2, 1, 3)
WA 0.521 0.182 0.531 0.632 (3, 1, 3)
DC 0.716 0.224 0.594 0.253 (1, 1, 1)

Table A.2: Training and Test performance statistics for ARIMA models without
sentiment factors, order selected by validation set performance
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state trainR2 validationR2 fullT rainR2 testR2 moodshift order totalcount
GA 0.796 0.913 0.908 0.834 0 (3, 1, 3) 30676524
MD 0.873 0.862 0.873 0.699 0 (2, 1, 3) 10203927
MA 0.914 0.801 0.901 0.851 0 (1, 1, 0) 17543538
NC 0.185 0.866 0.876 0.570 1 (1, 1, 0) 8527596
IL 0.867 0.935 0.916 0.849 1 (1, 1, 3) 36741068
OH 0.390 0.919 0.943 0.858 1 (3, 1, 3) 6969260
CO 0.597 0.872 0.816 0.862 0 (2, 1, 2) 9704942
MI 0.829 0.770 0.818 0.882 1 (1, 1, 0) 7898692
TX 0.863 0.920 0.914 0.880 0 (3, 1, 1) 27588633
IN 0.539 0.910 0.892 0.846 0 (2, 1, 0) 5710193
NV 0.510 0.814 0.816 0.650 0 (1, 1, 1) 12978313
CA LA 0.655 0.947 0.973 0.903 0 (3, 1, 3) 56629277
FL 0.911 0.799 0.865 0.930 0 (2, 1, 3) 11555324
TN 0.686 0.876 0.893 0.731 1 (1, 1, 0) 8584755
LA 0.764 0.837 0.806 0.830 1 (1, 1, 3) 8081540
NY 0.877 0.905 0.884 0.810 0 (1, 1, 0) 38762121
PA 0.857 0.950 0.935 0.905 1 (1, 1, 2) 18005902
CA SF 0.655 0.946 0.975 0.916 0 (3, 1, 3) 14887659
WA 0.513 0.181 0.510 0.624 1 (2, 1, 3) 18671561
DC 0.716 0.220 0.594 0.253 0 (1, 1, 1) 30640803

Table A.3: Training and Test performance statistics for ARIMA models with mean
Vader sentiment score as exogneous factor, ARIMA order and mood lag selected by

validation set performance

state trainR2 validationR2 fullT rainR2 testR2 moodshift order components
GA 0.825 0.918 0.910 0.891 0 (3, 1, 3) (4, 5)
MD 0.883 0.867 0.884 0.416 1 (3, 1, 3) (0, 7)
MA 0.917 0.832 0.907 0.857 0 (2, 1, 1) (8, 10)
NC 0.196 0.876 0.880 0.547 0 (1, 1, 0) (3, 10)
IL 0.868 0.937 0.917 0.848 0 (2, 1, 2) (6, 10)
OH 0.369 0.931 0.934 0.897 1 (1, 1, 1) (3, 9)
CO 0.601 0.891 0.840 0.805 0 (1, 1, 2) (2, 3)
MI 0.855 0.798 0.847 0.887 1 (2, 1, 3) (1, 5)
TX 0.874 0.930 0.924 0.884 1 (3, 1, 1) (1, 5)
IN 0.554 0.913 0.897 0.849 0 (2, 1, 0) (1, 2)
NV 0.542 0.833 0.834 0.601 1 (1, 1, 1) (5, 8)
CA LA 0.705 0.950 0.974 0.910 1 (3, 1, 3) (4, 7)
FL 0.913 0.808 0.868 0.931 0 (2, 1, 3) (1, 3)
TN 0.720 0.891 0.901 0.715 1 (1, 1, 1) (1, 5)
LA 0.779 0.862 0.823 0.803 1 (1, 1, 3) (4, 7)
NY 0.878 0.909 0.886 0.801 0 (1, 1, 0) (0, 5)
PA 0.885 0.953 0.942 0.851 0 (1, 1, 2) (9, 10)
CA SF 0.722 0.955 0.971 0.875 0 (1, 1, 2) (2, 7)
WA 0.449 0.266 0.518 0.604 0 (2, 1, 3) (3, 5)
DC 0.716 0.235 0.600 0.222 0 (1, 1, 1) (3, 6)

Table A.4: Training and Test performance statistics for ARIMA models with two
Vader eigenbin components as exogneous factors, ARIMA order, component selection,

and mood lag selected by validation set performance
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SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -474.280

Date: Mon, 17 Apr 2023 AIC 962.560

Time: 11:30:54 BIC 979.234

Sample: 01-18-2020 HQIC 969.245

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 1.2646 0.363 3.487 0.000 0.554 1.975

ar.L2 -0.0190 0.614 -0.031 0.975 -1.223 1.185

ar.L3 -0.3290 0.319 -1.032 0.302 -0.954 0.296

ma.L1 -1.2238 0.884 -1.384 0.166 -2.957 0.509

ma.L2 0.2345 0.649 0.362 0.718 -1.037 1.506

ma.L3 -0.0098 0.304 -0.032 0.974 -0.607 0.587

sigma2 7975.7515 5891.637 1.354 0.176 -3571.645 1.95e+04

===================================================================================

Ljung-Box (Q): 42.42 Jarque-Bera (JB): 4.88

Prob(Q): 0.37 Prob(JB): 0.09

Heteroskedasticity (H): 1.71 Skew: 0.48

Prob(H) (two-sided): 0.17 Kurtosis: 3.73

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.22: Atlanta GA Selected Model, No Sentiment

A.8.2 Predictions and Regression Tables



Appendix A: Chapter 2 Appendix 146

Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

1500

2000

2500

3000

Georgia VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 0 
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Training R2: 0.908, Test R2: 0.834
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -473.292

Date: Mon, 17 Apr 2023 AIC 962.584

Time: 11:32:27 BIC 981.640

Sample: 01-18-2020 HQIC 970.224

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 418.2121 310.248 1.348 0.178 -189.863 1026.287

ar.L1 0.5022 0.569 0.882 0.378 -0.614 1.618

ar.L2 -0.5493 0.199 -2.756 0.006 -0.940 -0.159

ar.L3 0.4071 0.301 1.351 0.177 -0.184 0.998

ma.L1 -0.2696 9.196 -0.029 0.977 -18.293 17.754

ma.L2 0.9091 88.562 0.010 0.992 -172.669 174.487

ma.L3 -0.4650 42.999 -0.011 0.991 -84.742 83.812

sigma2 7597.8757 7.05e+05 0.011 0.991 -1.37e+06 1.39e+06

===================================================================================

Ljung-Box (Q): 42.13 Jarque-Bera (JB): 21.09

Prob(Q): 0.38 Prob(JB): 0.00

Heteroskedasticity (H): 1.99 Skew: -0.10

Prob(H) (two-sided): 0.08 Kurtosis: 5.51

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.23: Atlanta GA Selected Model, Mean Vader Sentiment



Appendix A: Chapter 2 Appendix 147

Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

1500

1750

2000

2250

2500

2750

3000

3250

Georgia VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 0 
 vs All Deaths (4, 5)

Training R2: 0.910, Test R2: 0.891
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -472.025

Date: Mon, 17 Apr 2023 AIC 962.050

Time: 11:30:51 BIC 983.488

Sample: 01-18-2020 HQIC 970.645

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -7871.2966 7840.183 -1.004 0.315 -2.32e+04 7495.179

1 9384.5634 7344.264 1.278 0.201 -5009.929 2.38e+04

ar.L1 1.2170 0.399 3.053 0.002 0.436 1.998

ar.L2 0.0471 0.683 0.069 0.945 -1.292 1.386

ar.L3 -0.3505 0.348 -1.007 0.314 -1.033 0.332

ma.L1 -1.1420 0.986 -1.158 0.247 -3.075 0.791

ma.L2 0.1429 0.650 0.220 0.826 -1.131 1.417

ma.L3 4.865e-05 0.312 0.000 1.000 -0.611 0.611

sigma2 7540.5147 6585.331 1.145 0.252 -5366.498 2.04e+04

===================================================================================

Ljung-Box (Q): 39.83 Jarque-Bera (JB): 4.57

Prob(Q): 0.48 Prob(JB): 0.10

Heteroskedasticity (H): 1.71 Skew: 0.42

Prob(H) (two-sided): 0.17 Kurtosis: 3.82

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.24: Atlanta GA Selected Model, Selected Vader Eigenmood Components
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Training R2: 0.869, Test R2: 0.668
Observed Training
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Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 2) Log Likelihood -437.197

Date: Mon, 17 Apr 2023 AIC 882.395

Time: 11:31:00 BIC 891.923

Sample: 01-18-2020 HQIC 886.215

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.4883 0.136 3.591 0.000 0.222 0.755

ma.L1 -0.7890 0.111 -7.107 0.000 -1.007 -0.571

ma.L2 0.6252 0.104 6.020 0.000 0.422 0.829

sigma2 3225.8740 498.968 6.465 0.000 2247.914 4203.834

===================================================================================

Ljung-Box (Q): 36.55 Jarque-Bera (JB): 1.87

Prob(Q): 0.63 Prob(JB): 0.39

Heteroskedasticity (H): 0.60 Skew: 0.20

Prob(H) (two-sided): 0.20 Kurtosis: 3.63

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.25: Baltimore MD Selected Model, No Sentiment
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Training R2: 0.873, Test R2: 0.699
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -435.411

Date: Mon, 17 Apr 2023 AIC 884.823

Time: 11:32:29 BIC 901.497

Sample: 01-18-2020 HQIC 891.508

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 357.4083 445.605 0.802 0.423 -515.962 1230.778

ar.L1 -0.4238 0.161 -2.637 0.008 -0.739 -0.109

ar.L2 0.5759 0.149 3.863 0.000 0.284 0.868

ma.L1 0.2143 0.489 0.439 0.661 -0.743 1.172

ma.L2 -0.2567 0.379 -0.678 0.498 -0.999 0.485

ma.L3 0.5157 0.279 1.849 0.065 -0.031 1.062

sigma2 3029.7857 1337.003 2.266 0.023 409.308 5650.263

===================================================================================

Ljung-Box (Q): 26.63 Jarque-Bera (JB): 1.79

Prob(Q): 0.95 Prob(JB): 0.41

Heteroskedasticity (H): 0.55 Skew: 0.16

Prob(H) (two-sided): 0.12 Kurtosis: 3.66

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.26: Baltimore MD Selected Model, Mean Vader Sentiment
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Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(3, 1, 3) Log Likelihood -426.216

Date: Mon, 17 Apr 2023 AIC 870.432

Time: 11:30:58 BIC 891.757

Sample: 01-25-2020 HQIC 878.975

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -918.0995 846.042 -1.085 0.278 -2576.311 740.112

1 2554.8151 2656.043 0.962 0.336 -2650.934 7760.564

ar.L1 -0.0762 0.152 -0.503 0.615 -0.374 0.221

ar.L2 0.5138 0.119 4.300 0.000 0.280 0.748

ar.L3 -0.4080 0.132 -3.084 0.002 -0.667 -0.149

ma.L1 -0.1592 0.655 -0.243 0.808 -1.443 1.125

ma.L2 -0.1341 0.510 -0.263 0.793 -1.134 0.866

ma.L3 0.9818 1.150 0.853 0.393 -1.273 3.236

sigma2 2641.5047 3023.055 0.874 0.382 -3283.575 8566.584

===================================================================================

Ljung-Box (Q): 29.99 Jarque-Bera (JB): 3.61

Prob(Q): 0.88 Prob(JB): 0.16

Heteroskedasticity (H): 0.50 Skew: 0.23

Prob(H) (two-sided): 0.08 Kurtosis: 3.94

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.27: Baltimore MD Selected Model, Selected Vader Eigenmood Components
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1000

1500

2000

2500

3000

Massachusetts VADERNonzero ARIMA order: (1, 1, 0) 
 vs All Deaths 

Training R2: 0.901, Test R2: 0.851
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -481.542

Date: Mon, 17 Apr 2023 AIC 967.085

Time: 11:31:05 BIC 971.849

Sample: 01-18-2020 HQIC 968.995

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.5203 0.058 8.938 0.000 0.406 0.634

sigma2 9888.5386 1284.599 7.698 0.000 7370.771 1.24e+04

===================================================================================

Ljung-Box (Q): 19.51 Jarque-Bera (JB): 8.41

Prob(Q): 1.00 Prob(JB): 0.01

Heteroskedasticity (H): 0.22 Skew: 0.38

Prob(H) (two-sided): 0.00 Kurtosis: 4.40

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.28: Boston MA Selected Model, No Sentiment
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1000

1500

2000

2500

3000

Massachusetts VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.901, Test R2: 0.851
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -481.479

Date: Mon, 17 Apr 2023 AIC 968.958

Time: 11:32:31 BIC 976.104

Sample: 01-18-2020 HQIC 971.823

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -44.3671 435.763 -0.102 0.919 -898.447 809.713

ar.L1 0.5212 0.059 8.842 0.000 0.406 0.637

sigma2 9873.4340 1291.474 7.645 0.000 7342.191 1.24e+04

===================================================================================

Ljung-Box (Q): 19.53 Jarque-Bera (JB): 8.38

Prob(Q): 1.00 Prob(JB): 0.02

Heteroskedasticity (H): 0.22 Skew: 0.37

Prob(H) (two-sided): 0.00 Kurtosis: 4.40

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.29: Boston MA Selected Model, Mean Vader Sentiment
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1000

1500

2000
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3000

Massachusetts VADERNonzero ARIMA order: (2, 1, 1) MoodShift: 0 
 vs All Deaths (8, 10)

Training R2: 0.907, Test R2: 0.857
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 1) Log Likelihood -479.133

Date: Mon, 17 Apr 2023 AIC 970.266

Time: 11:31:03 BIC 984.558

Sample: 01-18-2020 HQIC 975.996

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -5423.1286 5464.189 -0.992 0.321 -1.61e+04 5286.484

1 -8670.3232 8176.360 -1.060 0.289 -2.47e+04 7355.048

ar.L1 -0.0812 0.334 -0.243 0.808 -0.735 0.573

ar.L2 0.4127 0.162 2.542 0.011 0.094 0.731

ma.L1 0.5579 0.345 1.618 0.106 -0.118 1.234

sigma2 9287.9625 1304.131 7.122 0.000 6731.913 1.18e+04

===================================================================================

Ljung-Box (Q): 14.07 Jarque-Bera (JB): 13.31

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 0.18 Skew: 0.34

Prob(H) (two-sided): 0.00 Kurtosis: 4.88

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.30: Boston MA Selected Model, Selected Vader Eigenmood Components
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North Carolina VADERNonzero ARIMA order: (1, 1, 0) 
 vs All Deaths 

Training R2: 0.874, Test R2: 0.567
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -476.416

Date: Mon, 17 Apr 2023 AIC 956.833

Time: 11:31:09 BIC 961.597

Sample: 01-18-2020 HQIC 958.743

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.0232 0.102 -0.227 0.820 -0.224 0.177

sigma2 8714.8461 1335.685 6.525 0.000 6096.952 1.13e+04

===================================================================================

Ljung-Box (Q): 45.63 Jarque-Bera (JB): 1.26

Prob(Q): 0.25 Prob(JB): 0.53

Heteroskedasticity (H): 1.50 Skew: -0.30

Prob(H) (two-sided): 0.30 Kurtosis: 3.15

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.31: Charlotte NC Selected Model, No Sentiment
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North Carolina VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.876, Test R2: 0.570
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 0) Log Likelihood -470.195

Date: Mon, 17 Apr 2023 AIC 946.391

Time: 11:32:32 BIC 953.499

Sample: 01-25-2020 HQIC 949.239

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -294.0182 455.240 -0.646 0.518 -1186.272 598.235

ar.L1 -0.0156 0.104 -0.150 0.880 -0.219 0.188

sigma2 8654.1795 1371.487 6.310 0.000 5966.115 1.13e+04

===================================================================================

Ljung-Box (Q): 41.52 Jarque-Bera (JB): 1.53

Prob(Q): 0.40 Prob(JB): 0.47

Heteroskedasticity (H): 1.58 Skew: -0.29

Prob(H) (two-sided): 0.25 Kurtosis: 3.35

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.32: Charlotte NC Selected Model, Mean Vader Sentiment
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North Carolina VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 0 
 vs All Deaths (3, 10)

Training R2: 0.880, Test R2: 0.547
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -474.431

Date: Mon, 17 Apr 2023 AIC 956.861

Time: 11:31:07 BIC 966.389

Sample: 01-18-2020 HQIC 960.681

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 4888.6244 3946.259 1.239 0.215 -2845.900 1.26e+04

1 6215.4010 3727.783 1.667 0.095 -1090.920 1.35e+04

ar.L1 0.0334 0.106 0.314 0.754 -0.175 0.242

sigma2 8278.8004 1286.667 6.434 0.000 5756.980 1.08e+04

===================================================================================

Ljung-Box (Q): 39.32 Jarque-Bera (JB): 8.80

Prob(Q): 0.50 Prob(JB): 0.01

Heteroskedasticity (H): 1.93 Skew: -0.56

Prob(H) (two-sided): 0.09 Kurtosis: 4.17

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.33: Charlotte NC Selected Model, Selected Vader Eigenmood Components
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Illinois VADERNonzero ARIMA order: (1, 1, 3) 
 vs All Deaths 

Training R2: 0.915, Test R2: 0.848
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 3) Log Likelihood -484.534

Date: Mon, 17 Apr 2023 AIC 979.069

Time: 11:31:12 BIC 990.979

Sample: 01-18-2020 HQIC 983.844

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.2384 0.360 0.663 0.507 -0.466 0.943

ma.L1 -0.1556 0.376 -0.414 0.679 -0.892 0.581

ma.L2 0.2923 0.114 2.560 0.010 0.068 0.516

ma.L3 0.2383 0.162 1.473 0.141 -0.079 0.555

sigma2 1.048e+04 1713.994 6.116 0.000 7123.913 1.38e+04

===================================================================================

Ljung-Box (Q): 41.38 Jarque-Bera (JB): 2.80

Prob(Q): 0.41 Prob(JB): 0.25

Heteroskedasticity (H): 0.62 Skew: 0.46

Prob(H) (two-sided): 0.22 Kurtosis: 3.09

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.34: Chicago IL Selected Model, No Sentiment
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Illinois VADERNonzero ARIMA order: (1, 1, 3) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.916, Test R2: 0.849
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 3) Log Likelihood -478.472

Date: Mon, 17 Apr 2023 AIC 968.945

Time: 11:32:34 BIC 983.161

Sample: 01-25-2020 HQIC 974.640

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -201.7926 604.245 -0.334 0.738 -1386.091 982.506

ar.L1 0.2568 0.367 0.699 0.484 -0.463 0.977

ma.L1 -0.1779 0.385 -0.462 0.644 -0.933 0.577

ma.L2 0.3097 0.120 2.588 0.010 0.075 0.544

ma.L3 0.2244 0.174 1.290 0.197 -0.116 0.565

sigma2 1.061e+04 1741.342 6.091 0.000 7194.303 1.4e+04

===================================================================================

Ljung-Box (Q): 40.23 Jarque-Bera (JB): 2.56

Prob(Q): 0.46 Prob(JB): 0.28

Heteroskedasticity (H): 0.62 Skew: 0.44

Prob(H) (two-sided): 0.22 Kurtosis: 3.12

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.35: Chicago IL Selected Model, Mean Vader Sentiment
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2500

3000

3500

Illinois VADERNonzero ARIMA order: (2, 1, 2) MoodShift: 0 
 vs All Deaths (6, 10)

Training R2: 0.917, Test R2: 0.848
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 2) Log Likelihood -483.417

Date: Mon, 17 Apr 2023 AIC 980.834

Time: 11:31:10 BIC 997.508

Sample: 01-18-2020 HQIC 987.519

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -4361.7635 8985.339 -0.485 0.627 -2.2e+04 1.32e+04

1 1.575e+04 1.14e+04 1.377 0.169 -6669.506 3.82e+04

ar.L1 0.7459 0.320 2.328 0.020 0.118 1.374

ar.L2 -0.2109 0.303 -0.696 0.486 -0.805 0.383

ma.L1 -0.6541 0.301 -2.172 0.030 -1.244 -0.064

ma.L2 0.5036 0.239 2.108 0.035 0.035 0.972

sigma2 1.031e+04 2003.931 5.145 0.000 6381.783 1.42e+04

===================================================================================

Ljung-Box (Q): 47.03 Jarque-Bera (JB): 1.78

Prob(Q): 0.21 Prob(JB): 0.41

Heteroskedasticity (H): 0.64 Skew: 0.36

Prob(H) (two-sided): 0.25 Kurtosis: 2.86

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.36: Chicago IL Selected Model, Selected Vader Eigenmood Components
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Ohio VADERNonzero ARIMA order: (3, 1, 3) 
 vs All Deaths 

Training R2: 0.941, Test R2: 0.862
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -487.353

Date: Mon, 17 Apr 2023 AIC 988.706

Time: 11:31:18 BIC 1005.380

Sample: 01-18-2020 HQIC 995.391

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.2407 0.182 1.326 0.185 -0.115 0.596

ar.L2 0.5283 0.098 5.400 0.000 0.337 0.720

ar.L3 -0.6991 0.088 -7.960 0.000 -0.871 -0.527

ma.L1 -0.2650 0.229 -1.155 0.248 -0.715 0.185

ma.L2 -0.2475 0.233 -1.063 0.288 -0.704 0.209

ma.L3 0.9392 0.197 4.771 0.000 0.553 1.325

sigma2 1.078e+04 1744.481 6.180 0.000 7361.088 1.42e+04

===================================================================================

Ljung-Box (Q): 36.11 Jarque-Bera (JB): 0.99

Prob(Q): 0.65 Prob(JB): 0.61

Heteroskedasticity (H): 1.23 Skew: -0.12

Prob(H) (two-sided): 0.60 Kurtosis: 3.49

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.37: Cleveland OH Selected Model, No Sentiment
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Ohio VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.943, Test R2: 0.858
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(3, 1, 3) Log Likelihood -480.450

Date: Mon, 17 Apr 2023 AIC 976.900

Time: 11:32:36 BIC 995.855

Sample: 01-25-2020 HQIC 984.494

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -281.6948 519.112 -0.543 0.587 -1299.135 735.745

ar.L1 0.2370 0.117 2.025 0.043 0.008 0.466

ar.L2 0.5253 0.060 8.789 0.000 0.408 0.642

ar.L3 -0.7115 0.089 -7.970 0.000 -0.886 -0.537

ma.L1 -0.2500 0.548 -0.456 0.648 -1.325 0.825

ma.L2 -0.2600 0.652 -0.399 0.690 -1.537 1.017

ma.L3 0.9767 0.546 1.789 0.074 -0.094 2.047

sigma2 1.045e+04 5387.430 1.940 0.052 -106.343 2.1e+04

===================================================================================

Ljung-Box (Q): 38.11 Jarque-Bera (JB): 1.61

Prob(Q): 0.56 Prob(JB): 0.45

Heteroskedasticity (H): 1.07 Skew: -0.10

Prob(H) (two-sided): 0.86 Kurtosis: 3.67

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.38: Cleveland OH Selected Model, Mean Vader Sentiment
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Ohio VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 1 
 vs All Deaths (3, 9)

Training R2: 0.934, Test R2: 0.897
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 1) Log Likelihood -485.351

Date: Mon, 17 Apr 2023 AIC 980.702

Time: 11:31:14 BIC 992.550

Sample: 01-25-2020 HQIC 985.449

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 6248.3446 3987.834 1.567 0.117 -1567.666 1.41e+04

1 7131.4160 4271.115 1.670 0.095 -1239.816 1.55e+04

ar.L1 0.7578 0.159 4.763 0.000 0.446 1.070

ma.L1 -0.5246 0.241 -2.177 0.029 -0.997 -0.052

sigma2 1.267e+04 2279.393 5.558 0.000 8200.390 1.71e+04

===================================================================================

Ljung-Box (Q): 78.39 Jarque-Bera (JB): 0.01

Prob(Q): 0.00 Prob(JB): 0.99

Heteroskedasticity (H): 1.50 Skew: -0.02

Prob(H) (two-sided): 0.31 Kurtosis: 2.95

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.39: Cleveland OH Selected Model, Selected Vader Eigenmood Components
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Colorado VADERNonzero ARIMA order: (2, 1, 2) 
 vs All Deaths 

Training R2: 0.815, Test R2: 0.861
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 2) Log Likelihood -425.382

Date: Mon, 17 Apr 2023 AIC 860.765

Time: 11:31:24 BIC 872.675

Sample: 01-18-2020 HQIC 865.540

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.3419 0.503 -0.680 0.497 -1.328 0.644

ar.L2 0.4775 0.500 0.954 0.340 -0.503 1.458

ma.L1 0.3990 0.534 0.746 0.455 -0.649 1.447

ma.L2 -0.3134 0.537 -0.584 0.559 -1.366 0.739

sigma2 2428.1309 422.839 5.742 0.000 1599.382 3256.880

===================================================================================

Ljung-Box (Q): 37.62 Jarque-Bera (JB): 1.66

Prob(Q): 0.58 Prob(JB): 0.44

Heteroskedasticity (H): 0.56 Skew: 0.35

Prob(H) (two-sided): 0.14 Kurtosis: 2.97

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.40: Denver CO Selected Model, No Sentiment
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Colorado VADERNonzero ARIMA order: (2, 1, 2) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.816, Test R2: 0.862
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 2) Log Likelihood -425.225

Date: Mon, 17 Apr 2023 AIC 862.450

Time: 11:32:38 BIC 876.742

Sample: 01-18-2020 HQIC 868.180

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -47.7518 177.854 -0.268 0.788 -396.339 300.836

ar.L1 -0.3490 0.497 -0.703 0.482 -1.322 0.624

ar.L2 0.4755 0.490 0.971 0.332 -0.485 1.436

ma.L1 0.4078 0.529 0.771 0.441 -0.628 1.444

ma.L2 -0.3056 0.527 -0.579 0.562 -1.339 0.728

sigma2 2418.0437 421.504 5.737 0.000 1591.912 3244.175

===================================================================================

Ljung-Box (Q): 35.62 Jarque-Bera (JB): 1.77

Prob(Q): 0.67 Prob(JB): 0.41

Heteroskedasticity (H): 0.57 Skew: 0.36

Prob(H) (two-sided): 0.15 Kurtosis: 2.98

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.41: Denver CO Selected Model, Mean Vader Sentiment
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Colorado VADERNonzero ARIMA order: (1, 1, 2) MoodShift: 0 
 vs All Deaths (2, 3)

Training R2: 0.840, Test R2: 0.805
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 2) Log Likelihood -419.713

Date: Mon, 17 Apr 2023 AIC 851.426

Time: 11:31:20 BIC 865.718

Sample: 01-18-2020 HQIC 857.156

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 2516.7164 1182.279 2.129 0.033 199.493 4833.940

1 -2682.6247 1499.280 -1.789 0.074 -5621.159 255.910

ar.L1 -0.9252 0.081 -11.493 0.000 -1.083 -0.767

ma.L1 1.1655 0.125 9.316 0.000 0.920 1.411

ma.L2 0.3388 0.107 3.160 0.002 0.129 0.549

sigma2 2096.6925 355.172 5.903 0.000 1400.569 2792.816

===================================================================================

Ljung-Box (Q): 50.50 Jarque-Bera (JB): 4.57

Prob(Q): 0.12 Prob(JB): 0.10

Heteroskedasticity (H): 0.42 Skew: 0.58

Prob(H) (two-sided): 0.03 Kurtosis: 2.96

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.42: Denver CO Selected Model, Selected Vader Eigenmood Components



Appendix A: Chapter 2 Appendix 166

Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

1500

2000

2500

3000

3500

Michigan VADERNonzero ARIMA order: (1, 1, 0) 
 vs All Deaths 

Training R2: 0.817, Test R2: 0.895
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -509.974

Date: Mon, 17 Apr 2023 AIC 1023.949

Time: 11:31:28 BIC 1028.713

Sample: 01-18-2020 HQIC 1025.859

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.3242 0.093 3.493 0.000 0.142 0.506

sigma2 2.015e+04 2829.713 7.122 0.000 1.46e+04 2.57e+04

===================================================================================

Ljung-Box (Q): 20.25 Jarque-Bera (JB): 22.12

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 0.50 Skew: 0.69

Prob(H) (two-sided): 0.08 Kurtosis: 5.17

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.43: Detroit MI Selected Model, No Sentiment
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Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

1500

2000

2500

3000

3500

Michigan VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.818, Test R2: 0.882
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 0) Log Likelihood -503.610

Date: Mon, 17 Apr 2023 AIC 1013.220

Time: 11:32:40 BIC 1020.329

Sample: 01-25-2020 HQIC 1016.068

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 519.4541 713.107 0.728 0.466 -878.210 1917.118

ar.L1 0.3263 0.093 3.511 0.000 0.144 0.509

sigma2 2.013e+04 2827.508 7.119 0.000 1.46e+04 2.57e+04

===================================================================================

Ljung-Box (Q): 20.21 Jarque-Bera (JB): 21.40

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 0.51 Skew: 0.69

Prob(H) (two-sided): 0.09 Kurtosis: 5.15

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.44: Detroit MI Selected Model, Mean Vader Sentiment
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Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

2000

2500

3000

3500

Michigan VADERNonzero ARIMA order: (2, 1, 3) MoodShift: 1 
 vs All Deaths (1, 5)

Training R2: 0.847, Test R2: 0.887
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(2, 1, 3) Log Likelihood -496.407

Date: Mon, 17 Apr 2023 AIC 1008.814

Time: 11:31:26 BIC 1027.770

Sample: 01-25-2020 HQIC 1016.409

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 1876.4309 4674.762 0.401 0.688 -7285.934 1.1e+04

1 -7613.0411 7176.475 -1.061 0.289 -2.17e+04 6452.592

ar.L1 1.1669 0.340 3.435 0.001 0.501 1.833

ar.L2 -0.3559 0.325 -1.094 0.274 -0.994 0.282

ma.L1 -0.9938 36.266 -0.027 0.978 -72.074 70.087

ma.L2 0.3570 0.367 0.972 0.331 -0.363 1.077

ma.L3 -0.3631 13.210 -0.027 0.978 -26.254 25.528

sigma2 1.615e+04 5.87e+05 0.028 0.978 -1.13e+06 1.17e+06

===================================================================================

Ljung-Box (Q): 14.24 Jarque-Bera (JB): 32.75

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 0.47 Skew: 0.86

Prob(H) (two-sided): 0.06 Kurtosis: 5.64

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.45: Detroit MI Selected Model, Selected Vader Eigenmood Components
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Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

4000
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7000

8000

Texas VADERNonzero ARIMA order: (3, 1, 1) 
 vs All Deaths 

Training R2: 0.913, Test R2: 0.881
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 1) Log Likelihood -552.042

Date: Mon, 17 Apr 2023 AIC 1114.084

Time: 11:31:32 BIC 1125.994

Sample: 01-18-2020 HQIC 1118.859

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.5753 0.395 -1.455 0.146 -1.350 0.200

ar.L2 0.2999 0.172 1.745 0.081 -0.037 0.637

ar.L3 0.1948 0.128 1.523 0.128 -0.056 0.446

ma.L1 0.7884 0.386 2.044 0.041 0.032 1.545

sigma2 5.738e+04 7429.146 7.724 0.000 4.28e+04 7.19e+04

===================================================================================

Ljung-Box (Q): 27.01 Jarque-Bera (JB): 11.22

Prob(Q): 0.94 Prob(JB): 0.00

Heteroskedasticity (H): 1.96 Skew: -0.29

Prob(H) (two-sided): 0.09 Kurtosis: 4.74

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.46: Houston TX Selected Model, No Sentiment
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Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

4000

5000

6000

7000

8000

Texas VADERNonzero ARIMA order: (3, 1, 1) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.914, Test R2: 0.880
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 1) Log Likelihood -551.690

Date: Mon, 17 Apr 2023 AIC 1115.381

Time: 11:32:42 BIC 1129.673

Sample: 01-18-2020 HQIC 1121.111

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -531.7725 1188.814 -0.447 0.655 -2861.806 1798.261

ar.L1 -0.5831 0.302 -1.930 0.054 -1.175 0.009

ar.L2 0.2934 0.158 1.855 0.064 -0.017 0.603

ar.L3 0.1975 0.123 1.602 0.109 -0.044 0.439

ma.L1 0.8114 0.303 2.676 0.007 0.217 1.406

sigma2 5.684e+04 8634.952 6.582 0.000 3.99e+04 7.38e+04

===================================================================================

Ljung-Box (Q): 27.63 Jarque-Bera (JB): 8.95

Prob(Q): 0.93 Prob(JB): 0.01

Heteroskedasticity (H): 1.86 Skew: -0.30

Prob(H) (two-sided): 0.11 Kurtosis: 4.53

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.47: Houston TX Selected Model, Mean Vader Sentiment
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Apr Jul Oct Jan
2021

Apr Jul Oct Jan
2022

4000

5000

6000

7000

Texas VADERNonzero ARIMA order: (3, 1, 1) MoodShift: 1 
 vs All Deaths (1, 5)

Training R2: 0.924, Test R2: 0.884
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(3, 1, 1) Log Likelihood -539.985

Date: Mon, 17 Apr 2023 AIC 1093.970

Time: 11:31:30 BIC 1110.556

Sample: 01-25-2020 HQIC 1100.615

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 1.286e+04 8942.853 1.438 0.151 -4670.358 3.04e+04

1 -2.54e+04 9047.271 -2.807 0.005 -4.31e+04 -7663.911

ar.L1 -0.7037 0.104 -6.777 0.000 -0.907 -0.500

ar.L2 0.3882 0.141 2.753 0.006 0.112 0.665

ar.L3 0.2434 0.096 2.548 0.011 0.056 0.431

ma.L1 0.9999 0.133 7.533 0.000 0.740 1.260

sigma2 4.942e+04 51.215 964.971 0.000 4.93e+04 4.95e+04

===================================================================================

Ljung-Box (Q): 33.47 Jarque-Bera (JB): 11.42

Prob(Q): 0.76 Prob(JB): 0.00

Heteroskedasticity (H): 1.91 Skew: -0.37

Prob(H) (two-sided): 0.10 Kurtosis: 4.71

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 1.04e+21. Standard errors may be unstable.

Figure A.48: Houston TX Selected Model, Selected Vader Eigenmood Components
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2021
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2200

Indiana VADERNonzero ARIMA order: (2, 1, 0) 
 vs All Deaths 

Training R2: 0.891, Test R2: 0.845
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 0) Log Likelihood -454.295

Date: Mon, 17 Apr 2023 AIC 914.589

Time: 11:31:37 BIC 921.735

Sample: 01-18-2020 HQIC 917.454

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.0566 0.103 -0.552 0.581 -0.258 0.144

ar.L2 0.2120 0.101 2.100 0.036 0.014 0.410

sigma2 5003.5181 806.449 6.204 0.000 3422.908 6584.128

===================================================================================

Ljung-Box (Q): 43.70 Jarque-Bera (JB): 0.50

Prob(Q): 0.32 Prob(JB): 0.78

Heteroskedasticity (H): 1.14 Skew: 0.19

Prob(H) (two-sided): 0.73 Kurtosis: 3.01

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.49: Indianapolis IN Selected Model, No Sentiment
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2022

1200

1400

1600

1800

2000

2200

Indiana VADERNonzero ARIMA order: (2, 1, 0) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.892, Test R2: 0.846
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 0) Log Likelihood -454.152

Date: Mon, 17 Apr 2023 AIC 916.304

Time: 11:32:43 BIC 925.832

Sample: 01-18-2020 HQIC 920.124

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 123.8708 302.213 0.410 0.682 -468.456 716.198

ar.L1 -0.0561 0.103 -0.542 0.588 -0.259 0.147

ar.L2 0.2150 0.103 2.080 0.037 0.012 0.418

sigma2 4985.5790 807.922 6.171 0.000 3402.081 6569.077

===================================================================================

Ljung-Box (Q): 46.00 Jarque-Bera (JB): 0.46

Prob(Q): 0.24 Prob(JB): 0.79

Heteroskedasticity (H): 1.14 Skew: 0.19

Prob(H) (two-sided): 0.73 Kurtosis: 2.98

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.50: Indianapolis IN Selected Model, Mean Vader Sentiment
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2021
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2022

1200

1400

1600

1800

2000

2200

Indiana VADERNonzero ARIMA order: (2, 1, 0) MoodShift: 0 
 vs All Deaths (1, 2)

Training R2: 0.897, Test R2: 0.849
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 0) Log Likelihood -451.995

Date: Mon, 17 Apr 2023 AIC 913.991

Time: 11:31:35 BIC 925.901

Sample: 01-18-2020 HQIC 918.766

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -2624.8898 1644.811 -1.596 0.111 -5848.660 598.880

1 -3359.0538 2695.652 -1.246 0.213 -8642.435 1924.327

ar.L1 -0.0302 0.098 -0.308 0.758 -0.222 0.162

ar.L2 0.2198 0.099 2.221 0.026 0.026 0.414

sigma2 4724.3778 817.004 5.783 0.000 3123.079 6325.677

===================================================================================

Ljung-Box (Q): 42.83 Jarque-Bera (JB): 1.06

Prob(Q): 0.35 Prob(JB): 0.59

Heteroskedasticity (H): 1.00 Skew: 0.26

Prob(H) (two-sided): 0.99 Kurtosis: 2.79

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.51: Indianapolis IN Selected Model, Selected Vader Eigenmood Components
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900

Nevada VADERNonzero ARIMA order: (1, 1, 1) 
 vs All Deaths 

Training R2: 0.813, Test R2: 0.636
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 1) Log Likelihood -414.596

Date: Mon, 17 Apr 2023 AIC 835.193

Time: 11:31:43 BIC 842.339

Sample: 01-18-2020 HQIC 838.058

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.8718 0.136 -6.389 0.000 -1.139 -0.604

ma.L1 0.7085 0.186 3.815 0.000 0.345 1.072

sigma2 1852.6568 288.316 6.426 0.000 1287.567 2417.746

===================================================================================

Ljung-Box (Q): 44.93 Jarque-Bera (JB): 1.40

Prob(Q): 0.27 Prob(JB): 0.50

Heteroskedasticity (H): 2.20 Skew: 0.31

Prob(H) (two-sided): 0.05 Kurtosis: 3.17

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.52: Las Vegas NV Selected Model, No Sentiment
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900

1000

Nevada VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.816, Test R2: 0.650
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 1) Log Likelihood -413.759

Date: Mon, 17 Apr 2023 AIC 835.519

Time: 11:32:45 BIC 845.047

Sample: 01-18-2020 HQIC 839.339

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -226.1283 272.327 -0.830 0.406 -759.879 307.623

ar.L1 -0.8846 0.125 -7.081 0.000 -1.129 -0.640

ma.L1 0.7206 0.179 4.016 0.000 0.369 1.072

sigma2 1813.6910 305.238 5.942 0.000 1215.436 2411.946

===================================================================================

Ljung-Box (Q): 48.36 Jarque-Bera (JB): 1.30

Prob(Q): 0.17 Prob(JB): 0.52

Heteroskedasticity (H): 2.10 Skew: 0.31

Prob(H) (two-sided): 0.06 Kurtosis: 3.08

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.53: Las Vegas NV Selected Model, Mean Vader Sentiment
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700

800

900

Nevada VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 1 
 vs All Deaths (5, 8)

Training R2: 0.834, Test R2: 0.601
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 1) Log Likelihood -404.989

Date: Mon, 17 Apr 2023 AIC 819.978

Time: 11:31:40 BIC 831.826

Sample: 01-25-2020 HQIC 824.725

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 5256.1917 2192.830 2.397 0.017 958.323 9554.060

1 5104.9294 2201.339 2.319 0.020 790.384 9419.475

ar.L1 -0.7762 0.332 -2.339 0.019 -1.427 -0.126

ma.L1 0.6535 0.389 1.679 0.093 -0.109 1.416

sigma2 1659.5425 259.808 6.388 0.000 1150.329 2168.756

===================================================================================

Ljung-Box (Q): 42.42 Jarque-Bera (JB): 1.35

Prob(Q): 0.37 Prob(JB): 0.51

Heteroskedasticity (H): 1.44 Skew: 0.29

Prob(H) (two-sided): 0.35 Kurtosis: 3.29

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.54: Las Vegas NV Selected Model, Selected Vader Eigenmood Components



Appendix A: Chapter 2 Appendix 178
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12000

California VADERNonzero ARIMA order: (2, 1, 3) 
 vs All Deaths 

Training R2: 0.974, Test R2: 0.902
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -555.144

Date: Mon, 17 Apr 2023 AIC 1122.289

Time: 11:31:48 BIC 1136.581

Sample: 01-18-2020 HQIC 1128.019

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.8312 0.236 3.524 0.000 0.369 1.294

ar.L2 -0.4065 0.208 -1.950 0.051 -0.815 0.002

ma.L1 -0.3849 0.582 -0.662 0.508 -1.525 0.755

ma.L2 0.7246 1.338 0.542 0.588 -1.897 3.346

ma.L3 0.3606 0.611 0.590 0.555 -0.838 1.559

sigma2 6.36e+04 9.43e+04 0.675 0.500 -1.21e+05 2.48e+05

===================================================================================

Ljung-Box (Q): 29.08 Jarque-Bera (JB): 6.74

Prob(Q): 0.90 Prob(JB): 0.03

Heteroskedasticity (H): 0.66 Skew: 0.06

Prob(H) (two-sided): 0.29 Kurtosis: 4.42

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.55: Los Angeles CA LA Selected Model, No Sentiment
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12000

California VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.973, Test R2: 0.903
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -555.926

Date: Mon, 17 Apr 2023 AIC 1127.852

Time: 11:32:48 BIC 1146.908

Sample: 01-18-2020 HQIC 1135.492

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -380.9485 631.705 -0.603 0.546 -1619.067 857.170

ar.L1 1.9679 0.128 15.369 0.000 1.717 2.219

ar.L2 -1.4542 0.252 -5.776 0.000 -1.948 -0.961

ar.L3 0.4486 0.154 2.905 0.004 0.146 0.751

ma.L1 -1.7272 0.158 -10.931 0.000 -2.037 -1.418

ma.L2 1.6944 0.241 7.017 0.000 1.221 2.168

ma.L3 -0.9670 0.170 -5.688 0.000 -1.300 -0.634

sigma2 6.281e+04 0.065 9.62e+05 0.000 6.28e+04 6.28e+04

===================================================================================

Ljung-Box (Q): 36.21 Jarque-Bera (JB): 16.23

Prob(Q): 0.64 Prob(JB): 0.00

Heteroskedasticity (H): 0.86 Skew: 0.51

Prob(H) (two-sided): 0.70 Kurtosis: 4.96

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 3.4e+23. Standard errors may be unstable.

Figure A.56: Los Angeles CA LA Selected Model, Mean Vader Sentiment
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12000

California VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 1 
 vs All Deaths (4, 7)

Training R2: 0.974, Test R2: 0.910
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(3, 1, 3) Log Likelihood -548.384

Date: Mon, 17 Apr 2023 AIC 1114.768

Time: 11:31:46 BIC 1136.093

Sample: 01-25-2020 HQIC 1123.311

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 1.472e+04 1.74e+04 0.847 0.397 -1.93e+04 4.88e+04

1 2.107e+04 1.38e+04 1.526 0.127 -5983.709 4.81e+04

ar.L1 2.1001 0.342 6.132 0.000 1.429 2.771

ar.L2 -1.5268 0.617 -2.475 0.013 -2.736 -0.317

ar.L3 0.3902 0.301 1.296 0.195 -0.200 0.980

ma.L1 -1.6623 0.316 -5.253 0.000 -2.282 -1.042

ma.L2 1.1519 0.388 2.972 0.003 0.392 1.912

ma.L3 -0.4896 0.146 -3.361 0.001 -0.775 -0.204

sigma2 5.742e+04 1.897 3.03e+04 0.000 5.74e+04 5.74e+04

===================================================================================

Ljung-Box (Q): 31.03 Jarque-Bera (JB): 6.83

Prob(Q): 0.84 Prob(JB): 0.03

Heteroskedasticity (H): 0.67 Skew: 0.26

Prob(H) (two-sided): 0.31 Kurtosis: 4.34

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 2.8e+23. Standard errors may be unstable.

Figure A.57: Los Angeles CA LA Selected Model, Selected Vader Eigenmood Com-
ponents
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Apr Jul Oct Jan
2021
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2022
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Florida VADERNonzero ARIMA order: (2, 1, 3) 
 vs All Deaths 

Training R2: 0.864, Test R2: 0.933
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -521.667

Date: Mon, 17 Apr 2023 AIC 1055.334

Time: 11:31:57 BIC 1069.626

Sample: 01-18-2020 HQIC 1061.064

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 1.7210 0.122 14.050 0.000 1.481 1.961

ar.L2 -0.8015 0.126 -6.374 0.000 -1.048 -0.555

ma.L1 -1.8028 0.314 -5.740 0.000 -2.418 -1.187

ma.L2 1.1785 0.320 3.682 0.000 0.551 1.806

ma.L3 -0.3739 0.169 -2.206 0.027 -0.706 -0.042

sigma2 2.571e+04 7338.779 3.504 0.000 1.13e+04 4.01e+04

===================================================================================

Ljung-Box (Q): 30.53 Jarque-Bera (JB): 18.57

Prob(Q): 0.86 Prob(JB): 0.00

Heteroskedasticity (H): 1.62 Skew: 0.90

Prob(H) (two-sided): 0.22 Kurtosis: 4.54

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.58: Miami FL Selected Model, No Sentiment
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4000
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7000

Florida VADERNonzero ARIMA order: (2, 1, 3) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.865, Test R2: 0.930
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -521.338

Date: Mon, 17 Apr 2023 AIC 1056.676

Time: 11:32:50 BIC 1073.350

Sample: 01-18-2020 HQIC 1063.361

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 1268.7429 772.909 1.642 0.101 -246.131 2783.617

ar.L1 1.7673 0.108 16.385 0.000 1.556 1.979

ar.L2 -0.8497 0.108 -7.876 0.000 -1.061 -0.638

ma.L1 -1.8055 0.166 -10.847 0.000 -2.132 -1.479

ma.L2 1.1246 0.286 3.939 0.000 0.565 1.684

ma.L3 -0.2988 0.167 -1.788 0.074 -0.626 0.029

sigma2 2.672e+04 3831.810 6.974 0.000 1.92e+04 3.42e+04

===================================================================================

Ljung-Box (Q): 37.43 Jarque-Bera (JB): 18.79

Prob(Q): 0.59 Prob(JB): 0.00

Heteroskedasticity (H): 1.34 Skew: 0.85

Prob(H) (two-sided): 0.46 Kurtosis: 4.67

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.59: Miami FL Selected Model, Mean Vader Sentiment
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Florida VADERNonzero ARIMA order: (2, 1, 3) MoodShift: 0 
 vs All Deaths (1, 3)

Training R2: 0.868, Test R2: 0.931
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -520.338

Date: Mon, 17 Apr 2023 AIC 1056.676

Time: 11:31:53 BIC 1075.732

Sample: 01-18-2020 HQIC 1064.316

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -1151.4115 4788.292 -0.240 0.810 -1.05e+04 8233.467

1 -1.413e+04 7584.490 -1.864 0.062 -2.9e+04 731.144

ar.L1 1.7533 0.131 13.350 0.000 1.496 2.011

ar.L2 -0.8338 0.130 -6.435 0.000 -1.088 -0.580

ma.L1 -1.7577 0.183 -9.596 0.000 -2.117 -1.399

ma.L2 1.0523 0.242 4.343 0.000 0.577 1.527

ma.L3 -0.2728 0.139 -1.969 0.049 -0.544 -0.001

sigma2 2.538e+04 3827.255 6.631 0.000 1.79e+04 3.29e+04

===================================================================================

Ljung-Box (Q): 29.21 Jarque-Bera (JB): 10.71

Prob(Q): 0.90 Prob(JB): 0.00

Heteroskedasticity (H): 1.43 Skew: 0.69

Prob(H) (two-sided): 0.36 Kurtosis: 4.13

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.60: Miami FL Selected Model, Selected Vader Eigenmood Components
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Tennessee VADERNonzero ARIMA order: (1, 1, 0) 
 vs All Deaths 

Training R2: 0.889, Test R2: 0.714
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -461.922

Date: Mon, 17 Apr 2023 AIC 927.843

Time: 11:32:01 BIC 932.607

Sample: 01-18-2020 HQIC 929.753

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.1521 0.105 -1.454 0.146 -0.357 0.053

sigma2 6089.2577 742.602 8.200 0.000 4633.785 7544.730

===================================================================================

Ljung-Box (Q): 31.50 Jarque-Bera (JB): 6.70

Prob(Q): 0.83 Prob(JB): 0.04

Heteroskedasticity (H): 2.13 Skew: 0.12

Prob(H) (two-sided): 0.06 Kurtosis: 4.40

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.61: Nashville TN Selected Model, No Sentiment
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Tennessee VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.893, Test R2: 0.731
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 0) Log Likelihood -455.041

Date: Mon, 17 Apr 2023 AIC 916.082

Time: 11:32:52 BIC 923.191

Sample: 01-25-2020 HQIC 918.930

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 578.1290 339.760 1.702 0.089 -87.788 1244.046

ar.L1 -0.0932 0.114 -0.814 0.416 -0.318 0.131

sigma2 5898.1265 736.928 8.004 0.000 4453.774 7342.479

===================================================================================

Ljung-Box (Q): 33.43 Jarque-Bera (JB): 5.79

Prob(Q): 0.76 Prob(JB): 0.06

Heteroskedasticity (H): 1.55 Skew: -0.03

Prob(H) (two-sided): 0.27 Kurtosis: 4.32

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.62: Nashville TN Selected Model, Mean Vader Sentiment
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Tennessee VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 1 
 vs All Deaths (1, 5)

Training R2: 0.901, Test R2: 0.715
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 1) Log Likelihood -451.908

Date: Mon, 17 Apr 2023 AIC 913.816

Time: 11:31:59 BIC 925.663

Sample: 01-25-2020 HQIC 918.563

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -2315.7670 2519.812 -0.919 0.358 -7254.508 2622.973

1 -1.005e+04 3867.092 -2.598 0.009 -1.76e+04 -2466.686

ar.L1 -0.7450 0.466 -1.599 0.110 -1.658 0.168

ma.L1 0.6501 0.521 1.248 0.212 -0.371 1.671

sigma2 5446.4605 710.362 7.667 0.000 4054.177 6838.744

===================================================================================

Ljung-Box (Q): 35.26 Jarque-Bera (JB): 6.72

Prob(Q): 0.68 Prob(JB): 0.03

Heteroskedasticity (H): 1.73 Skew: 0.20

Prob(H) (two-sided): 0.17 Kurtosis: 4.37

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.63: Nashville TN Selected Model, Selected Vader Eigenmood Components
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Louisiana VADERNonzero ARIMA order: (1, 1, 3) 
 vs All Deaths 

Training R2: 0.809, Test R2: 0.828
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 3) Log Likelihood -437.241

Date: Mon, 17 Apr 2023 AIC 884.481

Time: 11:32:07 BIC 896.392

Sample: 01-18-2020 HQIC 889.257

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.6670 0.110 6.047 0.000 0.451 0.883

ma.L1 -0.4494 16.594 -0.027 0.978 -32.973 32.074

ma.L2 -0.0059 9.141 -0.001 0.999 -17.922 17.910

ma.L3 -0.5444 9.040 -0.060 0.952 -18.263 17.174

sigma2 3144.5929 5.21e+04 0.060 0.952 -9.89e+04 1.05e+05

===================================================================================

Ljung-Box (Q): 34.02 Jarque-Bera (JB): 90.32

Prob(Q): 0.74 Prob(JB): 0.00

Heteroskedasticity (H): 0.31 Skew: 1.36

Prob(H) (two-sided): 0.00 Kurtosis: 7.43

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.64: New Orleans LA Selected Model, No Sentiment
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Louisiana VADERNonzero ARIMA order: (1, 1, 3) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.806, Test R2: 0.830
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 3) Log Likelihood -432.208

Date: Mon, 17 Apr 2023 AIC 876.415

Time: 11:32:54 BIC 890.632

Sample: 01-25-2020 HQIC 882.111

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 89.2223 240.326 0.371 0.710 -381.808 560.252

ar.L1 0.6659 0.114 5.864 0.000 0.443 0.888

ma.L1 -0.4499 0.897 -0.502 0.616 -2.208 1.308

ma.L2 -0.0074 0.496 -0.015 0.988 -0.980 0.965

ma.L3 -0.5375 0.488 -1.100 0.271 -1.495 0.420

sigma2 3189.1752 2655.542 1.201 0.230 -2015.592 8393.943

===================================================================================

Ljung-Box (Q): 34.30 Jarque-Bera (JB): 76.19

Prob(Q): 0.72 Prob(JB): 0.00

Heteroskedasticity (H): 0.33 Skew: 1.29

Prob(H) (two-sided): 0.01 Kurtosis: 7.06

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.65: New Orleans LA Selected Model, Mean Vader Sentiment
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Louisiana VADERNonzero ARIMA order: (1, 1, 3) MoodShift: 1 
 vs All Deaths (4, 7)

Training R2: 0.823, Test R2: 0.803
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 3) Log Likelihood -428.629

Date: Mon, 17 Apr 2023 AIC 871.257

Time: 11:32:05 BIC 887.843

Sample: 01-25-2020 HQIC 877.902

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 1370.5262 2059.888 0.665 0.506 -2666.780 5407.833

1 4188.0983 2117.324 1.978 0.048 38.220 8337.976

ar.L1 0.6667 0.104 6.414 0.000 0.463 0.870

ma.L1 -0.4261 3.993 -0.107 0.915 -8.253 7.401

ma.L2 0.0274 2.312 0.012 0.991 -4.504 4.558

ma.L3 -0.5999 2.419 -0.248 0.804 -5.341 4.141

sigma2 2897.1253 1.16e+04 0.250 0.803 -1.98e+04 2.56e+04

===================================================================================

Ljung-Box (Q): 26.45 Jarque-Bera (JB): 48.05

Prob(Q): 0.95 Prob(JB): 0.00

Heteroskedasticity (H): 0.34 Skew: 1.02

Prob(H) (two-sided): 0.01 Kurtosis: 6.23

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.66: New Orleans LA Selected Model, Selected Vader Eigenmood Compo-
nents
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New York VADERNonzero ARIMA order: (1, 1, 0) 
 vs All Deaths 

Training R2: 0.883, Test R2: 0.795
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -535.103

Date: Mon, 17 Apr 2023 AIC 1074.206

Time: 11:32:09 BIC 1078.970

Sample: 01-18-2020 HQIC 1076.116

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.5646 0.046 12.240 0.000 0.474 0.655

sigma2 3.739e+04 2474.208 15.113 0.000 3.25e+04 4.22e+04

===================================================================================

Ljung-Box (Q): 23.49 Jarque-Bera (JB): 315.97

Prob(Q): 0.98 Prob(JB): 0.00

Heteroskedasticity (H): 0.16 Skew: 0.70

Prob(H) (two-sided): 0.00 Kurtosis: 12.63

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.67: New York NY Selected Model, No Sentiment
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New York VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.884, Test R2: 0.810
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -534.508

Date: Mon, 17 Apr 2023 AIC 1075.015

Time: 11:32:55 BIC 1082.161

Sample: 01-18-2020 HQIC 1077.880

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 628.4477 965.023 0.651 0.515 -1262.963 2519.858

ar.L1 0.5697 0.046 12.450 0.000 0.480 0.659

sigma2 3.684e+04 2463.145 14.958 0.000 3.2e+04 4.17e+04

===================================================================================

Ljung-Box (Q): 26.01 Jarque-Bera (JB): 325.01

Prob(Q): 0.96 Prob(JB): 0.00

Heteroskedasticity (H): 0.15 Skew: 0.68

Prob(H) (two-sided): 0.00 Kurtosis: 12.78

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.68: New York NY Selected Model, Mean Vader Sentiment
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New York VADERNonzero ARIMA order: (1, 1, 0) MoodShift: 0 
 vs All Deaths (0, 5)

Training R2: 0.886, Test R2: 0.801
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 0) Log Likelihood -533.825

Date: Mon, 17 Apr 2023 AIC 1075.650

Time: 11:32:08 BIC 1085.178

Sample: 01-18-2020 HQIC 1079.470

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 2105.9504 2922.614 0.721 0.471 -3622.267 7834.168

1 -1.06e+04 1.72e+04 -0.616 0.538 -4.44e+04 2.32e+04

ar.L1 0.5772 0.056 10.291 0.000 0.467 0.687

sigma2 3.622e+04 2563.182 14.132 0.000 3.12e+04 4.12e+04

===================================================================================

Ljung-Box (Q): 26.56 Jarque-Bera (JB): 333.27

Prob(Q): 0.95 Prob(JB): 0.00

Heteroskedasticity (H): 0.15 Skew: 0.70

Prob(H) (two-sided): 0.00 Kurtosis: 12.90

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.69: New York NY Selected Model, Selected Vader Eigenmood Components
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Pennsylvania VADERNonzero ARIMA order: (2, 1, 0) 
 vs All Deaths 

Training R2: 0.933, Test R2: 0.905
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 0) Log Likelihood -505.300

Date: Mon, 17 Apr 2023 AIC 1016.600

Time: 11:32:12 BIC 1023.746

Sample: 01-18-2020 HQIC 1019.465

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.3666 0.122 3.005 0.003 0.128 0.606

ar.L2 0.1977 0.105 1.875 0.061 -0.009 0.404

sigma2 1.782e+04 2735.946 6.514 0.000 1.25e+04 2.32e+04

===================================================================================

Ljung-Box (Q): 36.17 Jarque-Bera (JB): 1.12

Prob(Q): 0.64 Prob(JB): 0.57

Heteroskedasticity (H): 0.61 Skew: -0.16

Prob(H) (two-sided): 0.20 Kurtosis: 3.48

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.70: Philadelphia PA Selected Model, No Sentiment
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Pennsylvania VADERNonzero ARIMA order: (1, 1, 2) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.935, Test R2: 0.905
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(1, 1, 2) Log Likelihood -498.113

Date: Mon, 17 Apr 2023 AIC 1006.227

Time: 11:32:57 BIC 1018.074

Sample: 01-25-2020 HQIC 1010.973

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 562.3590 676.617 0.831 0.406 -763.787 1888.505

ar.L1 0.4285 0.217 1.975 0.048 0.003 0.854

ma.L1 -0.0439 0.190 -0.231 0.817 -0.417 0.329

ma.L2 0.2340 0.135 1.736 0.083 -0.030 0.498

sigma2 1.746e+04 3062.006 5.703 0.000 1.15e+04 2.35e+04

===================================================================================

Ljung-Box (Q): 34.87 Jarque-Bera (JB): 0.11

Prob(Q): 0.70 Prob(JB): 0.95

Heteroskedasticity (H): 0.62 Skew: -0.03

Prob(H) (two-sided): 0.24 Kurtosis: 3.17

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.71: Philadelphia PA Selected Model, Mean Vader Sentiment
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Pennsylvania VADERNonzero ARIMA order: (1, 1, 2) MoodShift: 0 
 vs All Deaths (9, 10)

Training R2: 0.942, Test R2: 0.851
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 2) Log Likelihood -499.172

Date: Mon, 17 Apr 2023 AIC 1010.344

Time: 11:32:11 BIC 1024.637

Sample: 01-18-2020 HQIC 1016.075

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 8679.7619 8478.020 1.024 0.306 -7936.853 2.53e+04

1 2.747e+04 8975.402 3.061 0.002 9878.945 4.51e+04

ar.L1 0.0384 0.308 0.124 0.901 -0.566 0.642

ma.L1 0.4330 0.282 1.537 0.124 -0.119 0.985

ma.L2 0.4257 0.136 3.124 0.002 0.159 0.693

sigma2 1.524e+04 2363.803 6.449 0.000 1.06e+04 1.99e+04

===================================================================================

Ljung-Box (Q): 35.63 Jarque-Bera (JB): 1.10

Prob(Q): 0.67 Prob(JB): 0.58

Heteroskedasticity (H): 0.85 Skew: 0.16

Prob(H) (two-sided): 0.67 Kurtosis: 3.48

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.72: Philadelphia PA Selected Model, Selected Vader Eigenmood Compo-
nents
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California VADERNonzero ARIMA order: (2, 1, 3) 
 vs All Deaths 

Training R2: 0.974, Test R2: 0.902
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -555.144

Date: Mon, 17 Apr 2023 AIC 1122.289

Time: 11:32:16 BIC 1136.581

Sample: 01-18-2020 HQIC 1128.019

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.8312 0.236 3.524 0.000 0.369 1.294

ar.L2 -0.4065 0.208 -1.950 0.051 -0.815 0.002

ma.L1 -0.3849 0.582 -0.662 0.508 -1.525 0.755

ma.L2 0.7246 1.338 0.542 0.588 -1.897 3.346

ma.L3 0.3606 0.611 0.590 0.555 -0.838 1.559

sigma2 6.36e+04 9.43e+04 0.675 0.500 -1.21e+05 2.48e+05

===================================================================================

Ljung-Box (Q): 29.08 Jarque-Bera (JB): 6.74

Prob(Q): 0.90 Prob(JB): 0.03

Heteroskedasticity (H): 0.66 Skew: 0.06

Prob(H) (two-sided): 0.29 Kurtosis: 4.42

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.73: San Francisco CA SF Selected Model, No Sentiment
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California VADERNonzero ARIMA order: (3, 1, 3) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.975, Test R2: 0.916
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -553.631

Date: Mon, 17 Apr 2023 AIC 1123.262

Time: 11:32:59 BIC 1142.318

Sample: 01-18-2020 HQIC 1130.902

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -1090.2997 543.431 -2.006 0.045 -2155.404 -25.195

ar.L1 1.0303 0.470 2.191 0.028 0.109 1.952

ar.L2 -0.6506 0.509 -1.279 0.201 -1.648 0.347

ar.L3 0.2028 0.239 0.847 0.397 -0.266 0.672

ma.L1 -0.5815 0.604 -0.963 0.336 -1.766 0.603

ma.L2 0.9070 0.950 0.955 0.340 -0.955 2.769

ma.L3 0.1210 0.396 0.306 0.760 -0.656 0.898

sigma2 5.278e+04 4.07e+04 1.297 0.195 -2.7e+04 1.33e+05

===================================================================================

Ljung-Box (Q): 28.77 Jarque-Bera (JB): 8.01

Prob(Q): 0.91 Prob(JB): 0.02

Heteroskedasticity (H): 0.40 Skew: 0.01

Prob(H) (two-sided): 0.02 Kurtosis: 4.55

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.74: San Francisco CA SF Selected Model, Mean Vader Sentiment
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California VADERNonzero ARIMA order: (1, 1, 2) MoodShift: 0 
 vs All Deaths (2, 7)

Training R2: 0.971, Test R2: 0.875
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 2) Log Likelihood -556.881

Date: Mon, 17 Apr 2023 AIC 1125.761

Time: 11:32:14 BIC 1140.053

Sample: 01-18-2020 HQIC 1131.491

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 1.551e+04 5328.717 2.911 0.004 5066.116 2.6e+04

1 1.757e+04 1e+04 1.749 0.080 -2114.593 3.73e+04

ar.L1 0.6748 0.100 6.731 0.000 0.478 0.871

ma.L1 -0.0583 0.139 -0.420 0.674 -0.330 0.214

ma.L2 0.1990 0.150 1.331 0.183 -0.094 0.492

sigma2 6.169e+04 7661.369 8.052 0.000 4.67e+04 7.67e+04

===================================================================================

Ljung-Box (Q): 33.58 Jarque-Bera (JB): 52.12

Prob(Q): 0.75 Prob(JB): 0.00

Heteroskedasticity (H): 0.94 Skew: -0.77

Prob(H) (two-sided): 0.87 Kurtosis: 6.64

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.75: San Francisco CA SF Selected Model, Selected Vader Eigenmood Com-
ponents
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Washington VADERNonzero ARIMA order: (3, 1, 3) 
 vs All Deaths 

Training R2: 0.531, Test R2: 0.632
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(3, 1, 3) Log Likelihood -443.014

Date: Mon, 17 Apr 2023 AIC 900.028

Time: 11:32:21 BIC 916.703

Sample: 01-18-2020 HQIC 906.714

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.4139 0.445 -0.930 0.353 -1.286 0.459

ar.L2 -0.1897 0.391 -0.486 0.627 -0.955 0.576

ar.L3 -0.4862 0.307 -1.581 0.114 -1.089 0.116

ma.L1 0.1485 4.396 0.034 0.973 -8.467 8.764

ma.L2 -0.1680 3.489 -0.048 0.962 -7.007 6.671

ma.L3 0.6819 2.921 0.233 0.815 -5.042 6.406

sigma2 3663.6171 1.54e+04 0.237 0.812 -2.66e+04 3.39e+04

===================================================================================

Ljung-Box (Q): 14.86 Jarque-Bera (JB): 79.38

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 2.80 Skew: 0.89

Prob(H) (two-sided): 0.01 Kurtosis: 7.54

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.76: Seattle WA Selected Model, No Sentiment
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Washington VADERNonzero ARIMA order: (2, 1, 3) MoodShift: 1 
 vs All Deaths ['mean']

Training R2: 0.510, Test R2: 0.624
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 80

Model: ARIMA(2, 1, 3) Log Likelihood -439.417

Date: Mon, 17 Apr 2023 AIC 892.834

Time: 11:33:02 BIC 909.420

Sample: 01-25-2020 HQIC 899.479

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean -178.0691 268.987 -0.662 0.508 -705.274 349.136

ar.L1 0.2675 0.397 0.674 0.500 -0.510 1.045

ar.L2 -0.7443 0.385 -1.934 0.053 -1.498 0.010

ma.L1 -0.6119 0.455 -1.346 0.178 -1.503 0.279

ma.L2 0.7260 0.412 1.762 0.078 -0.082 1.534

ma.L3 -0.0575 0.207 -0.278 0.781 -0.463 0.348

sigma2 3943.0305 435.771 9.048 0.000 3088.935 4797.126

===================================================================================

Ljung-Box (Q): 16.22 Jarque-Bera (JB): 135.02

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 3.00 Skew: 1.19

Prob(H) (two-sided): 0.01 Kurtosis: 8.94

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.77: Seattle WA Selected Model, Mean Vader Sentiment
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Washington VADERNonzero ARIMA order: (2, 1, 3) MoodShift: 0 
 vs All Deaths (3, 5)

Training R2: 0.518, Test R2: 0.604
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(2, 1, 3) Log Likelihood -443.951

Date: Mon, 17 Apr 2023 AIC 903.902

Time: 11:32:19 BIC 922.959

Sample: 01-18-2020 HQIC 911.543

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -1017.6282 5280.235 -0.193 0.847 -1.14e+04 9331.441

1 4635.9759 5723.653 0.810 0.418 -6582.178 1.59e+04

ar.L1 0.3626 0.347 1.045 0.296 -0.318 1.043

ar.L2 -0.5400 0.322 -1.679 0.093 -1.170 0.090

ma.L1 -0.7036 0.401 -1.755 0.079 -1.489 0.082

ma.L2 0.5379 0.437 1.231 0.218 -0.318 1.394

ma.L3 0.0821 0.166 0.495 0.620 -0.243 0.407

sigma2 3844.1461 499.531 7.696 0.000 2865.083 4823.209

===================================================================================

Ljung-Box (Q): 20.17 Jarque-Bera (JB): 106.58

Prob(Q): 1.00 Prob(JB): 0.00

Heteroskedasticity (H): 3.07 Skew: 1.10

Prob(H) (two-sided): 0.00 Kurtosis: 8.21

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.78: Seattle WA Selected Model, Selected Vader Eigenmood Components
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District of Columbia VADERNonzero ARIMA order: (1, 1, 1) 
 vs All Deaths 

Training R2: 0.594, Test R2: 0.253
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 1) Log Likelihood -341.771

Date: Mon, 17 Apr 2023 AIC 689.542

Time: 11:32:24 BIC 696.688

Sample: 01-18-2020 HQIC 692.407

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 -0.0658 0.515 -0.128 0.898 -1.074 0.943

ma.L1 -0.1535 0.480 -0.320 0.749 -1.094 0.787

sigma2 300.6063 53.616 5.607 0.000 195.520 405.692

===================================================================================

Ljung-Box (Q): 31.30 Jarque-Bera (JB): 4.81

Prob(Q): 0.84 Prob(JB): 0.09

Heteroskedasticity (H): 0.76 Skew: 0.59

Prob(H) (two-sided): 0.49 Kurtosis: 2.74

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.79: Washington DC Selected Model, No Sentiment
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District of Columbia VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 0 
 vs All Deaths ['mean']

Training R2: 0.594, Test R2: 0.253
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 1) Log Likelihood -341.777

Date: Mon, 17 Apr 2023 AIC 691.554

Time: 11:33:03 BIC 701.082

Sample: 01-18-2020 HQIC 695.374

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

mean 1.4784 93.598 0.016 0.987 -181.970 184.927

ar.L1 -0.0630 0.540 -0.117 0.907 -1.121 0.995

ma.L1 -0.1559 0.504 -0.309 0.757 -1.143 0.832

sigma2 300.6409 53.746 5.594 0.000 195.301 405.981

===================================================================================

Ljung-Box (Q): 31.34 Jarque-Bera (JB): 4.82

Prob(Q): 0.83 Prob(JB): 0.09

Heteroskedasticity (H): 0.76 Skew: 0.59

Prob(H) (two-sided): 0.49 Kurtosis: 2.73

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.80: Washington DC Selected Model, Mean Vader Sentiment
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District of Columbia VADERNonzero ARIMA order: (1, 1, 1) MoodShift: 0 
 vs All Deaths (3, 6)

Training R2: 0.600, Test R2: 0.222
Observed Training
Observed Test
Training One-step-ahead forecast
Test One-step-ahead forecast

SARIMAX Results

==============================================================================

Dep. Variable: All Cause No. Observations: 81

Model: ARIMA(1, 1, 1) Log Likelihood -341.231

Date: Mon, 17 Apr 2023 AIC 692.462

Time: 11:32:23 BIC 704.372

Sample: 01-18-2020 HQIC 697.237

- 07-31-2021

Covariance Type: opg

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

0 -722.6047 1197.304 -0.604 0.546 -3069.277 1624.068

1 688.4540 1432.395 0.481 0.631 -2118.988 3495.896

ar.L1 -0.0614 0.591 -0.104 0.917 -1.219 1.096

ma.L1 -0.1565 0.538 -0.291 0.771 -1.211 0.898

sigma2 296.5775 53.369 5.557 0.000 191.977 401.178

===================================================================================

Ljung-Box (Q): 29.98 Jarque-Bera (JB): 4.27

Prob(Q): 0.88 Prob(JB): 0.12

Heteroskedasticity (H): 0.75 Skew: 0.56

Prob(H) (two-sided): 0.46 Kurtosis: 2.80

===================================================================================

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure A.81: Washington DC Selected Model, Selected Vader Eigenmood Compo-
nents
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Supplementary Methods 
 

S1. Notes on “misclassifications” for Country Classification from sex-searches  

Some of the countries identified as Christian celebrate the nativity according to Julian calendar, with 

Christmas falling on January 7th or January 14th of the Gregorian calendar. Such is the case of the Christian 

countries: Belarus, Bosnia and Herzegovina, Georgia, Macedonia, Moldova, Montenegro, Serbia, Slovenia, 

Russia and Ukraine. Neither of these countries has a national holiday on December 25th nor shows an increase in 

sex-searches around December 25th. Had these countries been labeled as “Other”, the percentage of countries 

identified as Christian for which we see a significant increase (z-score>1) in sex-searches would have been of 

91%. In addition to not celebrating the Christmas on December 25th, some of these countries also have a sizeable 

percentage of population that self-identifies as Muslim. Such is the case of Montenegro (29%), Macedonia (39%) 

and Bosnia and Herzegovina (45%). 

From the 30 Muslim countries, Pakistan was classified as Christian and 6 other countries didn’t make the 

threshold. Pakistan is highly related to Christmas, probably due to the fact that there is a public holiday on 25th 

December, which coincidentally celebrates the birthday of Muhammad Ali Jinnah, founder of Pakistan. The other 

six countries also correspond to the ones for which the quality of the sex-search data was the poorest. 

Keeping in mind that we were looking for countries that culturally relate to a Christian or Muslim 

religious background, all countries that didn’t make the threshold to be labelled as either are classified as Other. 

Unsurprisingly, there are many countries who are originally labelled as Other and end up classified as either 

Christian or Muslim. European countries, such as the Czech Republic, Estonia and the Netherlands, whose 

majority does not identify as religious are classified as Christian, most likely due to the fact that these populations 

celebrate the holiday as well, even if secularly. 

 

S2. Mean Sentiment Correlations with Sex-Search Volume 

As shown in Supplementary Table S9A, there is a highly significant, moderate fit (R2 > 0.1) across all 

countries, demonstrating a significant correlation between volume of sex-searches and mean sentiment as 

measured by the three ANEW dimensions.  The coefficient of determination is generally stronger for Christian 

countries than Muslim Countries. Similarly to the GT data, the multiple linear regression models can be improved 

by averaging sentiment and sex-search volume across years using the 52-week Christmas centered calendar for 

the USA, Australia, Brazil, Argentina, and Chile, , and the 50-week Eid-al-Fitr centered calendar for Indonesia 

and Turkey. This smooths out extraordinary events that are picked up by sentiment analysis. The results of this 

centered-data regression are presented in Supplementary Table S9B. The fit is highly significant for all countries, 

and improves for all countries, (R2 > 0.26). In every case, valence is yields a positive coefficient, while 

dominance a negative coefficient; so the happier but less dominant the sentiment expressed by a country, the more 

sex-searches tend to increase. As far as significance is concerned, t-tests reveal that the valence dimension is most 

often significant, followed by dominance, with arousal the least likely to be a significant factor. 

Interestingly, as shown in Supplementary Table S10, when we computed the ordinary least squares 

estimate of a standard linear regression on each ANEW dimension independently, we obtained very poor (but 

significant) goodness of fit, as measured by R2. Therefore, the mean value of each ANEW dimension on its own is 

a poor predictor of sex-search volume in all countries (with few exceptions such as Arousal in Brazil). We can 

thus say that mean sentiment correlates with sex-search volume (Supplementary Table S9) but the timeseries of 

mean weekly values of each ANEW dimension do not yield a nuanced characterization of sentiment correlated 

with interest in sex. 

 

S3. Singular Value Decomposition 

Singular value decomposition (SVD) is a method by which a matrix can be linearly decomposed into 

ordered orthonormal components, each explaining as much of the linear variation as possible, after the 
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components that came before it.  The SVD of any m × n matrix M of real or complex numbers can represented as 

follows in Equation 2: 

M=USVT 

Where U is an m× n matrix with orthonormal columns, V is an n× n matrix with orthonormal columns, and S is an 

n× n diagonal matrix. The columns of U and V are referred to as the left and right singular vectors of M 

respectively. These singular vectors are eigenvectors of the matrices MMT and MTM respectively. The diagonal 

entries of S, called the singular values of M, are the square roots of the eigenvalues of the matrices MMT and 

MTM. By convention, the singular values are ordered from greatest to least. The columns of U form a basis for the 

column space of M and the columns of V form a basis for the row space of M. The right singular vectors are also 

known in principal component analysis (PCA) as the loadings of the original variables (bins) onto the new 

coordinate system. The relative variance explained by each component can then be calculated for each component 

k as s�
�/∑ �s�

���  where 	
 is the kth diagonal component of S. It is important to note that matrices can be 

reconstructed with a lower rank by setting elements of S to zero. Typically only the top l singular values are kept 

in order to reduce noise and create the closest rank-l approximation of the original matrix19. 

 

S4. Data Reconstruction 

It can be clearly seen from the data reconstruction averages in Extended Data Fig. 8 and Supplementary 

Fig. S6, that the distribution of sentiment shifts towards higher bins during holidays, represented by redder high 

bins and greener low bins on holidays. Christmas stands out in the USA (US), Australia (AU), and Brazil (BR). 

Eid-al-Fitr stands out in both Turkey (TR) and Indonesia (ID), and in Turkey the beginning of Ramadan is 

emphasized a few weeks before. The centering performed only looks at weeks within the surrounding cultural 

year, such that Christmas is week 26 of a 52 week year (starting with a first week 1), while Eid-al-Fitr is week 25 

of a 50 week year. Other weeks are averaged in this range according to their displacement from the holiday week 

(e.g., a week two weeks before the Christmas week in 2012 is averaged with weeks two weeks before Christmas 

in all other years). This obscures the emphasis on holidays using another calendar, such that Indonesia also has a 

strong signal on Christmas, but these signals are averaged over multiple weeks when the calendars are misaligned. 

The heatmaps for all countries centered on all holidays are included in Supplementary Fig. S6. 

 

S5. Eigenmood Selection and Characterization 

The mean value of a holiday’s projection on various components for different countries are shown in 

Supplementary Figures S2 and S3 for Christmas and Eid-al-Fitr respectively, with the two components selected 

for each country highlighted in red. As described, since the first component corresponds to the basic distribution 

of sentiment in the language and overwhelms projections because of how much it explains, and the last few 

components are mostly noise, we only look at the components explaining 95% of the variance after the removal of 

the first. The second component usually describes a variation over the whole time series of out data, thus it tends 

to have a large standard deviation. 

To better understand how the selected components describe the mood, we define an interpretable 

linguistic variable29. The linguistic variable can take five fuzzy values, ”low”, ”medium-low”, ”medium”, 

”medium-high”, and ”high” with membership functions defined over the 25 bins of the original twitter sentiment 

distribution. These membership functions are shown in Supplementary Fig. S4 and were chosen such that each 

original bin’s membership in all values sums to one, and the area under each membership function is the same. 

The response of the linguistic variable to the holiday in each selected eigenmood is shown in 

Supplementary Figure S5 for the selected relevant holiday for each country. These responses were calculated by 

reconstructing the distribution bins with only the eigenmood selected for the country and holiday, multiplying the 

reconstructed bin value by its memberships, and summing over all bins for each linguistic value. These responses 

can be interpreted as the change from the language’s base sentiment distribution on the holiday contributed by the 

selected eigenmood. The response characterized by the Christmas eigenmood in the USA is an increase in 

medium-high happiness, with decreases in other levels of happiness, low and medium happiness in particular. 
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How mood changes on a major holiday varies between countries but generally we see that the selected eigenmood 

describes increases medium-high or high valence on the holidays, with decreases in low, medium-low, and 

medium valence, as well as lower or more moderate dominance and arousal. The behavior of the dominance 

mood dimension in the week of Eid-al-Fitr in Indonesia highlights the importance of the more nuanced mood 

measurement that eigenmoods afford. While the ANEW mean value measurement above suggested a dominance 

decrease towards a less “in-control” mood, what we have at Eid-al-Fitr is a shift away from the extremes to a 

collective mood state that is neither very “in-control” nor very “controlled” – coherent with a happier and calmer 

mood scenario typically found in these holidays for all countries. In other words, during most weeks of the year, 

there is increased bimodal dominance activity in higher and lower bins (simultaneously high “in-control” and 

“controlled”, respectively), but in the week of Eid-al-Fitr, the dominance mood converges to a mid-level 

dominance (Figure 4 column A, row 3, dominance panel). 

 

S6. Eigenmood correlations to Sex-search volume in target Holidays  
As a measure of mood similarity between weeks in a space defined by a selected eigenmood, we use the 

dot product between their coordinates in this space20. This measure increases between weeks with similar 

(positive or negative) projections onto the eigenweeks forming the space, becomes negative with opposite 

projections, and decreases in magnitude with weeks that are not correlated with the eigenweeks and are thus 

projected near the origin. Due to the properties, it is important to select an eigenmood that strongly corresponds to 

a week or weeks of interest, by containing high-magnitude values in the corresponding eigenbins. The similarity 

can then be expressed as w · c where w and c are weeks projected into the eigenmood, which is equivalently the 

vector of corresponding weighted eigenbin values. In comparison between weeks and a holiday averaged over 

years, these vectors are the element-wise averages of the week’s projection coordinates over the years. We report 

results with these averages, but these results are robust to yearly, non-averaged data, as well as different selection 

criteria for the eigenmoods (for example, allowing a greater number of components). The projection spaces for 

each eigenmood are shown in Supplementary Fig. S7. 

In general, weeks close in proximity in time will be more similar in eigenmood, but certain weeks, often 

other holidays, more distant in time can have a high similarity in eigenmood to the selected holiday. In the USA, 

for example, the weeks closest in eigenmood to Christmas are, in order, the week of New Year’s Day, the other 

weeks of December, and the weeks following July 4th, Father’s Day, and Memorial Day.  National Day in Chile 

is similar in eigenmood and sex searches to Chile’s Christmas. New Year’s Day and Christmas in Indonesia are 

similar to Eid-al-Fitr’s eigenmood and high sex searches. In Turkey, weeks in late June, early July, and the week 

following Eid-al-Fitr are the most similar in terms of eigenmood and sex search volume to Eid-al-Fitr. 

To investigate the relationship between a week’s similarity in eigenmood to a holiday and the number of 

sex searches, we perform an ordinary least squares regression between sex searches as the dependent variable, and 

similarity as the independent variable.  Displayed in Figure 4 and reported in Extended Data Table 2 are the 

results of this regression as well as Brownian distance correlation statistics, a nonlinear measure of correlation30. 

The plots of all linear regressions are included in Supplementary Fig. S7. 

There is a fairly strong correspondence (R2 ≥ .380) between similarity in eigenmood to Christmas and sex 

searches in the C countries: the US, Brazil, Australia, Argentina, and Chile.  The southern hemisphere Christian 

countries Brazil, Argentina, and Chile also have a noticeable correlation with Eid-al-Fitr, however, the slope of 

the regression is negative, implying that the less like the mood during the winter week of Eid-al-Fitr, the more sex 

searches are conducted. 

In Muslim countries Turkey and Indonesia, we were limited by having less Twitter data and fewer tweets 

that match. However, there are significant correlations between similarity to Eid-al-Fitr and increased sex 

searches. The linear correlation is reduced compared to Christmas in Christian countries, since over time the 

weeks of Ramadan become more similar in eigenmood to Eid-al- Fitr, the festival at Ramadan’s conclusion, while 

the cultural pressure is one of abstinence, such that these weeks have unusually low sex searches. In the case of 

Turkey in particular, the holiday of Eid-al-Adha, or the Sacrifice Feast, also has high sex searches, but is different 
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in eigenmood from Eid-al-Fitr. The positive correlation between sex searches and Christmas eigenmood in 

Indonesia is likely caused by the sizable Christian population living there and effects due to summer. 

Turkey is an interesting case, since it has a very strong negative correlation between sex searches and 

similarity to Christmas although the response to Eid-al-Fitr is smaller. In part, this may be due to limitations in 

our data gathering and method application, since our ANEW is only available in English, Spanish, and 

Portuguese. However, we still have a good number of tweets from Turkey, so we look more closely at its 

eigenmood. The projection of all weeks into its eigenmoods for Christmas and Eid-al-Fitr is shown in 

Supplementary Fig. S7, which happen to be same in this case. The regressions between sex searches and the 

similarity of averaged weeks to Christmas and Eid-al-Fitr are shown in Supplementary Fig. S7. The mood 

associated with Eid is also associated with Ramadan, which emphasizes abstinence. During the weeks of 

Ramadan, there are much fewer sex searches than usual, although the weeks are not too far different in mood. In 

addition, there is a separate holiday, Eid-al-Adha, that is associated with a second peak in sex searches, but with a 

different mood. Perhaps due to Turkey’s small Christian population and winter timing, Christmas and weeks like 

it in eigenmood have low sex searches and averaging over years decreases the effects of holiday traditions (like 

Eid-al-Fitr) due to misaligned calendars. 
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Supplementary Figures 
 

USA 

 
Fig. S1A. GT query [sex] results for the USA. The weeks containing Thanksgiving day, Christmas and the 4th of 

July are highlighted in blue, red and grey, respectively. 

 
France 

 
Fig. S1B. GT query [sex] results for France. The weeks containing Easter Sunday, July 14th and Christmas are 
highlighted in purple, grey and red, respectively. 
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USA 

Fig. S2A. GT queries for “the”, “on” and “and”, in the USA. The weeks containing Thanksgiving day, 

Christmas and the 4th of July are highlighted in blue, red and grey, respectively. 

 

France 

 

Fig. S2B. GT queries for “le”, “sur” and “et”, in France. The weeks containing Easter Sunday, July 14th and 

Christmas are highlighted in purple, grey and red, respectively. 
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NH: Sex searches vs. Monthly Birth Rate 

 

 

SH: Sex searches vs. Monthly Birth Rate 

 

 

Fig. S3. Monthly birth data shifted by nine months (blue shaded area, top and right axis) and weekly 

averaged Google Trends results for “sex-searches” (black line, bottom and left axis) plotted for:  

A) All Western Northern countries for which both birth and GT data exist (Austria, Canada, Denmark, 

Finland, France, Germany, Italy, Lithuania, Malta, Netherlands, Poland, Portugal, Spain, Sweden and 

United States of America), also represented in Fig. 1 in the main paper. Births in September are higher 

than the yearly average in all countries but Lithuania and Sweden, with an average variation of 6%). 

 

B) All Southern countries for which both birth and GT data exist (Australia, New Zealand, Chile and 

South Africa). Births in September are higher than yearly average in all countries (average variation 

5.5%, with the difference being as high at 10% in South Africa and New Zealand.) 

 

Births were shifted nine months to match probable conception month. The red line marks Christmas 
week. 
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Sex searches by hemisphere classification 

 

 
 

Fig. S4A. Averaged sex-searches for Northern and Southern countries. R2 is 0.54 with a p-value of 
2E-41. The weeks containing Ramadan and Christmas Day are highlighted in green and red, respectively. 

 

 
Sex searches by cultural classification 

 

 
Fig. S4B. Averaged sex-searches for all Christian and Muslim countries. R2 is 0.19 with a p-value of 

3E-26. The weeks containing Ramadan and Christmas Day are highlighted in green and red, respectively. 
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Fig. S5A. Averaged Christmas-centered results for the Christian (red), Muslim (green) and Other (dark 

blue) country sets. The red vertical bar represents the Christmas week, centered on week 26. 

 
Fig. S5B. Averaged Eid-al-Fitr-centered results for the Christian (red), Muslim (green) and Other 

(dark blue) country sets. The darker green vertical bar represents the Eid-al-Fitr week, centered on week 

25. The light green area represents the remaining Ramadan weeks. 

 
 

Fig. 5C. Averaged December Solstice-centered results for the Northern Hemisphere (blue) and 

Southern Hemisphere (red) country sets. Light blue vertical bar represents the week of the December-

Solstice. 

 
 

Fig. S5D. Averaged June Solstice-centered results for the Northern Hemisphere (blue) and Southern 

Hemisphere (red) country sets. Light pink vertical bar represents the week of the June-Solstice. 
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Fig. S6A. Averaged monthly births (for all available years) for Turkey and Egypt. In some Muslim 

countries, as in these examples, birth records are artificially at their lowest in December (in the case of 
Turkey, 22% below average) and peak in January (in the case of Turkey, 202% above average) , as 

parents prefer to have their children registered in the New Year. 

 

Turkey 

 
 

Fig. S6B Normalized monthly birth data (shaded blue, top and right axis) and Google Trends results of 

“sex”-searches (black line, left and bottom axis) for Turkey.  Births were normalized so that each year’s 

maximum becomes 100 and shifted nine months to match with probable conception month. The red line 

represents Christmas week, which was very close to Eid-al-Ada in 2005, 2006 and 2007.  (It is obvious 

that the major registration peak happens in January of each year and it’s not matched by an increase in 

sex-searches).  
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A) Russian and Serbian Orthodox Countries 

 
 

B) South Korea

 

 

Fig. S7. Normalized monthly birth data (shaded blue, top and right axis) and Google Trends results of 

”sex”-searches (black line, right and bottom axis) for  

A) All Northern and Christian countries for which both birth and GT data exist that Celebrate Christmas 

on January 6th (Macedonia, Moldova, Serbia, Slovenia, Russia and Ukraine).  

B) South Korea, as an example of a Northern Other country, for which both birth and GT data exists. 

 

Births were shifted nine months to match with probable conception month. Vertical lines represent 

Christmas week with red marking the week of December 25th and orange marking the week of January 

6th.  
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Fig. S8. Total number of weekly geolocated tweets matching ANEW for countries selected for 

Eigenmood analysis. 
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Fig. S9. Reconstructed valence heatmaps for multiple countries, centered on cultural holidays. 

Probability distributions of tweet valence were arranged in 25 bins (y-axis) each week (x-axis) for each 

country. Years were centered on a chosen holiday, marked by a central, vertical line. These data were 

averaged over all years, so each cell contains the average probability of a tweet’s valence falling into a 

bin during a week. The data were reconstructed by removing the first component and components 

explaining less than 95% of the remaining variance. 

  



Appendix B: Chapter 3 Appendix 219

 
 

Fig. S10. ANEW component response to Christmas by country. Selected components highlighted in 

red. 
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Fig. S11. ANEW component response to Eid-al-Fitr by country. Selected components highlighted in 

red. 
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Fig. S12.  Linguistic Variable value membership functions over 25 bins. The original bins belong to 

the values of the linguistic variable (“low”, “medium-low”, “medium”, “medium-high”, “high”) to 

different extents. The membership functions are mappings from the original bins to a value between 0 and 

1, representing membership fuzzy value of that the linguistic variable can take. The membership 

functions were chosen such that the sum of a bin’s membership across all functions is 1, and the area 

under each membership function’s curve is equal. 
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Fig. S13. Linguistic Variable Response to relevant holidays selected for each country, as an aid to 

interpret the effect of chosen eigendays during the holidays. A positive value (in red) means that the 

members of that value of the linguistic variable had increased weight on the holiday, while negative (in 

green) means they had decreased weight on the holiday. 

 

 

 

 

 

 

 
Fig. S14. Average year reconstructed heatmaps. Reconstructed valence heatmaps for each country’s average 
year centered on different holidays. Distributions over time are reconstructed from the components that explain 

95% of the variance in the data after the first component is removed. Green represents a decrease in the bin 
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compared to the full distribution, red represents an increase, and yellow represents no change. Center dotted line 

is the holiday of interest. Left: Christmas, Right: Eid-al-Fitr. Countries top to bottom: USA, Australia, Brazil, 

Argentina, Chile,  Indonesia, Turkey 

 

Arousal 
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Dominance 
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Valence 
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Fig. S15. Eigenmood projections and regressions. Projections show all yearly data points, projected into the 

space formed by the selected eigenweeks; regressions show the average year’s sex searches and similarity to the 

holiday center. 

 

USA Christmas 
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USA Eid-al-Fitr 
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Australia Christmas 
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Australia Eid-al-Fitr 
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Brazil Christmas 

 

 
 
 

 

Brazil Eid-al-Fitr 
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Argentina Christmas 
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Argentina Eid-al-Fitr 
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Chile Christmas 
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Chile Eid-al-Fitr 
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Indonesia Christmas 
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Indonesia Eid-al-Fitr 
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Turkey Christmas 
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Turkey Eid-al-Fitr 
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Supplementary Tables 

 
Table S1. Searches for “sex” in select countries. Search queries for “sex” are issued in select countries, 
representing sexual interest in different cultures, hemispheres, and languages. Google Trends ™ allows 

the retrieval of search volume time series for multiple search terms. We downloaded GT data for 2 search 

queries: (1) for the term “sex” and (2) for its translation in the local language as detailed in 

Supplementary Methods. Table S1 shows the 25 countries and languages that retrieved a sufficiently 
significant search volume in the local language to support our analysis. From left to right, columns show 

the: “Countries” for which the analysis was performed; “Search term” in GT; the “Top 5 words associated 

with the search term”, provided and ranked by Google Trends; the “Search Volume Ratio”, calculated as 
the number of searches for “sex” divided by the number of searches for the corresponding translation; and 

the “Correlation between the two time series (“sex” and the translated word). 

The English word ”sex” is either more searched for than the corresponding word in the local language 
(blue to red in the 4th column) or there is a strong correlation between the search terms (red in the 5th 

column). This is consistent with the fact that the top 5 broad searches most associated with “sex” returned 

by GT refer to interest in sexual content and pornography in every country (3rd column) and that sexual 

materials and pornography are widely available in English. The two exceptions are Russia and Israel and 
neither of these countries is relevant to our analysis. 
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Table S2. Countries analyzed and categorized according to religion and geographical location 

(hemisphere) The 1st column shows the international country code, the 2nd columns shows the Country 

name; the third column (Week) shows the first week for which we could find stable GTTM data. A country 

Country
Search 

Term
Top 5 Words associated with search term

Search 

volume ratio
Correlation

sex sex free, sex videos, porn sex, porn, video sex

sexo videos, sexo videos, sexo gratis, videos de sexo, porno 0.27 0.81

Australia sex free sex, porn sex, porn, sex stories, sex videos

sex videos sex, sexo, videos, sex video, sex shop

sexo videos sexo, videos, videos de sexo, sexo video, sexo gratis 0.17 0.71

sex porno, sex porno, sex free, sex video, sex bg

секс
секс порно (sex porn), порно (porn), секс игри (sex game),

секс клипове (sex videos), клипове (videos)
5.11 -0.08

sex sex free, sex videos, video sex, sex porn, sexo 

sexo videos, sexo videos, sexo gratis, videos de sexo, porno 0.23 0.81

sex sex free, sex arab, sex tube, sex movies, hot sex 

جنس
سكس  (sex), سكس  جنس  (sex sex), اف��لام  جنس  (sex movies), اف��لام

(sex stories)  قص�ص  جنس ,(films)
8.04 0.83

سكس
سكس  سكس  (sex sex), اف��لام  سكس  (sex videos), اف��لام, (films), صور

(photo)  صور  سكس ,(picture)
1.15 -0.56

sex sex video, sex free, free, porn sex, porn

sexe video sexe, video, sexe gratuit, sexe amateur, amateur 0.98 0.82

Germany sex sex free, video sex, sex videos, porn, sex porn 

sex sex free, video sex, sex videos, porn, sex porn

σεξ
σεξ βιντεο (sex video), βιντεο (video), σεξ πορνο (sex porn),

πορνο (porn), ιστοριες σεξ (sex stories)
15.60 0.43

India sex indian sex, sex videos, free sex, sex stories, hot sex

sex cerita sex, cerita, video sex, video, foto sex 

seks cerita (story), cerita seks, video seks, video, foto seks 7.18 0.20

sex sex free, , sex video, sex porn, porn 

סקס
, , (free sex)  סקס  חינם ,(sex videos)  סרטי   סקס ,(sex)  סקס  

(free sex movies)  סרטי   סקס  חינם
0.72 0.24

sex video, sex video, free sex, porno, porno sex 

sesso video sesso, video, porno, sesso porno, sesso gratis 1.22 0.54

sex sex xxx, xxx, sex, sex, sex

セックス
セックス動画 (sex video), セックス画像 (sex image),

エロ (hello), 無料セックス (free sex)
1.70 -0.30

New Zealand sex sex free, porn, sex porn, sex stories, sex videos

sex free sex, videos sex, porn sex, porn, sex video 

sexo videos sexo, videos, videos de sexo, sexo gratis, sexo filmes 0.52 0.85

sex sex video, sex free, porno, porno sex, porn sex

секс
порно секс (porno sex), порно (porn), видео секс (sex

video), фото секс (photo sex), онлайн секс (online sex)
0.61 -0.48

South Africa sex porn sex, porn, free sex, sex videos, sex pics

sex sex free, videos, videos sex, sex porn, porn

sexo sexo gratis, videos, videos sexo, videos de sexo, porno 0.46 0.68

Sweden sex free sex, porn, sex porn, sex video, sex tube 

sex sex sex, porno sex, video sex, video, porno 

جنس
,(films)  اف��لام ,(sex movies) ,اف��لام  جنس ,(arabic sex)  جنس  عربي

(sex stories)  قص�ص  جنس ,(sex)  سكس
32.74 0.62

سكس
سكس  سكس  (sex), سكس  عربي  (sex arabic), اف��لام  (films), اف��لام  سكس

(sex stories)  قص�ص  سكس ,(sex videos)
19.32 0.71

sex porno sex, porno, sex izle, sex hikayeleri, porn

seks
porno seks, porno, seks hikayeleri (sex stories), seks izle

(watch sex), sex
3.29 0.92

UK sex free sex, sex porn, porn, sex videos, sex tape

USA sex free sex, sex videos, sex porn, porn, video sex

Vietnam sex
phim (movies), phim sex (porn movies), truyen sex (manga

sex), truyen (manga), anh sex (he sex)

Worldwide sex sex free, free, sex videos, sex porn, porn

Argentina

Brazil

Bulgaria

Chile

Egypt

France

Greece

Indonesia

Tunisia

Turkey

Israel

Italy

Japan

Portugal

Russia

Spain
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was considered “culturally Christian” when at least half of its population identified as Christian (Catholic, 

Protestant, Orthodox, or other) according to [13]. A country was considered “culturally Muslim” when at 

least half of its population identified as Muslim according to [14]. A country was labeled as “Other” when 
the majority of its population didn’t identify as either Christian or Muslim. The 4th column, “Country Set” 

shows how each country was categorized and the 5th and 6th columns show the percentage of the 

population that identify as Christian or Muslim, respectively. The 7th and 8th columns show the continent 
and the Hemisphere to which each country belongs, according to Wikipedia.  
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Code 
Country 

Name 
First Week 

Country 

Set 
% Christian 

% 

Muslim 
Continent Hemisphere 

AE 
United Arab 

Emirates 
04-01-2004 Muslim 2.6 (2.6;) 76 Asia North 

AF Afghanistan 12-11-2006 Muslim 0.02 (;) 99.8 Asia North 

AL Albania 06-11-2005 Muslim 17 (7;10) 82.1 Europe North 

AR Argentina 04-01-2004 Christian 90 (77;13) 2.5 
South 
America 

South 

AT Austria 04-01-2004 Christian 68.4 (62.4;6) 5.7 Europe North 

AU Australia 04-01-2004 Christian 63 (25.8;37) 1.9 Oceania South 

AW Aruba 04-06-2006 Christian 88 (80.8;7.8) 0 
North 

America 
South 

BA 
Bosnia and 

Herzegovina 
04-01-2004 Christian 52 (15;37) 41.6 Europe North 

BD Bangladesh 04-01-2004 Muslim 0.3 (0.3;) 90.4 Asia North 

BE Belgium 04-01-2004 Christian 55.4 (57;7) 6 Europe North 

BG Bulgaria 04-01-2004 Christian 84 (1;83) 13.4 Europe North 

BH Bahrain 04-01-2004 Muslim 9 (;9) 81.2 Asia North 

BN Brunei 08-01-2006 Muslim 11 (;) 51.9 Asia North 

BO Bolivia 04-01-2004 Christian 89 (76;13) 2.5 
South 

America 
South 

BR Brazil 04-01-2004 Christian 90.2 (63;27) 0.1 
South 
America 

South 

BS Bahamas 05-06-2005 Christian 81 (13.5;67.6) 0 
Central 
America 

North 

BY Belarus 01-01-2006 Christian 55.4 (7.1;48.3) 0.2 Europe North 

CA Canada 04-01-2004 Christian 67.3 (38.7;29) 2.8 
North 

America 
North 

CH Switzerland 04-01-2004 Christian 71 (38;33) 5.7 Europe North 

CL Chile 04-01-2004 Christian 87.2 (67;20) 0 
South 

America 
South 

CM Cameroon 26-08-2007 Christian 65 (38.4;26.3) 18 Africa North 

CN China 04-01-2004 Other 5 (1;4) 1.8 Asia North 

CO Colombia 04-01-2004 Christian 90 (75;15) 0 
South 

America 
North 

CR Costa Rica 04-01-2004 Christian 83 (69;14) 0 
Central 

America 
North 

CY Cyprus 04-01-2004 Christian 79.3 (4.3;75) 22.7 Europe North 

CZ 
Czech 

Republic 
04-01-2004 Other 11.2 (10.4;0.8) 0 Europe North 

DE Germany 04-01-2004 Christian 62 (30;32) 5 Europe North 

DJ Djibouti 06-01-2008 Muslim 6 (1;5) 97 Africa North 

DK Denmark 04-01-2004 Christian 81 (1;80) 4.1 Europe North 

Code 
Country 

Name 
First Week 

Country 

Set 
% Christian 

% 

Muslim 
Continent Hemisphere 
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DO 
Dominican 

Republic 
04-01-2004 Christian 95 (95;)   

North 

America 
North 

DZ Algeria 04-01-2004 Muslim 2 (1;1) 98.2 Africa North 

EC Ecuador 04-01-2004 Christian 94 (74;20) 0 
South 
America 

South 

EE Estonia 04-01-2004 Other 23.9 (0;23) 0.1 Europe North 

EG Egypt 04-01-2004 Muslim 18 (0;18) 94.7 Africa North 

ES Spain 04-01-2004 Christian 73 (71;2) 2.3 Europe North 

ET Ethiopia 04-01-2004 Christian 63.4 (0;63.4) 33.8 Africa North 

FI Finland 04-01-2004 Christian 81.6 (0;81) 0.8 Europe North 

FJ Fiji 03-09-2006 Christian 64.4 (8.9;55.5) 6.3 Oceania South 

FR France 04-01-2004 Christian 65 (63;2) 7.5 Europe North 

GE Georgia 01-05-2005 Christian 88.6 (0.9;87.7) 10.5 Europe North 

GH Ghana 16-10-2005 Christian 68.8 (13.1;55.5) 16.1 Africa North 

GP Guadalupe 09-03-2008 Christian 96 (95;1)   
North 

America 
North 

GR Greece 04-01-2004 Christian 97 (0;97) 4.7 Europe North 

GT Guatemala 04-01-2004 Christian 87 (47;40) 0 
Central 

America 
North 

GU Guam 17-12-2006 Christian 85 (;) 0.1 Oceania South 

HN Honduras 04-09-2005 Christian 87.6 (47;40) 0.1 
Central 

America 
North 

HR Croatia 04-01-2004 Christian 90(70;20) 1.3 Europe North 

HU Hungary 04-01-2004 Christian 82.7 (70.1;11.6) 0.3 Europe North 

ID Indonesia 04-01-2004 Muslim 10(3;7) 88.1 Asia South 

IE Ireland 04-01-2004 Christian 94.1 (82;12) 0.9 Europe North 

IL Israel 04-01-2004 Other 3.5(;3.5) 17.7 Asia North 

IN India 04-01-2004 Other 2.6 (1.6;1) 14.6 Asia North 

IQ Iraq 12-12-2004 Muslim 3(;3) 98.9 Asia North 

IR Iran 04-01-2004 Muslim 0.4(;) 99.7 Asia North 

IS Iceland 04-01-2004 Christian 95 (2.5;92.5) 0.1 Europe North 

IT Italy 04-01-2004 Christian 85.1 (85;0) 2.6 Europe North 

JM Jamaica 04-01-2004 Christian 65.3 (2;63.3) 0 
Central 

America 
North 

JO Jordan 04-01-2004 Muslim 6 (;) 98.8 Asia North 

JP Japan 04-01-2004 Other 2 (1;1) 0.1 Asia North 

KE Kenya 04-01-2004 Christian 85.1 (23.4;61.7) 7 Africa North 

KH Cambodia 05-12-2004 Other 1 (0.15;0.85) 1.6 Asia North 

KR South Korea 04-01-2004 Other (;) 0.2 Asia North 

KW Kuwait 04-01-2004 Muslim 15 (3.2;12.8) 86.4 Asia North 

KZ Kazakhstan 01-10-2006 Muslim 51 (0.16;50) 56.4 Europe North 

LA Laos 15-04-2007 Other 2.2 (1;1) 0 Asia North 

Code 
Country 

Name 
First Week 

Country 

Set 
% Christian 

% 

Muslim 
Continent Hemisphere 

LB Lebanon 04-01-2004 Muslim 41 (26;15) 59.7 Asia North 

LK Sri Lanka 04-01-2004 Other 7.5 (6.1;1.4) 8.5 Asia North 
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LT Lithuania 04-01-2004 Christian 84.9 (77.2;7.6) 0.1 Europe North 

LU Luxemburg 04-01-2004 Christian 71 (69;2) 2.3 Europe North 

LV Latvia 04-01-2004 Christian 57 (25;32.2) 0.1 Europe North 

MA Morocco 04-01-2004 Muslim 2.1 (0.1;2) 99.9 Africa North 

MD Moldova 02-10-2005 Christian 97.53 (0;93) 0.4 Europe North 

ME Montenegro 13-11-2005 Christian 78.8 (3.4;72.07) 18.5 Europe North 

MK Macedonia 04-01-2004 Christian 65.1 (0.3;64.8) 34.9 Europe North 

MM Myanmar 04-12-2005 Other 7.9 (1;6.9) 3.8 Asia North 

MN Mongolia 14-08-2005 Other 2.1 (;) 4.4 Asia North 

MT Malta 04-01-2004 Christian 97 (;) 0.3 Europe North 

MU Mauritius 10-07-2005 Other 32.2 (-;-) 16.6 Africa South 

MV Maldives 04-01-2004 Muslim 41 (26;15) 98.4 Asia North 

MX Mexico 04-01-2004 Christian 92 (;) 0.1 
North 

America 
North 

MY Malaysia 04-01-2004 Muslim 12.1 (;) 61.4 Asia North 

MZ Mozambique 24-02-2008 Christian 56.1 (28.4;27.7) 22.8 Africa South 

NA Namibia 27-06-2010 Christian 90 (13.7;76.3) 0.4 Africa South 

NG Nigeria 04-01-2004 Christian 50.01 (14;36) 47.9 Africa North 

NI Nicaragua 16-08-2009 Christian 89.6 (58.8;30.8) 0 
Central 

America 
North 

NL Netherlands 04-01-2004 Other 44 (24;20) 5.5 Europe North 

NO Norway 04-01-2004 Christian 86.2 (3;83.5) 3 Europe North 

NP Nepal 04-01-2004 Other 0.9 (0.1;0.8) 4.2 Asia North 

NZ New Zealand 04-01-2004 Christian 55.6 (28.7;24.9) 0.9 
South 

America 
South 

OM Oman 04-01-2004 Muslim 2.5 (2.1;0.4) 87.7 Asia North 

PA Panama 15-02-2004 Christian 92 (80;12) 0.7 
Central 

America 
North 

PE Peru 04-01-2004 Christian 96 (81;15) 0 
South 

America 
South 

PH Philippines 04-01-2004 Christian 93 (80;13) 5.1 Asia North 

PK Pakistan 04-01-2004 Muslim 1.6 (0.8;0.8) 96.4 Asia North 

PL Poland 04-01-2004 Christian 94.3 (86.3;8) 0.1 Europe North 

PR Puerto Rico 04-01-2004 Christian 97 (50;47) 0 
North 
America 

North 

PS Palestine 04-01-2004 Muslim (;) 97.5 Asia North 

PT Portugal 04-01-2004 Christian 95.7 (81;14.7) 0.6 Europe North 

PY Paraguay 12-02-2006 Christian 96 (88;7.9) 0 
South 

America 
South 

QA Qatar 04-01-2004 Muslim 13.8 (;) 77.5 Asia North 

RO Romania 04-01-2004 Christian 99.5 (5.7;93.8) 0.3 Europe North 

Code 
Country 

Name 
First Week 

Country 

Set 
% Christian 

% 

Muslim 
Continent Hemisphere 

RS Serbia 04-01-2004 Christian 93.5 (4.97;79.4) 3.7 Europe North 

RU Russia 04-01-2004 Christian 60 (0;60) 11.7 Europe North 

SA Saudi Arabia 04-01-2004 Muslim 5.5 (3.5;2) 97.1 Asia North 
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SD Sudan 11-01-2004 Muslim 2 (;) 71.4 Africa North 

SE Sweden 04-01-2004 Christian 67.2 (2;65) 4.9 Europe North 

SG Singapore 04-01-2004 Other 18 (5.7;12) 14.9 Asia North 

SI Slovenia 04-01-2004 Christian 79.2 (57;22.2) 2.4 Europe North 

SK Slovakia 04-01-2004 Christian 86.5 (75.2;11.3) 0.1 Europe North 

SV El Salvador 04-01-2004 Christian 81.9 (52.6;29.3) 0 
Central 
America 

North 

SY Syria 04-01-2004 Muslim 10 (0;10) 92.8 Asia North 

TH Thailand 04-01-2004 Other 0.7 (0.4;0.3) 5.8 Asia North 

TN Tunisia 04-01-2004 Muslim 0.2 (;0.2) 99.8 Africa North 

TR Turkey 04-01-2004 Muslim 0.2 (;) 98.6 Europe North 

TT 
Trinidad and 

Tobago 
04-01-2004 Christian 57.6 (21.5;33.4) 5.8 

Central 

America 
North 

TW Taiwan 04-01-2004 Other 3.9 (2.6;1.3) 0.1 Asia North 

TZ Tanzania 04-01-2004 Christian 62 (;) 29.9 Africa South 

UA Ukraine 04-01-2004 Christian 83.8 (5.9;76.7) 0.9 Europe North 

UG Uganda 08-01-2006 Christian 88.6 (41.9;46.7) 12 Africa North 

UK 
United 

Kingdom 
04-01-2004 Christian 59.3 (8.9;50) 4.6 Europe North 

US 
United States 

of America 
04-01-2004 Christian 73 (22;51) 0.8 

North 

America 
North 

UY Uruguay 04-01-2004 Christian 58.4 (47;11) 0 
South 

America 
South 

UZ Uzbekistan 17-10-2004 Muslim 2.6 (2.6;) 96.5 Asia North 

VE Venezuela 04-01-2004 Christian 87 (79;8) 9.3 
South 

America 
North 

VN Vietnam 04-01-2004 Other 8 (7;1) 0.2 Asia North 

YE Yemen 04-01-2004 Muslim 
0.0013 

(0.0013;) 
99 Asia North 

ZA South Africa 04-01-2004 Christian 80 (5;75) 1.5 Africa South 

ZM Zambia 06-05-2007 Christian 97.6 (25;72) 0.4 Africa South 

ZW Zimbabwe 05-03-2006 Christian 85 (7;77) 0.9 Africa South 

 

  



Appendix B: Chapter 3 Appendix 250

Table S3. Correlation Table for the averaged time series of all countries grouped either by 

hemisphere (Northern or Southern ) or by religion (Muslim or Christian).  
Table S3a shows R2 and Table S3b shows the corresponding p-values. 
 

Table S3a. 

 Northern Southern Christian Muslim 

Northern 1    

Southern 0.536811 1   

Christian 0.890322 0.627146 1  

Muslim 0.415906 0.309619 0.192213 1 

 

Table S3b. 

 Northern Southern Christian Muslim 

Northern 1    

Southern 5.89E-90 1   

Christian 1.3E-254 9.1E-115 1  

Muslim 2.07E-63 2.98E-44 3.27E-26 1 
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Table S4. The three major Muslim holidays, in regard to the Gregorian calendar, for the period 

under analysis. 

 

Beginning of 

Ramadan 

Eid-al-Fitr Eid al-Adha 

15 Oct 2004 14 Nov 2004 21 Jan 2005 

4 Oct 2005 3 Nov 2005 10 Jan 2006 

24 Sep 2006 23 Oct 2006 31 Dec 2006 

13 Sep 2007 13 Oct 2007 20 Dec 2007 

1 Sep 2008 1 Oct 2008 8 Dec 2008 

22 Aug 2009 20 Sep 2009 27 Nov 2009 

11 Aug 2010 10 Sep 2010 16 Nov 2010 

1 Aug 2011 30 Aug 2011 6 Nov 2011 

20 Jul 2012 19 Aug 2012 26 Oct 2012 

9 Jul 2013 8 Aug 2013 15 Oct 2013 
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Table S5 - Starting day of the “Christian Calendar”, starting day of the weeks that included December 

25th – Christmas (always on week 26), the last week of each centered year and the discarded exception 

weeks after centering. 

 

1 26 week 52 exception week 

-  6/20/2004 - 

6/27/2004 12/19/2004 6/19/2005 6/26/2005 

7/26/2005 12/25/2005 6/25/2006  

7/2/2006 12/24/2006 6/24/2007 - 

7/1/2007 12/23/2007 6/22/2008 - 

6/29/2008 12/21/2008 6/21/2009 - 

6/28/2009 12/20/2009 6/20/2010 - 

6/27/2010 12/19/2010 6/19/2011 26 June 2011 

7/3/2011 12/25/2011 6/24/2012 - 

7/1/2012 12/23/2012 6/23/2013 - 

6/30/2013 12/22/2013 - - 

 

  



Appendix B: Chapter 3 Appendix 253

Table S6. Weeks that included Eid-al-Fitr and the discarded exception weeks after centering. 

 

1 25 week 50 exception week 

-  5/23/2004 - 
5/30/2004 11/14/2004 5/8/2005 - 

5/15/2005 10/30/2005 4/23/2006 4/30/2006 

5/7/2006 10/22/2006 4/15/2007 - 

4/22/2007 10/7/2007 3/30/2008 4/6/2008 

4/13/2008 9/28/2008 3/22/2009 3/29/2009 

4/5/2009 9/20/2009 3/14/2010 - 

3/21/2010 9/5/2010 2/27/2011 3/6/2011 

3/13/2011 8/28/2011 2/19/2012 2/26/2012 

3/4/2012 8/19/2012 2/10/2013 - 

2/17/2013 8/4/2013 1/26/2014 - 

2/2/2014 - - - 
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Table S7. Z-scores on the corresponding centered week for all countries in the dataset, calculated 

from the each country’s average for each week, as detailed in the Methods. When z>1 for both the 

Christmas and Eid-al-Fitr centered calendars, classification was based on the higher score (bold). 
 

 

 
Country 

Country 

Set 
Hemisphere Christmas 

Eid-al-

Fitr 

June 

Solstice 

Dec 

Solstice 

AE 

United Arab 

Emirates 
Muslim North 

1.877 3.023 0.179 1.313 

AF Afghanistan Muslim North 0.654 0.443 0.587 0.889 

AL Albania Muslim North 0.372 1.417 0.399 0.491 

AR Argentina Christian South 2.190 -2.066 0.395 1.146 

AT Austria Christian North 3.598 -0.089 -0.724 1.879 

AU Australia Christian South 3.598 -0.089 -0.724 1.879 

AW Aruba Christian South 1.970 1.960 -0.570 1.502 

BA 

Bosnia and 

Herzegovina 
Christian North -0.312 0.883 0.658 -0.477 

BD Bangladesh Muslim North 1.544 2.576 0.701 1.062 

BE Belgium Christian North 1.713 0.315 0.770 0.350 

BG Bulgaria Christian North 0.843 0.476 1.169 -0.443 

BH Bahrain Muslim North 1.151 2.492 1.128 1.879 

BN Brunei Muslim North 1.183 2.075 0.912 2.005 

BO Bolivia Christian South 3.028 0.831 0.074 1.159 

BR Brazil Christian South 3.658 -0.580 0.231 1.921 

BS Bahamas Christian North 0.185 -0.069 0.298 0.069 

BY Belarus Christian North 0.403 0.217 0.106 -0.534 

CA Canada Christian North 2.397 0.327 1.159 0.868 

CH Switzerland Christian North 4.012 -0.374 0.553 0.984 

CL Chile Christian South 1.966 -2.006 -0.634 1.232 

CM Cameroon Christian North 1.410 0.926 1.021 0.650 

CN China Other North -0.650 -0.349 0.300 -1.083 

CO Colombia Christian North 2.641 -1.164 0.596 1.995 

CR Costa Rica Christian North 3.671 -0.728 -0.038 2.110 

CY Cyprus Christian North 2.274 -0.376 0.057 0.390 

CZ Czech Republic Other North 2.718 -0.166 0.952 1.020 

DE Germany Christian North 3.800 0.043 0.759 0.974 

DJ Djibouti Muslim North -0.506 1.507 0.692 -0.071 

DK Denmark Christian North 2.842 -0.558 0.602 0.844 

DO 

Dominican 

Republic 
Christian North 

2.379 -0.861 0.649 1.240 

DZ Algeria Muslim North 0.503 0.872 1.611 0.153 

EC Ecuador Christian South 3.203 -0.521 0.513 2.062 

EE Estonia Other North 1.302 -0.344 1.598 0.541 

EG Egypt Muslim North 1.056 2.278 -0.302 0.841 

ES Spain Christian North 1.587 -0.063 0.391 0.056 

ET Ethiopia Christian North -0.967 -0.585 -0.164 0.013 

FI Finland Christian North 2.260 -0.858 1.690 0.854 

 
Country 

Country 

Set 
Hemisphere 

Christmas 

Eid-al-

Fitr 

June 

Solstice 

Dec 

Solstice 
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FJ Fiji Christian South 3.087 -0.002 -0.437 1.683 

FR France Christian North 2.239 -0.050 0.600 1.242 

GE Georgia Christian North -0.033 0.158 0.674 -0.964 

GH Ghana Christian North 3.869 -0.417 0.389 1.850 

GP Guadalupe Christian North 1.550 -0.059 1.814 1.751 

GR Greece Christian North 1.241 -0.158 -0.156 0.056 

GT Guatemala Christian North 3.170 -1.062 0.561 2.496 

GU Guam Christian South 0.028 1.379 1.080 -0.229 

HN Honduras Christian North 2.903 -0.713 0.279 2.062 

HR Croatia Christian North 0.953 0.236 1.712 -0.234 

HU Hungary Christian North 1.244 0.588 0.928 0.114 

ID Indonesia Muslim South 2.792 3.584 -0.415 1.337 

IE Ireland Christian North 3.498 0.072 0.477 1.052 

IL Israel Other North -1.235 0.085 1.261 -1.446 

IN India Other North 1.850 1.315 -0.363 0.756 

IQ Iraq Muslim North -0.833 0.514 -0.704 -0.066 

IR Iran Muslim North -0.597 0.497 0.714 -1.260 

IS Iceland Christian North 1.913 -0.698 0.824 1.064 

IT Italy Christian North 1.811 0.107 0.056 0.266 

JM Jamaica Christian North 1.255 -0.357 1.799 1.190 

JO Jordan Muslim North -0.169 2.317 1.463 -0.334 

JP Japan Other North 1.067 0.257 0.468 -0.734 

KE Kenya Christian North 4.217 1.686 -0.604 3.297 

KH Cambodia Other North 1.064 0.988 -0.475 -0.242 

KR South Korea Other North 0.994 -1.400 1.172 -0.305 

KW Kuwait Muslim North 1.730 2.384 0.145 1.855 

KZ Kazakhstan Muslim North 0.151 -0.458 1.537 -0.248 

LA Laos Other North 1.559 0.670 0.273 0.290 

LB Lebanon Muslim North 1.389 2.497 0.843 0.205 

LK Sri Lanka Other North 2.505 0.443 -0.390 0.970 

LT Lithuania Christian North 0.942 0.594 1.249 -0.277 

LU Luxemburg Christian North 4.643 -0.968 0.611 1.418 

LV Latvia Christian North 1.087 -0.082 2.154 -0.139 

MA Morocco Muslim North 0.148 0.484 1.173 -0.669 

MD Moldova Christian North 0.648 -0.115 0.626 -0.154 

ME Montenegro Christian North 0.004 -0.514 0.145 0.773 

MK Macedonia Christian North -0.789 -0.233 0.786 -0.920 

MM Myanmar Other North 1.753 1.324 -1.771 1.998 

MN Mongolia Other North 0.087 -0.694 0.785 -0.143 

MT Malta Christian North 1.547 -0.059 1.718 1.145 

MU Mauritius Other South 2.627 -0.528 -0.212 1.745 

MV Maldives Muslim North -0.475 0.704 -0.215 0.133 

 
Country 

Country 

Set 
Hemisphere 

Christmas 

Eid-al-

Fitr 

June 

Solstice 

Dec 

Solstice 

MX Mexico Christian North 3.092 -1.378 0.739 1.967 

MY Malaysia Muslim North 1.838 3.709 0.174 0.602 
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MZ Mozambique Christian South 2.243 -0.531 -0.048 1.702 

NA Namibia Christian South 3.757 -1.345 0.064 2.812 

NG Nigeria Christian North 4.650 1.208 -0.227 3.060 

NI Nicaragua Christian North 1.199 -0.917 -0.321 2.106 

NL Netherlands Other North 1.692 0.031 0.891 0.197 

NO Norway Christian North 3.694 -1.155 0.932 2.015 

NP Nepal Other North 1.095 1.588 -0.454 0.281 

NZ New Zealand Christian South 3.230 -0.254 -0.495 1.660 

OM Oman Muslim North 0.873 1.943 0.611 1.054 

PA Panama Christian North 1.955 0.914 0.009 1.456 

PE Peru Christian South 2.317 -2.338 -0.130 1.514 

PH Philippines Christian North 2.444 0.981 -1.614 1.819 

PK Pakistan Muslim North 2.282 2.126 -0.124 1.787 

PL Poland Christian North 1.414 0.083 1.341 0.215 

PR Puerto Rico Christian North 2.606 -1.690 1.211 2.274 

PS Palestine Muslim North 1.152 1.609 0.458 0.215 

PT Portugal Christian North 2.226 -0.074 0.699 0.859 

PY Paraguay Christian South 1.952 -2.259 -1.242 1.278 

QA Qatar Muslim North 1.783 2.986 -1.061 0.835 

RO Romania Christian North 1.458 0.401 0.960 -0.073 

RS Serbia Christian North -0.163 0.474 1.130 -0.390 

RU Russia Christian North 0.042 -0.455 1.443 -0.371 

SA Saudi Arabia Muslim North 0.271 2.698 -0.037 0.330 

SD Sudan Muslim North 0.460 1.662 0.602 0.682 

SE Sweden Christian North 1.764 -0.609 1.547 0.383 

SG Singapore Other North 2.238 1.525 1.339 1.140 

SI Slovenia Christian North 0.742 -0.170 1.275 0.018 

SK Slovakia Christian North 2.172 0.125 0.913 0.123 

SV El Salvador Christian North 3.076 0.144 -0.263 1.603 

SY Syria Muslim North 0.136 2.361 0.845 0.101 

TH Thailand Other North 0.658 -0.094 -0.761 -0.361 

TN Tunisia Muslim North 0.083 2.042 0.523 1.618 

TR Turkey Muslim North -1.084 2.988 1.447 -1.123 

TT 

Trinidad 

Tobago 
Christian North 

3.526 1.158 -0.016 1.704 

TW Taiwan Other North 1.458 -0.249 0.185 0.382 

TZ Tanzania Christian South 2.475 -0.365 1.200 1.710 

UA Ukraine Christian North 0.497 0.158 0.270 -0.051 

UG Uganda Christian North 3.703 0.921 -1.054 2.327 

UK 

United 

Kingdom 
Christian North 

3.982 0.208 -0.086 1.559 

 
Country 

Country 

Set 
Hemisphere 

Christmas 

Eid-al-

Fitr 

June 

Solstice 

Dec 

Solstice 

US 

United States of 

America 
Christian North 3.100 -0.306 1.009 1.137 

UY Uruguay Christian South 2.140 -0.462 -1.259 0.879 

UZ Uzbekistan Muslim North -0.590 2.098 1.472 -0.960 

VE Venezuela Christian North 3.768 -0.982 -0.292 2.287 
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VN Vietnam Other North -0.033 1.300 0.436 -0.380 

YE Yemen Muslim North -0.367 1.963 0.325 -0.181 

ZA South Africa Christian South 3.815 0.048 -0.108 2.375 

ZM Zambia Christian South 1.804 0.915 -0.098 2.308 

ZW Zimbabwe Christian South 3.783 -0.146 1.001 2.569 
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Table S8A. Correlation between the Z-scores’ time series for all countries in the data set. Calendars 

were centered around each of the events and the z-cores calculated, as detailed in the Methods. The high 

correlation between the Z-score variation around Christmas and around the December Solstice is due to 
the fact that Christmas often falls on the same week or very close to the December Solstice.  

 

  
Christmas 

Eid-al-

Fitr 
June 

Solstice 

December 

Solstice 

Christmas 1.00 

Eid-al-Fitr -0.28 1.00 

June Solstice -0.29 -0.06 1.00 

December Solstice 0.80 -0.15 -0.36 1.00 

 

 
Table S8B. Percentage of countries that were originally classified as Christian, Muslim, or as being 
located in one of the hemispheres (rows) that showed increased sex-searches (z-scores>1) during 

Christmas, Eid-al-Fitr or the Solstices (columns).  

    Increased sex-searches around: 

    Christmas 
Eid-al-

Fitr 

June 

Sltc 

Dec 

Sltc 

Id
en

ti
fi

ed
 a

s 

Christian 80% 6% 25% 56% 

Muslim 40% 77% 23% 30% 

Southern 

Hemisphere 
95% 14% 14% 90% 

Northern 

Hemisphere 
64% 28% 26% 36% 
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Table S9. Monthly birth data available for countries from Supplementary Table 2. First column, 

countries that belong to the ”Other” country set are marked with a blue background, countries that belong 

to the ”Muslim” country set with a green background, and countries belonging to the ”Christian” country 
set with a white background. At the bottom of the table are the only four countries from the Southern 

Hemisphere for which we could find birth data, and all four were classified as Christian. Dark shaded area 

coincides with the period for which we have GT data and these were the years used in all birth plots. 
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Table S10. Multiple linear regression statistics with all three ANEW dimensions, using weekly ANEW 

means as independent variables and sex search volume as dependent variable. A) Regression over all 

years of data. B) Regression over an average year centered on Christmas (USA, Australia, Brazil, 
Argentina, Chile) and Eid-al-Fitr (Indonesia and Turkey) – Independent variables are: [mean ANEW 

values averaged across years – the holiday center] (i.e, Christmas is 0,0,0), dependent variable is the 

number of sex-searches averaged across years of data. R2 columns indicate the coefficient of 
determination for the regression, Fp columns indicate the p-value for the F-statistic of the overall model, B 

columns indicate the coefficients for the independent variables in the regression. t-test p columns indicate 

the individual t-test p values for the independent variables. Bold values denote significance at α=0.05, 

italicized values denote Bonferroni corrected significance over countries per variable choice α=0.05/7= 
0.00714. 

 

A 

 

 

 

 

 

 

 

 

 

 

B 
Country R2 Valence 

B 

Dominance 

B 

Arousal 

B 

Fp Valence  

t-test p 

Dominance 

t-test p 

Arousal 

t-test p 

USA 0.426 193.002 -427.958 96.678 6.20E-06 2.94E-07 2.77E-05 0.0632 

Australia 0.566 95.519 -128.290 19.318 8.40E-09 4.67E-08 1.44E-03 0.225 

Brazil 0.488 90.086 -148.254 35.561 4.15E-07 3.06E-05 0.0340 0.116 

Argentina 0.530 57.468 -65.493 -2.228 5.51E-08 3.61E-07 0.0145 0.871 

Chile 0.697 70.497 -81.955 12.632 1.73E-12 8.21E-08 0.0123 0.0606 

Indonesia 0.267 144.696 -272.516 -53.604 2.34E-03 8.40E-03 0.0213 0.271 

Turkey 0.260 7.835 -81.301 41.880 2.94E-03 0.503 0.0103 0.0220 

 

  

Country R2 Valence 

B 

Dominance  

B 

Arousal  

B 

Fp Valence 

t-test p 

Dominance 

t-test p 

Arousal  

t-test p 

USA 0.399 197.69 -379.75 -0.36 1.18E-20 4.76E-18 1.06E-12 0.972 

Australia 0.274 55.77 -92.18 -25.05 2.91E-12 1.10E-07 4.22E-06 9.79E-06 

Brazil 0.401 12.47 37.78 90.74 1.19E-15 0.416 0.423 4.79E-08 

Argentina 0.388 39.22 -36.67 -8.79 1.40E-14 2.59E-09 1.91E-03 0.0786 

Chile 0.240 4.93 26.63 -28.93 1.68E-10 0.602 0.280 6.36E-10 

Indonesia 0.187 72.13 -127.96 -12.95 1.87E-06 1.24E-07 5.28E-04 0.366 

Turkey 0.135 6.66 -1.72 16.11 4.22E-04 0.128 0.893 1.83E-04 
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Table S11. Linear regression statistics for individual ANEW dimensions, using weekly ANEW means as 

independent variables and sex search volume as dependent variable. A: Regression over all years of data. 

B: Regression over an average year centered on Christmas (USA, Australia, Brazil, Argentina, Chile) and 
Eid-al-Fitr (Indonesia and Turkey) – Independent variables are: [mean ANEW value averaged across 

years – the holiday center] (i.e, Christmas is 0), dependent variable is the number of sex-searches 

averaged across years of data. Independent variables from top to bottom: Valence, Dominance, and 
Arousal. R2 columns indicate the coefficient of determination for the regression, Fp columns indicate the 

p-value for the F-statistic of the overall model, B columns indicate the coefficients for the independent 

variables in the regression. Bold values denote significance at α=0.05, italicized values denote Bonferroni 

corrected significance over countries per variable choice α=0.05/7 = 0.00714. 
 

A 

Country Valence R2 Valence Fp Valence B 

USA 0.057 8.99E-04 54.80 

Australia 0.065 5.34E-04 -10.74 

Brazil 0.004 0.434 6.57 

Argentina 0.255 1.78E-10 13.25 

Chile 0.019 0.0680 8.52 

Indonesia 0.091 2.29E-04 27.35 

Turkey 0.008 0.3.07 3.16 

 

 
 

 

 
 

 

 

 
 

 
 

 

 
 

 

 
 

 

 

  

Country Dominance R2 Dominance Fp Dominance B 

USA 0.052 1.46E-03 -101.86 

Australia 0.120 1.84E-06 -30.11 

Brazil 0.141 3.21E-06 115.42 

Argentina 0.143 3.67E-06 15.86 

Chile 0.001 0.711 4.19 

Indonesia 0.007 0.302 21.45 

Turkey 0.031 4.84E-02 18.09 

 

Country Arousal R2 Arousal Fp Arousal B 

USA 0.102 6.20E-06 -41.47 

Australia 0.148 9.78E-08 -15.07 

Brazil 0.347 6.28E-15 90.83 

Argentina 0.026 0.0573 6.66 

Chile 0.186 1.48E-09 -23.98 

Indonesia 0.007 0.323 11.16 

Turkey 0.105 1.95E-04 13.97 
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B 

 

Country Valence R2 Valence Fp Valence B 

USA 0.166 2.76E-03 80.924 

Australia 0.459 3.39E-08 56.364 

Brazil 0.437 9.41E-08 51.052 

Argentina 0.418 2.25E-07 31.673 

Chile 0.652 4.82E-13 43.522 

Indonesia 0.008 0.541 19.959 

Turkey 0.043 0.150 8.871 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

Country Dominance R2 Dominance Fp Dominance B 

USA 0.002 0.778 -20.481 

Australia 0.167 2.66E-03 74.668 

Brazil 0.214 5.48E-04 121.891 

Argentina 0.138 6.68E-03 39.978 

Chile 0.426 1.55E-07 97.791 

Indonesia 0.049 0.123 -94.162 

Turkey 0.005 0.612 -11.387 

Country Arousal R2 Arousal Fp Arousal B 

USA 0.000 0.945 -3.900 

Australia 0.165 2.85E-03 42.919 

Brazil 0.010 0.490 -14.894 

Argentina 0.006 0.598 7.270 

Chile 0.000 0.948 -0.640 

Indonesia 0.146 6.16E-03 -112.497 

Turkey 0.125 0.0119 28.478 
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Table S12 – Ordinary least squares linear regression statistics for sex-searches v.s proximity in 

eigenmood to Christmas. The components selected were the two components (eigenbins) that most 

distinguish the holiday week from other weeks (see Methods S11). In the Components column, v stands 
for valence, d for dominance, and a for arousal. R2 is the coefficient of determination, Fp is the p-value of 

the overall F-test for the regression, and the Slope is the slope of regressions. ρ is the Pearson’s 

correlation coefficient between proximity and sex searches, ρD is the Brownian distance correlation 
coefficient, and DCovp is the p-value for the Brownian distance covariance calculated from a permutation 

test of the data. Bold denotes significance at α=0.05, italicized values denote Bonferroni corrected 

significance over countries per variable choice α=0.05/7 = 0.00714, underlined denote Bonferroni 

corrected significance over all table possibilities α=0.05/21 = 0.00238. 
 

 Christmas       

Country Components R2 Fp Slope ρ ρD DCovp 

USA  v4, v5  0.38 5.08E-06 6.50E+04 0.616 0.559 0.001 

Australia  d5, d8  0.392 2.52E-06 2.44E+04 0.626 0.576 0.001 

Brazil  a3, v2  0.504 3.35E-08 9.47E+03 0.71 0.624 0.001 

Argentina  v5, d3  0.577 6.11E-10 5.35E+03 0.759 0.712 0.001 

Chile  v3, d8  0.419 1.16E-06 7.96E+03 0.647 0.646 0.001 

Indonesia  a3, v3  0.448 2.66E-07 9.95E+03 0.67 0.657 0.001 

Turkey  a3, d3  0.373 6.46E-06 -1.42E+03 -0.611 0.618 0.001 

 
 Eid-al-Fitr without Ramadan 

Country Components R2 Fp Slope ρ ρD DCovp 

USA  a6, v3  0.065 0.107 1.57E+05 0.256 0.328 0.118 

Australia  v3, v4  0.02 0.381 -1.62E+03 -0.141 0.317 0.154 

Brazil  a3, d8  0.147 0.0147 -4.07E+04 -0.383 0.539 0.001 

Argentina  v9, d3  0.598 3.08E-09 -2.32E+04 -0.773 0.735 0.001 

Chile  a6, d2  0.189 5.00E-03 -1.15E+04 -0.435 0.461 0.005 

Indonesia  v3, d3  0.637 6.87E-10 8.70E+03 0.798 0.712 0.001 

Turkey  a3, d3  0.737 6.94E-13 4.81E+02 0.859 0.858 0.001 

 
 Eid-al-Fitr       

Country Components R2 Fp Slope ρ ρD DCovp 

USA  a6, v3  0.077 0.0645 1.75E+05 0.278 0.343 0.061 

Australia  v3, v4  0.038 0.198 -2.30E+03 -0.196 0.333 0.085 

Brazil  a3, d8  0.124 0.0204 -3.54E+04 -0.353 0.516 0.001 

Argentina  v9, d3  0.593 6.23E-10 -2.31E+04 -0.77 0.73 0.001 

Chile  a6, d2  0.191 3.03E-03 -1.04E+04 -0.437 0.489 0.001 

Indonesia  v3, d3  0.407 3.19E-06 9.85E+03 0.638 0.621 0.001 

Turkey  a3, d3  0.339 3.42E-05 3.32E+02 0.582 0.634 0.001 
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Table S13– List of words and expressions removed from the Twitter/ANEW analysis. 

“merry christmas” 

“merry xmas” 
“happy christmas” 

“happy xmas” 

“happy new year” 
“happy newyear” 

“happy thanksgiving” 

“happy ramadan” 

“happy easter” 
“happy holidays” 

“happy hanukkah” 

“happy hanukah” 
“happy ramadan” 

“happy eid” 

“happy halloween” 

“happy valentines day” 
“happy valentine’s day” 

“feliz natal” 

“feliz ano” 
“feliz pascoa” 

“pascoa feliz” 

“feliz thanksgiving” 
“feliz navidad” 

“feliz ano nuevo” 

“feliz ano novo” 

“feliz ramadan” 
“feliz año” 

“feliz páscoa” 

“páscoa feliz ” 
“feliz año nuevo” 

“happy anzac day” 

“feliz anzac day” 
“happy adelaide cup” 

“feliz adelaide cup” 

“happy all saints day” 

“feliz all saints day” 
“happy all souls day” 

“feliz all souls day” 

“happy andalucia day” 
“feliz andalucia day” 

“happy arafat day” 

“feliz arafat day” 

“happy armistice day” 
“feliz armistice day” 

“happy army day” 

“feliz army day” 
“happy asahna bucha day” 

“feliz asahna bucha day” 

“happy ascension day” 
“feliz ascension day” 

“happy ash monday” 

“feliz ash monday” 

“happy ash wednesday” 
“feliz ash wednesday” 

“happy ashura” 

“feliz ashura” 
“happy assumption day” 

“feliz assumption day” 

“happy asturias” 
“feliz asturias” 

“happy auckland province” 

“feliz auckland province” 

“happy august bank holiday” 
“feliz august bank holiday” 

“happy august holiday” 

“feliz august holiday” 
“happy australia day” 

“feliz australia day” 

“happy australia day holiday” 

“feliz australia day holiday” 
“happy autumnal equinox day” 

“feliz autumnal equinox day” 

“happy awal muharram” 
“feliz awal muharram” 

“happy balearic islands” 

“feliz balearic islands” 
“happy bank holiday” 

“feliz bank holiday” 

“happy bastille day” 

“feliz bastille day” 
“happy battle of the boyne” 

“feliz battle of the boyne” 

“happy benito juarezs birthday” 
“feliz benito juarezs birthday” 

“happy berchtolds day” 

“feliz berchtolds day” 
“happy bettagsmontag” 

“feliz bettagsmontag” 

“happy bhogi” 

“feliz bhogi” 
“happy bicentennial of the constituent assembly 

of 1813” 

“feliz bicentennial of the constituent assembly 
of 1813” 

“happy birthday of muhammad iqbal” 

“feliz birthday of muhammad iqbal” 

“happy birthday of prophet muhammad” 
“feliz birthday of prophet muhammad” 

“happy birthday of quaid-e-azam muhammad 

ali jinnah” 
“feliz birthday of quaid-e-azam muhammad ali 

jinnah” 

“happy birthday of spb yang di pertuan agong” 
“feliz birthday of spb yang di pertuan agong” 

“happy birthday of the sultan of selangor” 

“feliz birthday of the sultan of selangor” 

“happy boxing day” 
“feliz boxing day” 
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“happy bridge public” 

“feliz bridge public” 

“happy buddha purnima” 
“feliz buddha purnima” 

“happy buddhas birthday” 

“feliz buddhas birthday” 
“happy canada day” 

“feliz canada day” 

“happy canary islands” 

“feliz canary islands” 
“happy canberra day” 

“feliz canberra day” 

“happy canterbury” 
“feliz canterbury” 

“happy carnival” 

“feliz carnival” 

“happy castile-la mancha” 
“feliz castile-la mancha” 

“happy catalonia” 

“feliz catalonia” 
“happy celebration of the golden spurs” 

“feliz celebration of the golden spurs” 

“happy ceuta” 
“feliz ceuta” 

“happy chanukah” 

“feliz chanukah” 

“happy chatham islands” 
“feliz chatham islands” 

“happy childrens day” 

“feliz childrens day” 
“happy chinese new year” 

“feliz chinese new year” 

“happy chinese new year eve” 
“feliz chinese new year eve” 

“happy ching ming” 

“feliz ching ming” 

“happy christmas day” 
“feliz christmas day” 

“happy christmas eve” 

“feliz christmas eve” 
“happy christmas eve day” 

“feliz christmas eve day” 

“happy christmas” 

“feliz christmas” 
“happy chulalongkorn day” 

“feliz chulalongkorn day” 

“happy chung yeung festival” 
“feliz chung yeung festival” 

“happy cinco de mayo” 

“feliz cinco de mayo” 
“happy civic day” 

“feliz civic day” 

“happy columbus day” 

“feliz columbus day” 
“happy coming of age day” 

“feliz coming of age day” 

“happy community day” 

“feliz community day” 
“happy community festival of madrid” 

“feliz community festival of madrid” 

“happy constitution day” 
“feliz constitution day” 

“happy constitution memorial day” 

“feliz constitution memorial day” 

“happy corpus christi” 
“feliz corpus christi” 

“happy culture day” 

“feliz culture day” 
“happy day after christmas” 

“feliz day after christmas” 

“happy day after new years day” 

“feliz day after new years day” 
“happy day of atonement” 

“feliz day of atonement” 

“happy day of good will” 
“feliz day of good will” 

“happy day of national sovereignty” 

“feliz day of national sovereignty” 
“happy day of reconciliation” 

“feliz day of reconciliation” 

“happy day of reformation” 

“feliz day of reformation” 
“happy day of unity” 

“feliz day of unity” 

“happy day of respect for cultural diversity” 
“feliz day of respect for cultural diversity” 

“happy day of the battle of salta” 

“feliz day of the battle of salta” 
“happy day of the constitution of the slovak 

republic” 

“feliz day of the constitution of the slovak 

republic” 
“happy day of the dead” 

“feliz day of the dead” 

“happy day of the establishment of the slovak 
republic” 

“feliz day of the establishment of the slovak 

republic” 

“happy day of the german-speaking community 
of belgium” 

“feliz day of the german-speaking community 

of belgium” 
“happy day of the virgin of guadalupe” 

“feliz day of the virgin of guadalupe” 

“happy day of victory over fascism” 
“feliz day of victory over fascism” 

“happy declaration of independence” 

“feliz declaration of independence” 

“happy deepavali” 
“feliz deepavali” 
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“happy deewali” 

“feliz deewali” 

“happy defence of the motherland” 
“feliz defence of the motherland” 

“happy discovery day” 

“feliz discovery day” 
“happy double ninth day” 

“feliz double ninth day” 

“happy dragon boat festival” 

“feliz dragon boat festival” 
“happy dussehra” 

“feliz dussehra” 

“happy early may bank holiday” 
“feliz early may bank holiday” 

“happy easter” 

“feliz easter” 

“happy easter monday” 
“feliz easter monday” 

“happy easter sunday” 

“feliz easter sunday” 
“happy eid al adha” 

“feliz eid al adha” 

“happy eid al fitr” 
“feliz eid al fitr” 

“happy eid milad un-nabi” 

“feliz eid milad un-nabi” 

“happy eid ul-azha day 1” 
“feliz eid ul-azha day 1” 

“happy eid ul-azha day 2” 

“feliz eid ul-azha day 2” 
“happy eid-ul-fitr” 

“feliz eid-ul-fitr” 

“happy emancipation day” 
“feliz emancipation day” 

“happy epiphany” 

“feliz epiphany” 

“happy extremadura” 
“feliz extremadura” 

“happy family & community day” 

“feliz family & community day” 
“happy family day” 

“feliz family day” 

“happy fathers day” 

“feliz fathers day” 
“happy feast of st ambrose” 

“feliz feast of st ambrose” 

“happy feast of st anthony” 
“feliz feast of st anthony” 

“happy feast of st john the baptist” 

“feliz feast of st john the baptist” 
“happy federal territory day” 

“feliz federal territory day” 

“happy fiesta de san isidro” 

“feliz fiesta de san isidro” 
“happy foundation day” 

“feliz foundation day” 

“happy foundation of the independent 

czechoslovak state” 
“feliz foundation of the independent 

czechoslovak state” 

“happy freedom day” 
“feliz freedom day” 

“happy french community” 

“feliz french community” 

“happy ganesh chaturthi” 
“feliz ganesh chaturthi” 

“happy general prayer day” 

“feliz general prayer day” 
“happy german unity day” 

“feliz german unity day” 

“happy good friday” 

“feliz good friday” 
“happy greenery day” 

“feliz greenery day” 

“happy groundhog day” 
“feliz groundhog day” 

“happy guru nanak birthday” 

“feliz guru nanak birthday” 
“happy guy fawkes night” 

“feliz guy fawkes night” 

“happy h.m. kings birthday” 

“feliz h.m. kings birthday” 
“happy h.m. queens birthday” 

“feliz h.m. queens birthday” 

“happy hangeul day” 
“feliz hangeul day” 

“happy hari hol almarhum sultan iskandar” 

“feliz hari hol almarhum sultan iskandar” 
“happy hari raya haji” 

“feliz hari raya haji” 

“happy hari raya nyepi” 

“feliz hari raya nyepi” 
“happy hari raya puasa” 

“feliz hari raya puasa” 

“happy harvest festival” 
“feliz harvest festival” 

“happy hawkes bay” 

“feliz hawkes bay” 

“happy health-sports day” 
“feliz health-sports day” 

“happy heritage day” 

“feliz heritage day” 
“happy hijri new years day” 

“feliz hijri new years day” 

“happy hispanic day” 
“feliz hispanic day” 

“happy holi” 

“feliz holi” 

“happy holy spirit monday” 
“feliz holy spirit monday” 
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“happy human rights day” 

“feliz human rights day” 

“happy idul adha” 
“feliz idul adha” 

“happy idul fitr” 

“feliz idul fitr” 
“happy idul juha” 

“feliz idul juha” 

“happy immaculate conception day” 

“feliz immaculate conception day” 
“happy independence day” 

“feliz independence day” 

“happy independence day of chile” 
“feliz independence day of chile” 

“happy independence day” 

“feliz independence day” 

“happy independence of cartagena” 
“feliz independence of cartagena” 

“happy isra miraj” 

“feliz isra miraj” 
“happy israa & miaraj night” 

“feliz israa & miaraj night” 

“happy jan hus day” 
“feliz jan hus day” 

“happy janmashtami” 

“feliz janmashtami” 

“happy june holiday” 
“feliz june holiday” 

“happy kannada rajyothsava” 

“feliz kannada rajyothsava” 
“happy kashmir day” 

“feliz kashmir day” 

“happy kings feast” 
“feliz kings feast” 

“happy knabenschiessen” 

“feliz knabenschiessen” 

“happy korean new year” 
“feliz korean new year” 

“happy la rioja” 

“feliz la rioja” 
“happy labor day” 

“feliz labor day” 

“happy labour day” 

“feliz labour day” 
“happy labour thanksgiving day” 

“feliz labour thanksgiving day” 

“happy labour day” 
“feliz labour day” 

“happy lady of aparecida” 

“feliz lady of aparecida” 
“happy lantern festival” 

“feliz lantern festival” 

“happy late mid autumn festival” 

“feliz late mid autumn festival” 
“happy liberation day” 

“feliz liberation day” 

“happy liberation day czech republic” 

“feliz liberation day czech republic” 
“happy maha shivratri” 

“feliz maha shivratri” 

“happy maharashtra day” 
“feliz maharashtra day” 

“happy mahatma gandhi birthday” 

“feliz mahatma gandhi birthday” 

“happy mahavir jayanti” 
“feliz mahavir jayanti” 

“happy makha bucha day” 

“feliz makha bucha day” 
“happy malaysia day” 

“feliz malaysia day” 

“happy malvinas day” 

“feliz malvinas day” 
“happy march 1st movement” 

“feliz march 1st movement” 

“happy marine day” 
“feliz marine day” 

“happy marlborough” 

“feliz marlborough” 
“happy martin luther king day” 

“feliz martin luther king day” 

“happy maulidur rasul” 

“feliz maulidur rasul” 
“happy maundy thursday” 

“feliz maundy thursday” 

“happy may bank holiday” 
“feliz may bank holiday” 

“happy may day” 

“feliz may day” 
“happy may day revolution” 

“feliz may day revolution” 

“happy melbourne cup day” 

“feliz melbourne cup day” 
“happy memorial day” 

“feliz memorial day” 

“happy mid autumn festival” 
“feliz mid autumn festival” 

“happy midsummer day” 

“feliz midsummer day” 

“happy milad-un-nabi” 
“feliz milad-un-nabi” 

“happy mothering sunday” 

“feliz mothering sunday” 
“happy mothers day” 

“feliz mothers day” 

“happy muharram” 
“feliz muharram” 

“happy murcia” 

“feliz murcia” 

“happy national day” 
“feliz national day” 
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“happy national flag day” 

“feliz national flag day” 

“happy national foundation day” 
“feliz national foundation day” 

“happy national remembrance day” 

“feliz national remembrance day” 
“happy national sovereignty and children’s day” 

“feliz national sovereignty and children’s day” 

“happy national womens day” 

“feliz national womens day” 
“happy national holiday” 

“feliz national holiday” 

“happy navy day” 
“feliz navy day” 

“happy nelson” 

“feliz nelson” 

“happy new year” 
“feliz new year” 

“happy new years day” 

“feliz new years day” 
“happy new years eve” 

“feliz new years eve” 

“happy new years” 
“feliz new years” 

“happy orthodox christmas day” 

“feliz orthodox christmas day” 

“happy orthodox easter monday” 
“feliz orthodox easter monday” 

“happy orthodox good friday” 

“feliz orthodox good friday” 
“happy otago province” 

“feliz otago province” 

“happy our lady of mount carmel” 
“feliz our lady of mount carmel” 

“happy our lady of the almudena” 

“feliz our lady of the almudena” 

“happy pakistan day” 
“feliz pakistan day” 

“happy pancake tuesday” 

“feliz pancake tuesday” 
“happy parsi new year” 

“feliz parsi new year” 

“happy passover” 

“feliz passover” 
“happy peace memorial day” 

“feliz peace memorial day” 

“happy pentecost” 
“feliz pentecost” 

“happy picnic day” 

“feliz picnic day” 
“happy pongal” 

“feliz pongal” 

“happy portugal day” 

“feliz portugal day” 
“happy presidential elections” 

“feliz presidential elections” 

“happy presidents day” 

“feliz presidents day” 
“happy public holiday” 

“feliz public holiday” 

“happy purim” 
“feliz purim” 

“happy queens birthday” 

“feliz queens birthday” 

“happy race day” 
“feliz race day” 

“happy ram navami” 

“feliz ram navami” 
“happy ramazan feast” 

“feliz ramazan feast” 

“happy reformation day” 

“feliz reformation day” 
“happy remembrance day” 

“feliz remembrance day” 

“happy repentance day” 
“feliz repentance day” 

“happy republic day” 

“feliz republic day” 
“happy respect for the aged day” 

“feliz respect for the aged day” 

“happy restoration day” 

“feliz restoration day” 
“happy restoration day of the independent czech 

state” 

“feliz restoration day of the independent czech 
state” 

“happy restoration of independence” 

“feliz restoration of independence” 
“happy revolution day” 

“feliz revolution day” 

“happy sacred heart” 

“feliz sacred heart” 
“happy sacrifice feast” 

“feliz sacrifice feast” 

“happy saint leopold” 
“feliz saint leopold” 

“happy saint nicholas” 

“feliz saint nicholas” 

“happy saint peter and saint paul” 
“feliz saint peter and saint paul” 

“happy saint stephens day” 

“feliz saint stephens day” 
“happy sechselauten” 

“feliz sechselauten” 

“happy second day of christmas” 
“feliz second day of christmas” 

“happy showa day” 

“feliz showa day” 

“happy simchat torah” 
“feliz simchat torah” 
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“happy slovak national uprising anniversary” 

“feliz slovak national uprising anniversary” 

“happy songkran festival” 
“feliz songkran festival” 

“happy south canterbury” 

“feliz south canterbury” 
“happy southland” 

“feliz southland” 

“happy special administration region (sar) day” 

“feliz special administration region (sar) day” 
“happy st andrews day” 

“feliz st andrews day” 

“happy st cyril and methodius day” 
“feliz st cyril and methodius day” 

“happy st davids day” 

“feliz st davids day” 

“happy st georges day” 
“feliz st georges day” 

“happy st james day” 

“feliz st james day” 
“happy st josephs day” 

“feliz st josephs day” 

“happy st martins day” 
“feliz st martins day” 

“happy st patricks day” 

“feliz st patricks day” 

“happy st stephens day” 
“feliz st stephens day” 

“happy st wenceslas day” 

“feliz st wenceslas day” 
“happy struggle for freedom and democracy 

day” 

“feliz struggle for freedom and democracy day” 
“happy sukkot” 

“feliz sukkot” 

“happy swiss federal fast” 

“feliz swiss federal fast” 
“happy taranaki” 

“feliz taranaki” 

“happy thaipusam” 
“feliz thaipusam” 

“happy thanksgiving” 

“feliz thanksgiving” 

“happy buddhas birthday” 
“feliz buddhas birthday” 

“happy emperors birthday” 

“feliz emperors birthday” 
“happy national holiday of quebec” 

“feliz national holiday of quebec” 

“happy ochi day” 
“feliz ochi day” 

“happy patron saint of turin” 

“feliz patron saint of turin” 

“happy thiruvalluvar day” 
“feliz thiruvalluvar day” 

“happy tiradentes day” 

“feliz tiradentes day” 

“happy tomb sweeping festival” 
“feliz tomb sweeping festival” 

“happy tomb sweeping holiday” 

“feliz tomb sweeping holiday” 
“happy truth and justice memorial day” 

“feliz truth and justice memorial day” 

“happy uae national day” 

“feliz uae national day” 
“happy ugadi” 

“feliz ugadi” 

“happy urs mubarak of hazrat data gunj bakhsh” 
“feliz urs mubarak of hazrat data gunj bakhsh” 

“happy v-e day” 

“feliz v-e day” 

“happy valencia” 
“feliz valencia” 

“happy vernal equinox day” 

“feliz vernal equinox day” 
“happy vesak day” 

“feliz vesak day” 

“happy veterans day” 
“feliz veterans day” 

“happy victoria day” 

“feliz victoria day” 

“happy victory day” 
“feliz victory day” 

“happy visakha bucha day” 

“feliz visakha bucha day” 
“happy waisak day” 

“feliz waisak day” 

“happy waitangi day” 
“feliz waitangi day” 

“happy wellington province” 

“feliz wellington province” 

“happy wesak day” 
“feliz wesak day” 

“happy westland” 

“feliz westland” 
“happy whitmonday” 

“feliz whitmonday” 

“happy womens day” 

“feliz womens day” 
“happy youth day” 

“feliz youth day” 

“happy zumbi dos palmares” 
“feliz zumbi dos palmares” 

“christmas” 

“navidad” 
“natal” 

“valentine” 

“san valentín” 

“valentín” 
“san valentin” 
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“valentin” 

“valentim 
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1 2 3 4 5 6
variable g-cause

sex-search 0.350 0.0103* 0.0512 0.172 0.000 383*** 0.0261*
sex-search g-cause

variable 0.0643 0.726 0.473 0.319 0.418 0.808

Table B.1: Arousal Eigenbin Granger-Causality p-values. * indicates p < 0.05, **
indicates table Bonferroni corrected p < 0.00417, *** indicates all tests Bonferroni

corrected p < 0.00179

1 2 3 4 5 6
variable g-cause

sex-search 0.689 0.0143* 0.006 46* 0.798 0.448 0.0262
sex-search g-cause

variable 0.646 0.316 0.376 0.133 0.006 57* 0.000 143***

Table B.2: Dominance Eigenbin Granger-Causality p-values. * indicates p < 0.05,
** indicates table Bonferroni corrected p < 0.00417, *** indicates all tests Bonferroni

corrected p < 0.00179

1 2 3 4 5 6
variable g-cause

sex-search 0.477 0.0586 0.120 0.0279* 0.0541 0.750
sex-search g-cause

variable 0.802 0.937 0.0367* 0.218 0.985 0.378

Table B.3: Valence Eigenbin Granger-Causality p-values. * indicates p < 0.05, **
indicates table Bonferroni corrected p < 0.00417, *** indicates all tests Bonferroni

corrected p < 0.00179

B.1 Additional Granger Causality Analysis for United States

In Table B.1 we see that of the first 6 eigenbins for arousal, three eigenbins have a signf-

icant Granger-causal relationship with sex searches, while sex-searches do not Granger-

cause these arousal. The fifth component is significant even after a Bonferroni correction

against all Granger tests in this chapter.

In Table B.2 we see that two of the first six dominance eigenbins Granger-cause

sex searches, but not at a level significant after a Bonferroni correction. However, sex-

searches Granger-cause the fifth and the sixth dominance eigenbin, the sixth at a level

that is signficant even after a Bonferroni correction for all Granger tests in this chapter.

In Table B.3 We see that only the fourth valence eigenbin is seen to Granger-cause



Appendix B: Chapter 3 Appendix 272

arousal dominance valence

arousal 0.469 0.684
dominance 0.358 0.278
valence 0.128 0.0518

Table B.4: Mean Values Granger-Causality p-values. The values in the table are
p-values for whether the variable specified by the Row Granger-causes the variable
specified by the Column. * indicates p < 0.05, ** indicates table Bonferroni corrected

p < 0.00833, *** indicates all tests Bonferroni corrected p < 0.00179

sex-searches, but not after Bonferroni correction. The third component is Granger-

caused by sex searches. We should note here that the selected Christmas eigenmood

for the US, selected by how much they distinguish Christmas, is the set of valence

components 4 and 5. This includes the most significant Granger-causal variable in this

table, and a component (the fifth) that is marginally Granger-causal at p < 0.1.

We can also examine whether mean sentiments Granger-cause each other. As you can

see in Table B.4 there is no significant Granger-causality between the mean sentiment

time series, but valence g-causing dominance is marginally significant (p < 0.1)

Overall we see that the mean values of sentiment detect some of the mood that

drives human reproductive cycles and is in turn driven by it, but selecting particular

eigenmoods reveals much deeper drivers – a similarity to holiday mood and a component

of arousal that significantly drive sex searches, and a component of dominance that is

significantly driven by sex searches.
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Figure C.1: Subject verbosity per post over different epochs. Difference
between word count per post in the period immediately preceding SUDEP compared
to word count per post during earlier posting periods. Different selections of the time
window for the last posting period are displayed on the x-axis. The box plot on the far
left represents all posts before the 12 weeks preceding SUDEP. The blue line represents
the p-value of the time coefficient for the negative binomial regression. The direction of
the arrow represents the sign of the coefficient, up indicates an increase in wordcount
during the period preceding SUDEP and down indicates a decrease. The horizontal

black line represents p=0.05
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Figure C.2: Subject verbosity per day over different epochs. Difference be-
tween word count per day in the period immediately preceding SUDEP compared to
word count per day during earlier posting periods. Different selections of the time win-
dow for the last posting period are displayed on the x-axis. The box plot on the far
left represents all posts before the 12 weeks preceding SUDEP. The blue line represents
the p-value of the word count time coefficient for the zero-inflated negative binomial
regression. The direction of the blue triangle represents the sign of the coefficient, up
indicates an increase in wordcount during the period preceding SUDEP and down in-
dicates a decrease. The red line represents the p-value of the zero post time coefficient
of the regression, with red triangles representing whether there is an increase in the
likelihood of any post on a day (up) or a decrease (down). The horizontal black line

represents p = 0.05.
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C.2 Regression statistics

Subject µ1 n1 µ2 n2 intercept timecoef timese timep θ θse

2 12.431 2162 34.413 109 2.520 1.018 0.086 1.197e-32 1.373 0.043
1 9.592 1547 17.889 54 2.261 0.623 0.135 4.146e-06 1.113 0.043
8 12.070 2185 18.375 16 2.491 0.420 0.241 0.081 1.153 0.036
6 5.252 717 7.304 23 1.659 0.330 0.143 0.021 3.136 0.269
10 13.983 1147 23.571 7 2.638 0.522 0.264 0.048 2.254 0.105
3 11.125 834 4.100 10 2.409 -0.998 0.312 0.001 1.385 0.072

Table C.1: Statistics from a Negative Binomial Regression on Word Count per Post.
µ1 and n1 correspond to the mean word count and number of posts before the last two
months, while µ2 and n2 correspond to the mean word count and number of posts during
the last two months before SUDEP. Also included are the intercept of the regression,
the coefficient on the last month indicator variable timecoef , its standard error timese,
the p-value of the coefficient timep, and the dispersion parameter θ with its standard

error θse.

A negative binomial model is often used to model over-dispersed count data, i.e.

when the variance is considerably larger than the mean [166]. Here a negative binomial

model is estimated through a generalized linear regression with log link function on word

count per post over a dummy variable representing whether the post’s word count occurs

during the last month. The significance of the time-indicator dummy variable estimates

the significance of the change in the last month over all other posts. As shown in Table

C.1 we see significant increases in the word count per post for four subjects at p < 0.05.

The table is ordered according to the rank product of the number of posts before and

during the last two months preceding SUDEP, and the two with the greatest number

of posts in both periods by rank product are also the two with the greatest increase in

word count, subjects 2 and 1, with two additional subjects showing significant increases,

subject 6 and 10. There are five subjects with decreases in word count per post, with

subject 11 and subject 3 with significant decreases.

An alternative formulation is to examine word count per day rather than per post.

Perhaps some subjects additionally start posting short posts with increased frequency

during periods of stress. However, many days contain zero posts, thus zero words, for
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Subject intercept timecoef timese timep 0intercept 0timecoef 0timep

2 3.114 1.185 0.153 8.802e-15 -0.275 -1.854 7.779e-05
1 2.821 0.621 0.187 8.828e-04 0.586 -0.755 0.007
8 3.028 0.213 0.318 0.503 -0.261 1.637 1.802e-06
6 2.170 -0.213 0.199 0.285 -0.183 0.490 0.102
10 2.914 0.240 0.281 0.393 0.513 1.295 0.002
3 2.829 -1.234 0.408 0.002 0.991 0.571 0.187

Table C.2: Statistics of a Zero-Inflated Negative Binomial Regression on word count
per day. This is similar to Table C.1, but models the word count per day rather than per
post, with the addition of a logistic regression model representing the likelihood of no
post at all. Included are the intercept of the regression, the coefficient on the last month
indicator variable timecoef , its standard error timese, the p-value of the coefficient
timep. Additionally, parameters of the logistic regression on no-post probabilities are
shown: the intercept 0intercept, the coefficient on the time indicator 0timecoef and the

significance of this coefficient 0timep .

most subjects. We can model this with a zero-inflated negative binomial model that

also estimates a probability that no words will be posted [166, 167]. As shown in Table

C.2 we see that subject 2 and 1 still have significant increases in word count per day

(columns timecoef and timep) and both are significantly more likely to post during the

last 2 months (columns 0timecoef and 0timep , note the negative coefficient corresponds to

a lower probability of having no posts on a given day). Subjects 8 and 10 are significantly

less likely to post during the last two months. Subject 11, however, is significantly more

likely to post during the last two months, although with significantly fewer words per

day. Subject 3 is seen to have a significant drop in word count per day. Additionally,

subjects 7 and 5 are significantly more likely to post in the last two months, but with

non-significant changes in word count. This view of the posting behavior also reveals

interesting patterns but is not particularly more informative than the negative binomial

model per post.
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