
AN ADAPTIVE DOCUMENT CLASSIFIER INSPIRED BY

T-CELL CROSS-REGULATION IN THE IMMUNE

SYSTEM

Alaa Abi Haidar

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in Informatics

Indiana University

May 2011



Accepted by the Graduate Faculty, Indiana University, Bloomington, in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Luis M. Rocha
(Principal Advisor)

Doctoral

Committee

Filippo Menczer

Alessandro Flammini

April 29 2011. Predrag Radivojac

ii



c© Copyright 2011

Alaa Abi Haidar

ALL RIGHTS RESERVED

iii



To my predecessors and successors in this stream of life

iv



Acknowledgements

This dissertation was partially funded by grants from the School of Informatics and

Computing at Indiana University and the FLAD collaboratorium at the Instituto Gul-

benkian de Ciência, Oeiras, Portugal.

Albeit I am the only author of this dissertation, many people have contributed to

its successful completion vis-a-vis my unforgettable graduate experience.

My foremost and deepest gratitude goes to Luis M. Rocha. I have been very for-

tunate to have him as an advisor who encouraged me to explore my own interests but

never hesitated to help whenever I struggled. His flexibility and generosity extended

beyond academia and offered me a plethora of opportunities, including several esti-

val visits to the Instituto Gulbenkian de Ciência in Portugal, ones which resulted in

many fruitful collaborations—needless to mention Portugal’s ineffable beauty, deli-

cious food, and heartwarming people. If you find the dissertation sound and clear, it

is thanks to my advisor’s patience; otherwise, it is for the lack of mine.

Alessandro Flammini, has always been there to listen and offer advice. I am deeply

grateful for his readiness to help.

Filippo Menczer and Predrag Radivojac have invited me several times to present

v



my work to their research groups and provided me with constructive criticism that

cemented my thoughts and helped me sculpt my dissertation. I am truly grateful to

their indispensable feedback.

Jorge Carneiro has motivated a huge deal of this work. I am grateful for all

the inspirational discussions and insights about the Immune system and the cross-

regulation model, without which none of this would have been possible.

My co-advisee (and fellow sufferer), Artemy Kolchinsky, has been an extremely

resourceful friend whose company enlightened me with many thought-provoking per-

spectives on research and life. I am very grateful to have him as a friend.

I am particularly grateful to Rabih Sultan, Ahmad Nasri and Peter Ortoleva for

preparing me and supporting me throughout my predoctoral years and directing me

towards this doctoral path.

I am grateful to Douglas Hofstadter for the insightful walks we shared that seam-

lessly connected Woodlawn Ave. to Ballantine Rd., anti-analogously to how his law,

Hofstadter’s Law 1, connected the abstract of this dissertation to its conclusion.

I would like to acknowledge James Costello for availing a convenient LATEXtemplate,

and many recent PhDs that reminded me of how treacherous time is, namely Nicola

Perra, Xiao Dong, Chris McEwan, Sebastian Von Mammen, Dania El-Khechen and

many others. Special thanks to Francesco Catania and Rossano Schifanella for offering

me prospective insights about postdoctoral vicissitudes, and Souheil Haddad for his

unconditional positivity and generosity. Many thanks to the Nussmeier and Pecorelli

families for their endless support. Many thanks to my friends from l’hebdofrancofolie,

1Hofstadter’s Law: It always takes longer than you expect, even when you take into account
Hofstadter’s Law.

vi



il circolo italiano, cafezinho and the three Cypriots. I am very thankful to all my

friends without whom my doctoral life would have been unbearable and although

their names will not fit here, they shall be remembered forever.

I am infinitely indebted to the numerous resources of Indiana University and

Bloomington, not only for the completion of my dissertation, but also for their endless

social, linguistic, cultural, artistic and musical clubs and events, and above all, their

extremely amiable people; I will always cherish them. I am equally indebted to the

School of Informatics and Computing and all its staff for facilitating my research with

the latest technologies and prompt technical support. I cannot be any less grateful to

the Instituto Gulbenkian de Ciência for its resourcefulness and beautiful ambiance.

Most importantly, none of this would have been feasible or worthy without the

patience and love of my family, to whom I dedicate this dissertation. Notwithstanding

their infinite love, they let me traverse the hemisphere believing it will be for a good

cause and I hope that this manuscript ipsum will be evidence thereof.

Last but not least, I thank my other two thirds, the polyglot and the artist, for

their patience and sacrifices during the course of this dissertation.

vii



Alaa Abi Haidar

AN ADAPTIVE DOCUMENT CLASSIFIER INSPIRED BY T-CELL

CROSS-REGULATION IN THE IMMUNE SYSTEM

Over millions of years, the vertebrate immune system has evolved into one of the

most complex and intelligent biological systems. The immune system’s function is

to protect the body from harmful intruders. Several mathematical models have been

proposed to understand the adaptive immune system and its functional subsystems.

We develop a novel agent-based model of T-Cell cross-regulation in the adaptive

immune system, and we apply it to binary classification problems analogous to those

faced by the immune system.

We expect our study to help immunologists better understand the general mech-

anism behind T-cell cross-regulation and also to raise questions about the behavior

of the adaptive immune system in general such as immune memory, cell death and

homeostasis. However, our chief aim is to show that cross-regulation dynamics can

be used to classify textual documents in changing corpora. We validate the model on

real-world data from biomedical articles and personal e-mails, and we compare our

algorithm with other machine learning classifiers. Finally, we discuss how the guiding

of T-cell self-organizing dynamics can be seen as a general system of classification,

the study of which is helpful for complex systems, text classification, and theoretical

immunology.
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Chapter 1

Introduction

Aut viam inveniam aut faciam

I will either find a way or make one

Hannibal

1.1 Motivation and Background

The number of documents of all types available online has been expanding at an

astounding rate. In this dissertation we deal with text classification, though our

bio-inspired binary classifier is generalizable to other types of documents or data sets.

One ubiquitous type of text document we look at is e-mail. We are all aware of

this particular type of information pollution resulting from massive product adver-

tisement (often fraudulent) sent through the cheapest and fastest of communication

methods: unsolicited e-mail (spam). Spam is irritating and time and money consum-

ing. One solution to the spam problem is anti-spam filtering that is aggressive enough

to detect and eliminate spam but not legitimate e-mail. Spam and anti-spam filters

1
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have been co-evolving1 over the last couple of decades, thus hindering the perfor-

mance of traditional classifiers [GC06]. Analogously, the vertebrate immune system

has been co-evolving with harmful viruses and bacteria for millions of years. The im-

mune system can be understood as a binary decentralized classifier capable of learning

about new intruders while avoiding autoimmune responses and thus discriminating

between self and nonself substances. We interchangeably refer to self and nonself

as harmless and harmful respectively, though much of our biomass is comprised of

genetically non-self which is harmless, such as bacteria. An alternative is simply to

regard all harmless substances as self, even if originating from genetically different

organisms. For the sake of clarity and integrity, we assume that only potentially

harmful substances are nonself for the model presented in this dissertation.

Biomedical document classification is another application area. It aims at extract-

ing relevant information from huge amounts of textual documents in biomedical liter-

ature and databases. Given the technological advances in life sciences, such as faster

genome sequencing [Mye99] and microarray analysis [SSD+95], the last decade has

witnessed an exponential growth [HC06] among metabolic, genomic and proteomic

documents (articles) being published. Nevertheless, biomedical research should be

facilitated rather than hindered by the tremendous abundance of bioliterature data.

The field of literature mining aims to analyze and categorize millions of biomedical

articles and records [Hea99]. A solution to identify relevant literature is automatic

article recommendation or classification [JSB+06b]. The immune system is a complex

biological system made of millions of cells all interacting to collectively distinguish

1The spam detection problem is an arms race between spammers and spam-filtering techniques
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between self and nonself substances, to ultimately attack the latter [Hof01]. In anal-

ogy, relevant textual documents for a given concept need to be distinguished from

irrelevant ones which should be discarded in topical queries. We explore this analogy

in this dissertation.

When thousands of cells interact to discriminate between self and nonself, they do

so collectively in a self-organized manner. Our approach is based on the interaction

of cells without access to a central controller [SC01]. Therefore, its classification

ability needs to result from a collective classification process, defined as the ability of

decentralized systems of many components to classify situations that require global

information or coordinated action [Mit06]. Nature is full of examples of collective

classification, for example, the dynamics of stomata cells on leaf surfaces are known

to be statistically indistinguishable from the dynamics of automata that are capable

of performing nontrivial classification [PWMM04]. Biochemical intracellular signal

transduction networks are capable of emergent classification [HKHR08]. Quorum

sensing in bacteria [WS06] and social insects [Pra05] are other examples of systems

performing collective classification. We can study collective classification in general

models of complex systems such as Cellular Automata, namely by identifying regular

patterns in the dynamics that store, transmit and process information [CM95, RH05,

SHR+06]. In this dissertation, we study the self-organized behavior of T-cells and

their ability to collectively classify documents.
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1.2 Challenges

Machine Learning (ML) aims at creating automatic methods that can solve problems

often by learning from available training data [FS06]. Chief among these problems is

that of classification, in which instances are categorized into predefined classes, and in

particular, binary classification, where the predefined class labels are limited to two:

relevant and irrelevant. However, there is evidence that the state-of-the-art in ML has

not been answering modern classification challenges found in data streams [Han06],

where the sequential order of instances is an important factor for data analysis as

we discuss below. A common problem, more specifically in textual data streams, is

known as concept drift and is described by the gradual or sudden change of the un-

derlying data distribution over time [Tsy04]. In the context of biomedical document

classification, we observe concept drift in the appearance and disappearance of new

terms that result from new discoveries, diseases, experiments or emergence of a new

subfield [CBH04, TPCP06]. In spam detection, we observe it in illegitimate advertise-

ment of new products and novel e-mail obfuscation techniques [MFRI+06, DCTC05b].

In concept drift, the proportions of data instances associated with the classes to be

predicted may also vary over time. This dynamic class imbalance makes the prior

probabilities for the classes change between training and testing data, rendering clas-

sification a hard endeavor for supervised learners [KHA99, Kun04]. Therefore, in the

presence of dynamic class imbalance and concept drift, an adaptive classifier that is

resilient to class balance variation and capable of generalizing concepts that drift, is

necessary [Tsy04].

Our challenge is thus to:



Chapter 1. Introduction 5

1. Design a self-organized, bio-inspired, binary document classifier using agent-

based modeling.

2. Deal with dynamic class imbalance.

3. Track concept drift and distinguish it from noise.

4. Understand how a decentralized immune system can achieve binary classifica-

tion.

1.3 Contribution

Recently, Carneiro et al. [CLC+07] proposed an analytical model of T-cell cross-

regulation. This model shows that the interaction dynamics of three cell-types is

capable of discriminating between self and nonself substances. We develop this model

as a discrete agent-based model (ABM) and generalize it into a general purpose bio-

inspired algorithm for document classification, that we call the Agent-Based Cross-

Regulation Model (ABCRM). With ABM, we are able to deal with recognition of

many antigens/features simultaneously, rather than the single one as the original

mathematical model. We show that this model performs well in binary document

classification problems, especially in the presence of concept drift and dynamic class

imbalance.

Our work establishes a bio-inspired algorithm of T-cell cross-regulation for doc-

ument classification that is comparable to state-of-the-art classification methods. In

this dissertation, we explore alternative model parameters and experimental setups
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in order to optimize the classification performance and understand the collective and

decentralized behavior of T-cell cross-regulation dynamics and more generally, the

vertebrate adaptive immune system, namely by better understanding various config-

urations of our model and parameter ranges that lead to optimal classification results

on textual documents. We also validate our model against other classifiers on two

datasets.

The following list summarizes our contributions:

1. An original ABM of T-cell cross-regulation dynamics.

2. Insights about the behavior of T-cell cross-regulation as modeled mainly con-

cerning the collective classification of T-cells, the self-organized behavior of the

immune system, the role of cell death in immune memory and the importance

of the sequential order in which proteins are introduced to the immune system.

3. The application of the ABCRM to spam detection in the presence of dynamic

class imbalance and concept drift.

4. The application of the ABCRM to biomedical document classification in the

presence of dynamic class imbalance and concept drift.

1.4 Outline

The structure of this dissertation is outlined as follows:

• Chapter 2 provides a background on binary document classification and text

mining to familiarize the reader with traditional feature processing techniques,
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data classification and verification methods, and advances in text classification

and concept drift in particular. This chapter also provides an overview of two

applications to binary document classification, namely spam detection and bio-

medical document classification.

• Chapter 3 provides an overview of the vertebrate immune system and specifically

the adaptive immune system, which is detailed within the context of artificial

immune systems. We focus on T-cell cross regulation dynamics.

• Chapter 4 introduces our agent-based cross-regulation model (ABCRM). This

chapter explains algorithm parameters and possible configurations adapted from

relevant publications [AHR08b, AHR08a, AHR10a, AHR10b, AHR].

• Chapter 5 discusses the application of our model to spam detection. In addition,

this chapter addresses some of the challenges brought about by concept drift and

class imbalance. This chapter is adapted from relevant publications [AHR08b,

AHR08a].

• Chapter 6 discusses the application of our model to the binary classification of

biomedical documents. This chapters also studies the collective behavior of T-

cell dynamics focusing on its robustness. This chapter is adapted from relevant

publications [AHR10a, AHR10b, AHR].

• Chapter 7 presents insights about T-cell cross-regulation, gained by our immune

model, such as the role of cell death in immune memory, the collective classifica-

tion of T-cells in a self-organized system and the effects of the sequential order
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of proteins on the immune system’s adaptive ability to discriminate between

self and nonself.

• The last chapter, chapter 7, refers to the conclusion of this dissertation.



Chapter 2

Text Classification

ΠανταPει

The only constant is change

Heraclitus

In this chapter, we give an overview of text classification and some of its major

challenges such as class imbalance and concept drift. We also review traditional and

state-of-art techniques for document classification, as well as applications thereof,

such as spam detection and biomedical document classification.

2.1 Introduction

Huge amounts of textual data are constantly being generated automatically or manu-

ally by millions of human beings and computational and analytical institutes. Fayyad

and Uthurusamy [FU02] report:

“The capacity of digital data storage worldwide has doubled every nine months

for at least a decade, at twice the rate predicted by Moore’s Law for the growth of

9
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computing power during the same period...Our ability to capture and store data far

outpaces our ability to process and exploit it.”

Much of this data is in the form of textual documents, such as logs, blogs, social

networking sites, scientific articles and e-mails. When documents are collectively an-

alyzed, they can result in useful information that cannot be conveyed from a single

document, such as age range, common interests, average number of protein inter-

actions, and much more [McC05, JSB+06b]. The integration of useful information,

which we call knowledge often requires the analysis of thousands of documents, well

beyond the capabilities of manual human labor [FU02].

2.2 Machine Learning and Data Mining

Machine Learning (ML) is a subfield of artificial intelligence which aims at developing

algorithms that are capable of automatically solving problems. ML is used to auto-

matically solve classification, clustering and prediction problems and can be applied

to data mining, speech recognition, computer vision, bioinformatics and many other

problem areas [FS06]. For instance, text mining aims to aid the problem of extracting

knowledge from large-scale corpora of documents very efficiently.

Data mining uses ML for automating the analysis of raw data in order to ex-

tract high quality information or discover new knowledge. Text mining focuses on

extracting information from textual documents whereas literature mining adds to

text mining the linking to databases and ontologies [SF03, JSB+06b]. Web mining

focuses on the extraction of high quality information from web documents [Men03].
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Some common text mining applications are text categorization, text summarization,

document recommendation, entity tagging and information extraction. In the course

of this dissertation, we will focus on document classification for the purpose of un-

derstanding the applicability of our bio-inspired method and comparing it with tra-

ditional text classifiers. Nonetheless, any classification algorithm can be generalized

to classify nontextual data, which we leave for future work.

Text data can be unstructured (purely textual) or structured (when tagged with

markers that relate textual tokens with other sources such as ontologies and databases).

We are interested in classifying unstructured text data, which is the most common and

challenging [McC05]. Unstructured text is available in corpora with huge numbers of

documents such as e-mail, scientific articles, blog posts and web pages.

ML methods can be supervised, unsupervised or semi-supervised. In Supervised

learning, algorithms are trained on class-labeled data to predict on unlabeled data.

Unsupervised algorithms predict unlabeled data with no prior training or knowledge

of the labels. Semi-supervised algorithms use a combination of both learning methods.

We are more interested in supervised and semi-supervised learning for assessing T-cell

cross-regulation as a classification algorithm.

Classification is the act of assigning a set of unlabeled instances1 to the cor-

responding class labels. In document classification, instances are documents and

attributes, which are fragments of text such as words occurring in the document or

combinations thereof, such as bigrams and phrases. Documents are classified based

on their constituting features and the relevance of these features to classes. We are

1In machine learning, instances, also known as examples, are the items (such as documents) that
the algorithm is supposed to classify
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particularly interested in binary document classification, which aims at classifying

documents into two predefined labels/classes, namely relevant and irrelevant docu-

ments, also denoted as positive (P) and negative (N) documents. Binary classification

is the most basic form of classification, which can be always extended to multi-class

classification simply by bottom-up combination of binary classes [GL03]. Tradition-

ally, a supervised binary classifier is trained on a corpus, a set of labeled (relevant and

irrelevant) documents, then tested on a distinct corpus of unlabeled documents that

are to be classified into the two categories. We are also interested in some aspects

of semi-supervised binary classification, mainly Positive Unlabeled (PU) learning, in

which the classifier is trained only on Positive instances and tested on unlabeled ones

[FS06].

Several representation models are used for describing textual documents. Amongst

the most common ones is the vector-space model [Sal91] in which documents/in-

stances are represented as vectors of features. Features are text attributes, usually

words or more complex sets of words such as bigrams, trigrams ... n-grams. For ex-

ample, an instance ~x = [1, 0, 0, 1, 0, 0...0] represents a document composed of features

f1 and f4 (marked with 1) from a set of features fi ∈ Fk, where Fk is the set of all

features in a corpus k. The vector-space model can represent feature occurrence with

binary vectors, feature frequency (also known as term frequency) with numeric vec-

tors or more sophisticated feature-document scores such as TF.IDF, that we discuss

in section 2.3.3.
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2.3 Text Processing

The literature contains various approaches to text processing and feature selection.

We list the most traditional ones in text mining and discuss in detail the ones we use.

2.3.1 Stop Words

Stop words are common dictionary words that occur very frequently in unstructured

text and are usually filtered out because they have no discriminative power [Fox89].

For each language and application we can produce a specific list of stop words. The

most common stop word list (or negative dictionary) for English text is based on

the Brown corpus, a broad collection of literature in English [ibid ]. Notwithstand-

ing their frequency in English text, some terms could be important in the domain

of the application and useful for discrimination. For example, the terms “with” and

“between” are specific to the domain of protein-protein interaction, often describing

“interactions between” proteins or “interactions with” proteins, and therefore exclud-

ing them from the stop list could help with the extraction of more meaningful features

[AHKM+08].

2.3.2 Stemming

In text mining and natural language processing, stemming is used to reduce a word

to its stem (also known as morphological form or root) such that every conjugation

of a word is then tokenized and recognized similarly by the system. For example
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“stemming”, “stemmed” and “stems” are automatically stemmed to their morpho-

logical root “stem”. The most widely used stemmer is the Porter stemming algorithm

[Por80b], which has been implemented in many platforms and for many languages

[Por06]. We use the Porter stemming algorithm for stemming unstructured English

text.

2.3.3 Feature Selection and Reduction

A common challenge in machine learning is that of dealing with huge numbers of

potential features (or attributes), which can be computationally expensive in docu-

ment classification. Text classification typically includes the selection and reduction

of features (also known as feature extraction). In other words, the features are se-

lected to serve the machine learning problem adequately, while minimizing loss in the

classification or learning performance of the algorithm. Several solutions have been

developed for feature selection in document classification, such as latent semantic in-

dexing (LSI) based on singular value decomposition [Dum90, WRR03], Information

Gain (IG) and Mutual Information (MI) [Seb02]. Experiments on real-data show

that the feature selection scores, IG and Document Frequency2 (DF), are strongly

correlated when classified with a k-nearest neighbors [YP97]. We use two measures

based on document frequency for ranking and selecting features: TF.IDF [Sal89] and

the S Score, that we define in the following sections. Both measures were proven to

be good in the domain of biomedical document classification [AHKM+08, KAHK+10]

2Document frequency of a feature is the number of documents having at least an occurrence for
this feature
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using a simple linear classifier.

TF·IDF

TF · IDF (term frequency-inverse document frequency) is a common measure used

to evaluate the relevance of a feature f to a document, which is proportional to its

frequency in the document (TF) and inversely proportional to the number of distinct

documents in a corpus it occurs in (IDF) [Sal89]. Let nf be the number of times a

feature f occurs in a document. The relevance of a term f to a document d, where

f ∈ Fd (all features constituting document d), is defined by TF (f, d)× IDF (f):

where the Term Frequency is:

TF (f, d) =
{nf : f ∈ d}∑

k∈d nk
(1)

The Inverse Document Frequency is:

IDF (f) = log
|D|

|{d ∈ D : f ∈ d}|
, (2)

where D is the set of documents or the corpus.

S Score

The S score is a measure that we used for feature selection in binary document

classification [AHKM+07, AHKM+08, KAHK+10, KAHK+09]. A similar variation

of it has also been used in spam filtering [FRID+07b]. The S score of a feature f in

a corpus D is S(f) = |pP (f) − pN(f)| where pP is the probability of f occurring in
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an article labeled as relevant (positive) and pN is the probability of it occurring in

one labeled as irrelevant (negative) [AHKM+07, AHKM+08, KAHK+10, KAHK+09,

RODV04]. The higher the S score of a feature, the more this feature is discriminatory

or helpful for document classification, in which case, the feature is very relevant or

irrelevant to one of the classes.

2.4 Text Classification Methods

Topical categorization of text started in the late 60’s with probabilistic text indexing

[Mar61] but was not used widely until the beginning of the 90’s [Seb02]. Several

methods have been developed for document classification such as Rocchio’s classifiers

[Roc71], k Nearest Neighbors (k-NN) [YL99], Naive Bayes [Lew98], decision trees

[DPHS98], support vector machines [Joa98], etc . The Rocchio method finds a proto-

type vector for every class and then computes document cosine similarity between the

prototype and target document vectors and it subsequently assigns the documents

to the class with the maximum similarity. k-NN is an example based classifier where

classification is based on neighboring examples. k-NN is considered a lazy learner

since all classification is performed simply by looking at nearby examples without

prior training [YL99]. Decision Trees (DT) are used for classification and decision

making, where a decision tree has internal nodes denoting simple logical rules and

leafs denoting decisions or class labels [FHK+91, CH98, LJ98]. Artificial Neural Net-

works (ANN) are composed of interconnecting artificial neurons inspired by structural

and functional aspects of biological neural networks for solving artificial intelligence
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problems such as text classification [LL99]. In the following sections we discuss state-

of-art classifiers that we have chosen to validate our method against, namely Naive

Bayes Classifier and Support Vector Machines, which have been widely used for text

classification [YL99]. In addition, we discuss the Variable Trigonometric Threshold, a

lightweight linear classifier that we developed for biomedical document classification

[AHKM+07, AHKM+08, KAHK+10, KAHK+09].

2.4.1 Naive Bayes

The Naive Bayes (NB) Classifier is a simple probabilistic classifier based on Bayes’

theorem [Lew98]. Given a document represented as a feature vector, NB classifies it

into the most likely class assuming that features in the vector are independent, given

the class.

Given two classes of documents: relevant (P ) and irrelevant (N), and a document

d, we form the conditional probabilities p(d|P ) and p(d|N) from the labeled training

corpus. Next, we apply Bayes’ theorem to calculate the a posteriori probabilities

p(P |d) and p(N |d) to predict the class of d.

The probabilities p(d|P ) and p(d|N), assuming the features are independent,

are p(d|{P,N}) =
∏n

i=1 p(fi|{P,N}), where a document d is a vector of features

〈f1 . . . fn〉.

Various Bayes classification rules are used to maximize the difference between

p(P |d) and p(N |d) in order to classify the document d. Metsis et al. [MAP06] dis-

cusses these classification rules and compares their performance on e-mail classifica-

tion to show that multinomial NB with boolean attributes is very reliable. Therefore
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we use it in our implementation of the NB classifier.

2.4.2 Support Vector Machines

A Support Vector Machine (SVM) is a supervised learning algorithm that is commonly

used in text classification. In binary classification, a SVM is used to draw a linear

boundary with optimal separation of instances between the two classes with respect

to the given features [Vap95, Joa02]. Assuming that the two classes are linearly

separable, one can draw infinitely many linear boundaries to separate between them

but only one optimal boundary with the maximum-separation margin (see fig. 2.1).

In high-dimensional space, the optimal boundary is represented by a decision

hyperplane, which is satisfied by the equation 〈~w, ~d〉 + b = 0 , where ~w is the vector

that is normal to the optimal hyperplane, ~d is the feature-vector document and b

is the bias. The optimal hyperplane is surrounded by two secondary equidistant

hyperplanes, 〈~w, ~d〉 + b = −1 and 〈~w, ~d〉 + b = +1, respectively, and the distance

between them is called the margin (see fig. 2.1).

The computation of the optimal hyperplane is a quadratic optimization of the

function of (w, b) that maximizes the margin, 2
||w|| , such that all documents ~di ∈ D fall

on (as support vectors) or beyond the secondary hyperplanes (see fig. 2.1). Finally,

the function f(~di) = sign(~wT ~di + b) predicts the class label for each document ~di as

relevant, if f(~di) = 1, or irrelevant, if f(~di) = −1.

For non-linearly separable classes, or soft classification, Cortes and Vapnik intro-

duced a slack variable that corresponds to margin errors due to misclassification[CV95].

The only drawback of SVM is their training time which was estimated as O(Nx)
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Figure 2.1: An illustration of binary classification with SVM showing the two classes,
the optimal and secondary hyperplanes, the support vectors and the margin.

where N is the number of documents and x ∈ [1.8, 2.1] [CRS03].

We use the publicly available SVMlight [Joa99]. The documents are represented

as feature vectors, with feature counts in documents mapped to the range [-1,1] such

that they can be processed by SVMlight.

2.4.3 Variable Trigonometric Threshold

The Variable Trigonometric Threshold (VTT) is a linear classifier that we devel-

oped for biomedical document classification [AHKM+08, AHKM+07, KAHK+10,

KAHK+09].

The ideal features in the pP/pN boundary plane (see Figure 2.2) are those closest
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Figure 2.2: Trigonometric measures of term relevance in the pP/pN plane; pP and pN
computed from labeled documents d in training data.

to either one of the axes. Any feature f is a vector on this plane (see Fig. 2.2), and

therefore feature relevance to each of the classes can be measured with the traditional

trigonometric measures of the angle α between this vector and the pP axis: cos(α) is a

measure of how strongly features are associated with positive/relevant documents, and

sin(α) with negative/irrelevant ones in the training data. Then, for every document

d, we compute the sum of all feature contributions for a positive (P) and negative

(N) decision:

P (d) =
∑
f∈d

cos(α(f)) =
∑
f∈d

pP (f)√
p2P (f) + p2N(f)

,

N(d) =
∑
f∈d

sin(α(f)) =
∑
f∈d

pN(f)√
p2P (f) + p2N(f)

(3)
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The decision of whether a document d is classified as positive or negative is then

computed according to:

 d ∈ P, if P (d)
N(d)
≥ λ0 + β−np(d)

β

d ∈ N, otherwise
(4)

where λ0 is a constant threshold that is optimized for deciding whether a document

is relevant or irrelevant. This threshold is subsequently adjusted for each document d

with the factor (β − np(d))/β, where β is another constant, and np(d) is the number

of entities in a document d that can be discriminatory based on the domain of the

problem. For example, in the domain of protein-protein interaction, np(d) could

represent the number of unique protein names tagged in a document d by a biological

entity recognition tool such as ABNER [Set05].

We first employed VTT for the protein-interaction abstract classification task

of the second BioCreative Challenge [AHKM+08, AHKM+07] and our method was

ranked among the top performing classifiers [KV07]. Our team then participated in

the full-text classification tasks of BioCreative 2.5 [KAHK+10, KAHK+09] and our

method was deemed best classifier [LMK+10] with respect to all F-score, Accuracy

and AUC.

2.4.4 Overfitting

The main challenge in text classification is to have an algorithm that is capable of

learning from a training corpus to generalize and predict document class labels with-

out overfitting. Overfitting occurs when a classifier is too fine-tuned to the training
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data or the noise therein, that it cannot generalize on testing data [FS06]. Com-

munity wide efforts, such as the Biocreative challenge [KV07], try to address this

issue of overfitting by manually annotating a validation data set that is distinct from

the training one. Machine learning solutions try to address the overfitting problem

differently [FS06] — for example, decision trees use pruning to cut random decision

subtrees [Qui87]. Several methods have been proposed for this problem including

bagging [Bre96], boosting [FS95], and stacking [Wol92]. We propose an adaptive bio-

inspired solution based on the interaction of decentralized and self-organized T-cells

that are capable of learning collectively and adapting to changes between the training

and the validation data.

2.4.5 Dynamic Class Imbalance

Another challenge in data mining is that of class imbalance, in which we are

given many more instances from one class (usually the negative or irrelevant) than

from the other [CJK04]. Class imbalance is often due to lack of information about

one of the classes [Abe03, VR05, KKP06]. Several attempts have dealt with its

challenges [CJK04, Wei04] by either oversampling instances from the smaller class,

under-sampling instances from the larger class or combinations of both [CJK04].

The problem becomes even more challenging when class imbalance changes dynam-

ically or has different properties between the training data and the validation data

[KHA99, Kun04]. For example, in spam detection the number of desired or spam e-

mails that a person receives in a fixed time interval varies all the time and depends on

many factors that are not easy to predict. Therefore, training on a fixed proportion
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of relevant-to-irrelevant instances is not always accurate in real-world data. Hence,

we propose an adaptive bio-inspired solution that is robust to these changes and we

validate our hypothesis by training our method on a set of balanced data and testing

it on a distinct set of imbalanced data.

2.4.6 Concept Drift

Data can be static or temporal (data stream), where the time dimension and the

sequence in which the data is analyzed are of importance to the data analysis. In

data streams, instances can be studied over fixed time intervals—for example, e-

mails received in the last month or biomedical articles published in the last year.

Data stream mining has gained a lot of attention over the last few years through

conferences, workshops and journals [GZK05]. A major challenge in data stream

mining is that of concept drift.

Concept drift is the (gradual or sudden) change of underlying distributions of

features in classes over time in unforeseen ways [Tsy04]. It is often assumed in ML

that these distributions remain unchanged, however they are constantly changing due

to changes in hidden context. The hidden context is not given explicitly as a predictive

feature but the assumption is that it ultimately affects the proportions and values of

the predictive features [Tsy04]. For example, the text feature “yeast” is relevant to

the concept of protein-protein interaction (PPI) only when a hidden context of the

document such as “yeast two-hybrid” relates to a PPI extraction method.

Concept drift is very common in textual stream data such as e-mail data and
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biomedical articles [MFRI+06, DCTC05b, TPCP06]. In supervised learning, the tar-

get concepts simply represent the predefined class labels [DCTC05b]. Hence, in text

document classification, we can define concept drift as the change in feature distri-

bution underlying the relevant class, which we assume changes with linguistic con-

text through time. From a Bayesian perspective, the drift may occur in three ways

[Kun04, KHA99]: (i) The prior probabilities p(c) of classes/concepts c, may change

over time. (ii) The probability distribution p(x|c) of features x given class c, may

change over time. (iii) The third case is when the posterior distribution of class mem-

berships p(c|x) change, which can be inferred from the previous two cases. Frequent

re-training can be expensive and therefore a one-pass adaptive learner is desirable

to make more accurate predictions in the presence of concept drift. In supervised

learning, concept drift can be identified and measured by the drop in classification

performance over time [Tsy04].

In spam detection, a textual feature such as ‘Rolex’ becomes relevant to the

concept/class of spam after many unsolicited and undesirable Rolex e-mails. How-

ever, users involved in the Rolex business might be interested in Rolex relevant e-

mails. Some users might even become interested in buying a Rolex and in turn in

Rolex relevant e-mails, or ham. From a Bayesian perspective, p(′ham′|′Rolex′) and

p(′spam′|′Rolex′) may fluctuate between 0 and 1 (see Fig. 2.3). The feature ‘Rolex’ is

not the only feature drifting as all its contextual features such as ‘replica’, ‘order’, or

even ‘unsubscribe’ may also drift. Needless to say, the numerous spelling variations

of ‘Ro1ex’ can be made relevant to the spam concept by spammers. Therefore, it

is not enough to train the algorithm on recent instances, a personalized algorithm



Chapter 2. Text Classification 25

is required to treat the concept of spam differently for every user depending on the

dynamic change in their legitimate e-mails (ham). The personal aspect of e-mail

makes the Artificial Immune Systems (AIS) approach all the more compelling, as

each user can generate personalized “spam immunity” in analogy to “personalized”

natural immunity. However, first we need to test if our method works as a classifier.

Figure 2.3: An example of a concept drift in spam where the feature ‘Rolex’ becomes
more relevant to spam with p(′spam′|′Rolex′) increasing over time.

Three approaches distinguish algorithms handling concept drift: instance selec-

tion, instance weighting and ensemble learning [Tsy04]. Instance selection focuses

on the most recent instances that can identify the current concept. Time windows

(of fixed and varying sizes) are effective in doing so [WK96, MM99]. For example,

FLORA is a window based memory system that was later equipped with varying win-

dow size (FLORA2) and then improved to store concepts for later use when context

change is detected (FLORA3) [WK96]. Finally, FLORA4 was designed to addition-

ally deal with noise and distinguish it from concept drift [WK96]. Instance weighting
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is sometimes used to weight more significant and recent instances and age others.

For example, Syed [SLS99] use block-by-block incremental SVM, by training on the

current block (batch) of instances and the support vector from the previous training

block. Instance weighting resembles instance selection, except that it is not limited

to a window of instances and therefore it can weigh older instances more than more

recent ones. Ensemble learning combines predictions from more than one system for

decision making [KM07, SK01, TPCP08]. For example, SEA is an ensemble of sepa-

rate decision tree classifiers that are constantly replaced by newer ones that improve

the performance of the ensemble [SK01]. DWM-NB and DWM-ITI are also ensembles

of weighted naive bayes and incremental tree inducer systems that classify based on a

weighted majority vote [KM07]. Other models used for tracking concept drift include

instance-base reasoning, such as Spamhunting [FRID+07b, FRID+07a] and case-base

reasoning, such as ECUE [DCS06], both for tracking concept drift in spam.

Many of these systems were tested solely on artificial data benchmarked for study-

ing concept drift, such as STAGGER concepts [SG86]. Others were tested with real

life data, such as sequential and time series data from the UCI machine learning

repository [AN07], having a fixed number of features in contrast to boundless textual

features from documents.

The adaptive immune system has aspects similar to the aforementioned approaches

naturally built-in and evolved rather than designed. For example, natural cell death in

general and the positive and negative selection of T-cells in the thymus are analogous

to feature selection. We plan to address the problem of concept drift for document

classification from a new bio-inspired perspective.
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2.5 Application

Text can be categorized to identify conceptually-related classes of documents—at a

minimum, two classes with relevant and irrelevant documents for a given concept.

The relevance can be with respect to a personal interest such as desirable e-mail

in contrast to spam, or with respect to a certain topical query, such as biomedical

articles that are relevant to protein-protein interaction. In this section we offer an

overview on both application areas.

2.5.1 Spam Detection

Spam detection is a binary document classification problem in which e-mail is clas-

sified as either ham (legitimate e-mail) or spam (illegitimate or unsolicited e-mail).

Spam is very dynamic in terms of advertising new products and finding new ways to

defeat anti-spam filters. Spam detection has recently become an important problem

with the ubiquity of e-mail and the rewards of no-cost advertisement that can reach

the largest audience possible. With millions of users, spam becomes not only annoy-

ing but also expensive, costing businesses around $130 billion, as estimated3 for 2009.

The challenge in spam detection is to obtain the smallest possible number of misclas-

sifications, especially of legitimate e-mail (false negatives). To avoid confusions, we

label ham and spam as positives and negatives respectively, although the opposite la-

beling is also practiced. Spam detection often focuses on e-mail headers (e.g. sender,

receiver, relay servers...) or textual content (e.g. subject, body), however we are only

3http://www.ferris.com/research-library/industry-statistics/
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interested in the textual contents of e-mail for assessing our method as a document

classifier.

Support vector machines [KA01], Naive Bayes classifiers [SDHH98, MAP06] and

other classifiers such as those using Case-Based Reasoning [FRID+07b] have been

very successful in detecting spam in the past. However, they generally lack the

ability to track concept drift that is common in this domain with new advertisement

themes in spam. Bayesian poisoning, a technique used by spammers to surpass spam

filters based on Naive Bayes classifiers, is also difficult to escape. Ideally, a spam

detection system should be capable of handling concept drift, distinguishing it from

noise [Tsy04]. Research in spam detection has recently been focusing on detecting

concept drifts in spam, with very promising results [DCS06, MFRI+06]. Other areas

of intense development in spam-detection include social-based spam detection models

[BR05, CDN05, TSC10], in which spam-detection relies on feedback about spam e-

mails and addresses from multiple users. Network-based detection models [HSF+09]

process and analyze network packets from e-mails to detect patterns similar to those

sent by spammers.

AIS models are inspired by various sub-systems and theories of the natural im-

mune system [Hof01], such as negative selection, clonal selection, danger theory and

the immune network theory. Oda’s Masters thesis was based on using clonal selection

of AIS for spam detection and the preliminary results were encouraging [Oda05]. AIS

algorithms based on ABNET, an AntiBody Network [BB06] and incremental clus-

tering Immune Networks [YAC+07] were also used for spam detection. Nevertheless,

our bio-inspired model is based on a novel and simple model of T-cell cross-regulation
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[CLC+07] that we test and discuss in the following chapters.

2.5.2 Biomedical Document Classification

Much of modern biomedical research relies on the induction of correlations and inter-

actions from all types of data. Indeed, in the last decade, fueled by the production of

large biomedical databases, particularly those containing genomic data, as well as the

widespread use of high-throughput technology, we have witnessed the emergence of a

more data-driven paradigm for biological research, which in turn created new analysis

challenges. Since we ultimately want to increase our knowledge of the bio-chemical

and functional roles of genes and proteins in organisms, there is an obvious need to in-

tegrate the associations and interactions amongst biological entities, which have been

reported and accumulate in literature and databases. Such integration can provide

a comprehensive perspective of presently accumulated experimental knowledge, and

even uncover new relationships and interactions induced from global information but

unreported in individual experiments.

Literature mining [SF03, JSB06a] is expected to help with such integration and

inference; its objective is to automatically sort through huge collections of literature

and databases (the “bibliome”) and suggest the most relevant pieces of information

for a specific analysis task, e.g. the annotation of proteins [HYBV05]. Given the

size of the bibliome, it is no surprise that literature mining has become an important

component of bioinformatics. But this success has raised the important issue of

validation and comparison of the inferences uncovered via “bibliome informatics”.

While it is difficult to develop a “gold standard” for all literature mining approaches, it
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is important to provide a means to test and validate different algorithms and electronic

sources of biological knowledge. Thus, researchers in this field have focused on testing

algorithms and resources on specific tasks, e.g. protein annotation[HYBV05] and

protein family [MRV+06] and structure [RLRS06] prediction.

As for the specific task of binary biomedical document classification concerning

our research, community wide efforts such as KDD Cup 2002, TREC Genomics and

BioCreative dedicated tasks for the classification of biomedical published articles.

The KDD Cup at 2002 provided 862 journal articles curated by FlyBase and the

challenge was to determine whether 213 test articles contained experimental evidence

about gene products [YHM02]. The TREC Genomics conference for 2004 provided

10 years of completed citations from the MEDLINE database inclusive from 1994 to

2003 (4,591,008 articles) and dedicated a subtask for determining whether an article

has experimental evidence warranting GO annotation (relevant) or not (irrelevant)

[HBC04]. The goal of this triage process was to reduce the number of articles sent

to human curators for further analysis. The top performing submissions used various

domain-specific techniques for identifying gene names and a Bayesian classifier for

additional weighting [ibid ]. The BioCreAtIvE (Critical Assessment of Information

Extraction systems in Biology) challenge evaluation is precisely an effort to enable

comparison of various approaches to literature mining. The BioCreAtIvE challenges

have provided labeled and annotated articles and dedicated a task for biomedical

document classification in terms of relevance for annotations concerning proteomics

and to protein-protein interaction [KV07].
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In the Article Classification Task (ACT) of BioCreative II.5 participants were pro-

vided with 619 full-text articles for training (out of which 61 articles were curation-

relevant), and 595 full-text articles for testing (out of which 63 articles were curation-

relevant) [LMK+10]. Our team (team 9) was among 15 participants and used sev-

eral methods, especially VTT (see 2.4.3), that were ranked amongst top performing

methods for the classification task in BCII.5 [LMK+10] and previous Biocreative chal-

lenges [AHKM+08, KAHK+10, VCJ+05]. Bio-inspired methods were never employed

for such competitions and therefore we test our immune-inspired method on biomed-

ical data from the Biocreative challenge and compare our results with traditional

classifiers and performances of other participants (see chapter 6).

2.6 Validation

Validation is used to assess the quality of a given classifier, especially in terms of

its ability to generalize from the training data. In order to answer the ability of a

classifier to generalize, the labeled training documents are partitioned into training

and validation documents [FS06]. The labels of the latter predicted by the classifier

are then compared to the correct labels using standard measures to assess the quality

of the classifier. Finally, these measures are compared to those obtained by state-

of-art classifiers to assess the relative performance of the classifier. In this section,

we discuss data partitioning techniques, performance metrics for the assessment of

classification quality, and statistical tests used for the comparison of algorithms in

terms of their classification performance.
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2.6.1 Data Partitioning

K-fold cross-validation is commonly used by splitting the training data into K parts,

training the classifier on the (K − 1) partition (K = 10, leaving 90% of the data for

training, or K = 4, leaving 75% of the data for training, or K = 2 with validation

and training portions equal) and testing on the remaining part [FS06]. Each of the

K testing sets is then evaluated using a performance metric, that are averaged and

reported in addition to other statistical variations.

2.6.2 Stream Data Partitioning

In stream data, the order of the documents can be of importance to the algorithm

and therefore the algorithm is trained on a set of documents that are ordered by time

of creation or publishing, and then tested on a distinct set of documents that follows

in time order [SG86].

2.6.3 Performance Metrics

The classifier can be tested on the aforementioned partitions to compute statistics of

predictions of false negatives (FN), false positives (FP ), true negatives (TN) and

true positives (TP ). From these, one can calculate:

• Error rates %FN and %FP

• Precision ( TP
TP+FP

) and recall ( TP
TP+FN

)

• F-score 2·Precision·Recall
Precision+Recall
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• Accuracy TP+TN
TP+TN+FP+FN

• Area Under the ROC Curve (AUC) represents the trade off between TP rates

(TPR) and FP rates (FPR) and should not be confused with the Area Under

the interpolated precision and recall Curve (iAUC) . We use the latter since it is

the recommended metric for the evaluation of unbalanced biomedical document

classification [LMK+10].

• Mathew’s Correlation Coefficient (MCC) is often used in document classification

and it is calculated as TP ·TN−FP ·FN√
((TP+FP )·(TP+FN)·(TN+FP )·(TN+FN))

We use all the above measures to assess the classification performance of our

algorithm, especially F-score for balanced data and additionally iAUC for imbalanced

data.

2.6.4 Statistical Tests for Comparison

We compare classification performance of algorithms using the paired student t-test.

Let H0 be the null hypothesis that any two samples are drawn from the same distri-

bution. A p-value < 0.05 rejects ( p-value < 0.01 strongly rejects) H0, establishing a

statistical distinction between the two samples —in our case, the performance mea-

sures drawn from the two classification algorithms. Hence, the alternative hypothesis

(H1) that one classifier outperforms the other is proven [FS06]. We also use 95%

confidence intervals for the purpose of comparing the distribution of classification

performance [ibid ].
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2.7 Summary

In this chapter, we have defined text classification in terms of data mining and ma-

chine learning. We have introduced and discussed traditional techniques for feature

processing, feature selection, document classification, validation and performance

evaluation. We also gave an overview of the current challenges in text classifica-

tion in general, and in two applications of binary text classification, namely, spam

detection and biomedical document classification.



Chapter 3

Natural and Artificial Immune Systems

Atento ao que sou e vejo, torno-me eles e não eu.

Attentive to what I am and see, I become them and stop being myself.

Fernando Pessoa in Himself

In this chapter, we give an overview of natural immune systems focusing on adap-

tive immunity and T-cell dynamics in vertebrate organisms. We also review the recent

field of artificial immune systems, especially the topics that are most relevant to text

classification.

3.1 Introduction

The word ‘immunity’ derives from the Latin immunus, which referred to an exemption

from tax or burden that was applied to all Roman citizens. The first written records

of adaptive immunity can be traced back to Thucydides’ notes about the plague

of Athens in 430 BC. Thucydides reported that patients recovering from a disease

could nurse the sick without risking a second infection with the same disease. This

adaptive phenomenon was witnessed by many other societies but it was not until the

35
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19th century that it was scientifically studied.

3.2 The Natural Immune System

The Immune System (IS) has a multi-layered structure of defense (see figure 3.1).

The organism’s skin forms the first barrier of defense against infection. Following is

another physiological layer that is equipped with temperature and pH conditions that

can be unbearable for most intruders. However, some intruders bypass the elementary

layers of defense to then face the innate and the adaptive immune systems. For many

years both systems were separate areas of study until evidence recently showed that

both consist of millions of cells of various types that interact in a complex fashion to

recognize and eliminate pathogens [Hof01]. The process of recognition and elimination

is accomplished by chemical bonding directly between cell receptors1 and pathogens

with matching patterns, or indirectly between cells that communicate by emitting

signals to mediate immune responses.

3.2.1 The Innate Immune System

The “innate” immune system response is mostly inherited at birth, in contrast to the

response of the adaptive immune system which is acquired over time. The innate

IS is brought to recognize generic targets in pathogens, while the adaptive immune

system learns to recognize specific targets [Rob07]. The innate IS is mainly divided

into the complement system, and the endocytic and phogocytic systems. In the last

1Cells are equipped with polypeptide structures called receptors that can specifically recognize
fragments of pathogens (or patterns) by chemically binding to them
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Figure 3.1: The three lines of defense of the immune system: physiological barriers,
the innate immune system and the adaptive immune system.
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two systems, roaming cells such as macrophages detect and engulf foreign antigens

and other extracellular molecules [Hof01].

The complement system consists of small proteins and protein fragments that

circulate in the plasma to bind and detect pathogens (mostly bacteria) and help

eliminate them through lysis or opsonization. In lysis, the complement molecules

destroy bacteria by rupturing their membranes, while in opsonization, the bacteria is

coated by complement molecules (or antibodies) that help the detection of bacteria

by macrophages. Macrophages are activated to engulf and destroy pathogens—they

“eat” them. They also secrete signaling proteins called cytokines that induce an

inflammatory response, characterized by fever, among other things. Fever increases

body temperature and in turn speeds up the blood flow to help circulate recruited

immune cells to sites of infection. One type of immune cells called interferons, when

infected by viruses, produce proteins to inhibit viral replication and activate natural

killer cells to kill virus-infected cells. Activated natural killer cells release chemicals

in infected cells to trigger apoptosis, which is programmed cell death.

3.2.2 The Adaptive Immune System

The adaptive or acquired immune system, is a complex network of cells in vertebrate

organisms, that learns to distinguish between harmless and harmful substances or

antigens—usually fragments of proteins and certain types of polymers that can be

recognized by the immune system. When harmful antigens from pathogens are dis-

covered, an immune response to eliminate them is set in motion. Perhaps the key
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molecular components of the adaptive IS are T-cells (lymphocytes). It is in the thy-

mus that T-cells develop and mature; only T-cells that are capable of recognizing

antigens and those that fail to bind to self antigens (to prevent autoimmunity) are

released from the thymus (maturation), while the rest of the T-cells are culled by pos-

itive and negative selection respectively [Cou80, PT93]. Mature T-cells are allowed

out of the thymus to detect harmful nonself antigens. They do this by binding to

antigen presenting cells (APC), typically macrophages and dendritic cells that collect

and present substances through (Major Histocompatibility Complexes) MHC after

breaking them chemically into antigen fragments (or epitopes). Specific T-cells are

able to bind to the presented antigens when the affinity between them is high enough.

The affinity is the binding strength between lymphocytes and antigens. Once the T-

cells bind to the APC, they stimulate (recruit) another type of lymphocytes, B-cells,

that are produced in the bone marrow. B-cells start a cascade of events, including

a Darwinian process of B-cell generation via somatic hypermutation, leading to more

antibody production. Antibodies are protein fragments similar to T-cell receptors pro-

duced by the immune system to bind and destroy pathogens or tumors linked to the

antigens by macrophages and dendritic cells. However, it is possible that T-cells and

B-cells mature before being exposed to all self antigens and therefore cause threat to

some self antigens outside the thymus. Even more problematic is somatic hypermuta-

tion in clonal selection [Bur59] that ensues in lymph nodes, outside the thymus, after

the activation of B-cells. At this stage, it is possible to generate many mutated lym-

phocyte clones that could bind to self antigens—(auto-immunity). One way around

this is by a process called co-stimulation which involves the co-verification of B-cells
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by helper T-cells (Th cells) before the antigen is released from lymph nodes.

To insure that the T-cells do not also attack self, another type of T-cells known

as T regulatory cells, are formed in a distinct cell lineage in the thymus where they

mature to recognize self antigens [Sak04]. These regulatory T-cells have recently at-

tracted a lot of attention after years in the “wilderness” [Sak04, JC06]. Regulatory

T-cells were originally named suppressor T cells but their function was not fully un-

derstood and the field was discredited until their crucial role as regulatory cells in the

immune system was better understood [M”ol88]. The detailed mechanisms in which

regulatory T cells administer adaptive learning are still being studied [Rob07] and

will be investigated in the following chapters. Nonetheless, there is enough evidence

to show that regulatory T-cells are responsible for preventing autoimmunity by sup-

pressing other T-cells that might bind to self antigens and thus recognize and attack

harmless self cells [Sak04, CLC+07]. The anatomy and functionality of the immune

system is very briefly illustrated in Figure 3.2, described by Dasgupta [DN08] and

Janeway [JTWS96] and revisited in section 3.3.2.

3.3 Artificial Immune Systems

Artificial Immune Systems (AIS) are adaptive systems, inspired by theories and ob-

served principles of the immune system, and applied towards solving computational

problems [DCT02b]. Common AIS techniques are based on specific theoretical models

explaining the behavior of the vertebrate adaptive immune system such as: Negative

Selection, Clonal Selection, Immune Networks and Danger Theory [Tim07].
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Figure 3.2: APC ingest protein fragments and present them as antigens to be rec-
ognized by T-cell receptors when the affinity between them is high enough. Effector
(E) T-cells that bind to APC initiate several immune responses that may lead to au-
toimmunity if the recognized antigens are “self”, as illustrated on the left. To lower
the chances of autoimmune diseases, Effector T-cells are suppressed by another type
of autoreactive T-cells (blue), know as Regulatory (R) T-cells, that are trained to
recognize self antigens, as shown on the right.
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AIS can be classified into two categories: (i) mathematically modeling the im-

mune system (ii) a metaphorical inspiration to engineer algorithms that are capable

of learning and solving a variety of machine learning problems such as classification,

clustering and regression analysis. In this dissertation, we develop an agent based

model of T-cell cross-regulation in the immune system (an example of the first cate-

gory), and its application to text classification (an example of the second category).

3.3.1 A Brief History

AIS is a relatively new field which began in the mid 80’s with the modeling and

refinement of Jerne’s immune network theory [Jer74] by Farmer et al. [FPP86], and

later by Varela [VC91]. However, it wasn’t until the mid-90’s that AIS became a

subject area when negative selection was used by Forrest [FPAC94] for protecting

computer networks from viruses. Cooke and Hunt [CH95, HC96] adapted immune

networks for classification and Timmis [TN01] further improved it while De Castro

et al [dCT02a, dCVZ02] worked on aiNet for multimodal function optimization and

data analysis. The first book on AIS was edited by Dasgupta [Das98].

3.3.2 Framework

According to Timmis [Tim07], AIS are defined by a framework of three basic elements:

A representation of the system’s components, a set of mechanisms that define

the interaction of components with each other and the environment, and a set of

procedures that govern the dynamics and behavior of the entire system, and that we

call model.
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Components

Traditionally, components are the AIS equivalents of antigens (Ag) and antibod-

ies (Ab), and they are represented as vectors. Ab and Ag can be conceived as a

key and a lock that need to have a matching pattern to bind. Ag and Ab can

be binary (e.g. ~Ab = (0, 1, 1, 0, 0)), integer ((e.g. ~Ag = (3, 14, 2, 0, 4)), real ((e.g.

~Ag = (0.2, 0.6, 0.2, 0.0, 0.4)) or string (e.g. ~Ab = (hello, this, is, an, example)) vec-

tors.

Mechanisms

Most of the cellular-interaction mechanisms are inspired by a key-and-lock interaction

between the Antibody (Ab) and the Antigen (Ag) that can identify Ag’s adversity

based on the affinity between Ab and Ag. Ab can be though of as the system’s

trained army that can recognize Ag enemies. Perelson’s shape-space model [PO79,

Per89] presents the Ab as circles that can recognize circumscribed Ag based on their

affinity. It is more common to use complementarity (or distance) measures for affinity

rather than similarity measures. Following are examples of distance measures: i) the

euclidean distance D( ~Ab, ~Ag) =
√∑

i(Abi − Agi)2, ii) the manhattan or city-block

distance D( ~Ab, ~Ag) =
∑

i |Abi − Agi| or (iii) the Hamming distance, which counts

the number of matches between ~Ab and ~Ag. For example, let ~Ab = (0, 1, 1, 0, 0) and

~Ag = (1, 1, 1, 1, 0), then the Hamming distance between ~Ab and ~Ag, D( ~Ab, ~Ag) = 3.

D( ~Ab, ~Ag) = 2 for the previous example. There are several variations of the commonly

used Hamming distance, for instance, r-contiguous bits [PPP93] give more importance

to contiguous matched bits, whereas the r-chunk bits [BEFG02] is concerned with the
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matching of a window of a fixed number of bits.

Models

The most established theoretical models explored by AIS approaches are: clonal se-

lection [Bur59] and immune networks [Jer74, FPP86, Par90, SC98], which are both B-

cell inspired. T-cell inspired models, such as negative selection [Cou80, FPAC94] and

danger theory [Mat94] have gained popularity, while the more recent cross-regulation

model [CLC+07] has only been proposed as a theoretical model with no applications

developed other than the work presented in this dissertation. Many variations of

these models (described below) and a plethora of other AIS models have been used

for specific applications such as text classification.

• negative selection is the process of T-cell maturation that takes place in the

thymus gland where T-cells are exposed to a repertoire of self antigens. T-

cells that recognize and bind to self antigens are culled, whereas others mature

and leave the thymus to recognize nonself antigens and participate in their

elimination [Cou80, FPAC94].

• The clonal selection model is the oldest immune model first described by

Burnet [Bur59] and inspired by Darwinian B-cell hypersomatic mutation and

its ability to evolve new receptors or antibodies, Ab, capable of recognizing

antigens, Ag. The initial population of Ab is randomly generated. Ab that

recognize Ag with a certain affinity proliferate while the others that are not

capable of recognizing any Ag slowly die out until the population of Ab is

fine-tuned or trained to recognize as many Ag as possible [Das98].
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• The immune network model was initially proposed to achieve immunological

memory through a network of B-cells [Jer74]. The network is constructed by

matching between its binding regions (known as idiotopes and paratopes and

are comparable to Ab and Ag). The network reaches a stable state that is

capable of recognizing nonself when its self-recognizing regions have all been

regulated. The immune network model was later enhanced to focus more on

systemic properties for understanding the maintenance of memory and reper-

toire selection [FPP86, VC91].

• Matzinger’s danger theory [Mat94] offers an alternative perspective to the tra-

ditional self/nonself discrimination to detect dangerous intruders. The danger

theory measures cell damage indicated by distress signals when cells die unnat-

urally (in contrast to natural cell death or apoptosis). The dendritic cell algo-

rithm, which attracted attention recently, is based on danger theory where den-

dritic cells distinguish between safe signals represented byapoptosis, and danger

signals represented by Pathogen Associated Molecular Patterns (PAMP) signals,

which are biological signatures or motifs of potential intrusion [Gre03, GAT].

3.3.3 AIS in Text Classification

AIS has been applied in many areas such as robotics, control, optimization, anomaly

detection, learning, and data mining [dCVZ, DCT02c], however we are specifically

interested in AIS applications to text classification. A significant amount of AIS

algorithms have been used for classification in general but few have focused on text

mining and classification [WT04, KT01, TC02]. Even fewer AIS algorithms have
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attempted to address the challenges of concept drift.

For example, AISEC is a B-cell inspired AIS that is based on the clonal selection

model. AISEC was tested on spam detection and showed to be comparable with

Naive Bayes but not on a publicly available e-mail dataset [SFT03]. AISEC is the

only example of an AIS dealing with concept drift to our knowledge. STRABNET

tracks concept drift using antigen networks for spam detection but was tested using

k-fold cross-validation disregarding time order [BB06]. In this dissertation we also

study the importance of the order in which documents are presented to the classifier.

A fuzzy B-cell inspired AIS was used to detect session profiles from a web access

log data. However, it was concerned with clustering and not classification, and it was

limited to a fixed number of non-textual attributes in contrast to more numerous and

unbounded textual attributes2 [NGD02]. Another B-cell inspired algorithm, AIRS,

was applied specifically to deal with class imbalance and predict the cause of “power

distribution outage” using three major causes (tree, animal and lightning) as proto-

types [Tay07]. Although AIRS outperformed artificial neural networks, the data it

was applied to was limited to a fixed number of attributes (5) and did not address

the dynamics of class imbalance.

We propose an ABM T-cell cross-regulation algorithm to address head-on the

issues of concept drift and dynamic class imbalance for the classification of textual

documents.

In the last couple of years, several review papers have discussed the slow advances

in AIS and proposed improvement strategies through novel and simpler AIS models

2Numerous textual attributes are assumed to be better suited for studying concept drift since
they are more adequate for describing concepts [Tsy04]
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(inspired by the vertebrate innate immune systems and immune systems of plants)

as well as the development of a unified architecture for integration of existing models

[Das06, Tim07, TA07, HT08]. Dasgupta [DN08] concluded that negative selection

algorithms suffer from scalability (for binary representation) and dimensionality issues

(for real-valued representation), while algorithms inspired by clonal selection and

artificial immune networks have been shown to be equivalent and very similar to

evolutionary algorithms, with antibody somatic hypermutation instead of genetic

variation [Gar03]. Hence, a novel and simple AIS model for text classification, in

imbalanced and dynamic scenarios, would be very welcome by the AIS community.

While we are left with many challenges regarding the fundamental understanding

of the immune system and its potential application to similar problems, we show

that a novel ABM of T-cell cross-regulation, which uses only three interacting cellu-

lar components, is very promising for document classification in noisy and changing

environments. We base our assessment not only on the novelty and simplicity of the

model and the adaptability, decentralization and robustness of the vertebrate immune

system, but also on the encouraging results we report here on spam detection and

biomedical document classification.

3.4 The T-Cell Cross-Regulation Model

The T-cell Cross-Regulation Model (CRM) [CLC+07] is a dynamical system that

aims to distinguish between harmless and harmful protein fragments (antigens) using
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only four possible interactions of three cell-types: Effector T-cells (E), Regulatory T-

cells (R) and Antigen Presenting Cells (APC). As their name suggests, APC present

antigens for the other two cell-types, E and R, to recognize and bind to. Effector

T-cells (E) proliferate upon binding to APC, unless adjacent to regulatory T-cells

(R), which regulate E by inhibiting their proliferation. For simplicity, proliferation

of cells is limited to duplication in quantity in contrast to having a proliferation

rate. T-cells that do not bind to APC die off with a certain death rate. The four

possible interactions, illustrated in Fig. 3.3, can be simply expressed by the following

interaction rules:

(1)E−→
dE
{} and R−→

dR
{}

(2)A+R→ A+R

(3)A+ E → A+ 2E

(4)A+ E +R→ A+ E + 2R

The first interaction rule (1) expresses the cell death of E and R with the cor-

responding death rates dE and dR. The last three proliferation rules express (2)

the maintenance of R, (3) the duplication of E, and (4) the maintenance of E and

duplication of R.

Carneiro et al. [CLC+07] developed the analytical CRM to study the dynamics of a

population of T-cells and APC that recognize a single antigen. In [AHR08a, AHR08b],
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Figure 3.3: The diagram illustrates CRM interactions underlying the dynamics of
APC, E and R as assumed in the model where APC can bind to a maximum of two
T-cells.
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we pushed the original CRM model into an agent based framework, to deal with mul-

tiple populations of antigens or features. Our agent-based model yielded encouraging

results when applied to spam detection, a binary document classification problem.

More recently, Sepulveda [Sep09, pp 111-113] extended the original analytical CRM

to study multiple populations of T-cells that can be recognized by APC, each ca-

pable of recognizing at most two distinct T-cell populations. In contrast, our model

[AHR08a, AHR08b] uses APC that are capable of recognizing hundreds of T-cells

of different populations, simultaneously, using the same four interaction rules of the

CRM. In the following chapter, we explain in more detail our agent-based model of

T-cell cross-regulation.

3.5 Summary

In this chapter, we have provided an overview of the natural and artificial immune

systems and more specifically the adaptive immune system and an analytical model

of T-cell dynamics, which is of particular interest to our study.



Chapter 4

Agent Based Cross-Regulation Model

Ce qui m’intèresse, c’est qu’on vive et qu’on meure de ce qu’on aime.

What interests me is that we live and die of what we love.

Albert Camus in The Plague

In this chapter we present and study an agent-based model of T-cell cross regula-

tion, which we apply to binary text classification in the following chapters. Adapting

the CRM to an Agent-Based Cross-Regulation Model (ABCRM) for text classification

is a nontrivial and risky task. The CRM is an analytical model that studies the T-cell

dynamics of only one population of antigens and T-cells [CLC+07]. The challenges

range from expanding the simple model to deal with multiple populations of T-cells

and antigens, mapping the cell-types in the CRM to corresponding elements in text

mining using Agent-Based Modeling (ABM), and applying the four reaction rules

(eq 1-4) while maintaining a bi-stable behavior of “healthy” and “unhealthy” states

that translate to “relevant” and “irrelevant” classes respectively in text classifica-

tion. Much of the algorithm design work that goes into these choices is unreported

here, but the creation of a working ABM of T-cell cross-regulation is one of the key

contributions of this dissertation.

51
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4.1 Representation

In order to adapt the CRM to an ABCRM one can think of documents as analogous

to the organic substances that upon entering the body are broken into constituent

fragments. These fragments, known as epitopes, are presented on the surface of Anti-

gen Presenting Cells (APC) as antigens. In the current application of the ABCRM,

antigens are textual features (e.g. words, bigrams, titles, numbers) extracted from

articles and presented by artificial APC such that they can be recognized by a number

of artificial Effector T-cells (E) and artificial Regulatory T-cells (R). Individual E

and R have receptors for a single, specific (textual) feature: they are monospecific. E

proliferate1 upon binding to antigens presented by APC unless suppressed by R; R

suppress E when binding in adjacent locations on APC. Individual APC present vari-

ous document features: they are polyspecific. Each APC is produced when documents

enter the artificial cellular dynamics, by breaking the former into constituent textual

features. Therefore we can say that APC are representative of specific documents

whereas E and R are representative of specific features.

More specifically, a document d contains a set of features Fd; an artificial APC

Ad that represents d, presents a subset of antigens/features Ad ⊆ Fd to artificial E

and R T-cells. T-cell populations, Ef and Rf , bind to a specific feature f on any

APC that presents it; if f ∈ Ad, then any available T-cell, Ef or Rf , in the cellular

dynamics may bind stochastically to Ad
2, as illustrated in figure 4.1.

1The simplification of proliferation to mere duplication adopted in the canonical CRM model is
maintained in our agent-based model to minimize the number of parameters (excluding proliferation
rates) and the parameter search space

2The probability of T-cells, Ef or Rf , binding to the APC that presents feature f strictly depends
on the proportion of |Ef | to |Rf | T-cells available.
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In biology, antigen recognition is a more complex process than mere polypep-

tide sequence matching, but for simplicity we limit our feature recognition to string

matching. Affinity in our model is simply a binary function of whether the T-cells

exactly match the presented antigens or not. This enables us to better understand the

bare behavior of T-cell dynamics and leaves the more complex affinity measures to be

explored in future work. APC are organized as a list of pairs of “slots” of (textual)

features, where T-cells, specific for those features, can bind. We use this antigen/fea-

ture presentation scheme of pairs of “slots” to simplify our algorithm. In future work

we will study alternative feature presentation scenarios. An APC is modeled as a

list of “slots” of pairs of features: Ad = s1 · · · snS
, where a generic slot is defined as

s = 〈f, g〉, f, g ∈ Ad, and nS = nA×|Ad|
2

, where nA is the number of times in which a

feature is presented in slots. Features f (and g) are sampled without repetition from

set Ad and randomly distributed exactly nA times over the available slots that make

up the APC (see Figure 4.1). Features are treated as a bag of words–i.e. the sequence

of words in the document is not maintained [FS06]. Once T-cells bind to an APC,

every pair of T-cells that bind to features on to the same slot s proliferate according to

interaction rules (2-4) (see Section 3.4).In summary, each T-cell population is specific

to and can bind to only one feature which can be presented by any APC.

The original analytical model (see Section 3.4) used differential equations to un-

derstand the behavior of T-cell dynamics for a single T-cell population. Implementing

the algorithm as an ABM allows us to deal with the recognition and co-recognition

(co-occurrence in the same document) of many features simultaneously, rather than a

single one as the original CRM does. In our model, each artificial cell (APC or T-cell)
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Figure 4.1: To illustrate the difference between the CRM and the ABCRM, the top
part of the figure represents a single APC of the CRM which can bind to a maximum
of two T-Cells. The lower part represents the APC for a document d in the ABCRM,
which contains many pairs of antigen/feature “slots” where pairs of T-cells can bind.
In this example, the first pair of slots of the APC Ad presents the features i and
j; a regulatory T-cell Ri and an effector T-cell Ej bind to these slots, which will
therefore interact according to reaction (4)—Ri inhibits Ej and in turn proliferates
by doubling. The next pair of slots leads to the interaction of regulatory T-cells Ri,Rk

that duplicate via reaction (2), etc.
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is considered an agent. T-cells of the same population are identical and specific to

a unique feature that they can recognize and bind to when presented on an APC.

R and E are distinguished in the same population by how they behave dynamically

and interact with other cell types; specifically by having different death rates and via

reaction rules (2-4) (see Section 3.4).

Agent-based modeling allows us to easily extend T-cell agents to have additional

properties such as importance and affinity, which we will explore in future work. The

importance factor can be based on whether a feature comes from a specific section

(e.g. title or body) and the affinity could vary within the same population to include

similar or synonymous features.

4.2 Training and Testing

The ABCRM uses incremental learning to first train on N labeled documents (rel-

evant and irrelevant), which are ordered sequentially (typically by time signature)

and then test on M unlabeled documents. Incremental learning is advantageous

over traditional methods that require time-consuming re-training when dealing with

live stream data or large data sets [SLS99]. It is from the dynamics defined by the

ABCRM that the algorithm does not require the testing data to be preceded by the

training data as done conventionally in supervised machine learning. A few labeled

documents can be sufficient at the beginning for training the algorithm to classify

unlabeled documents while capable of learning from additional labeled documents

that may follow in order as we discuss in chapter 6. In both training and testing
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stages, documents are processed the same way, however, features that first occur in

a labeled (relevant or irrelevant) or unlabeled document are treated differently as we

discuss in the following section. The sequence in which documents are received affects

the artificial cellular dynamics, as incoming APC and T-cells face a T-cell dynamics

that depends on the specific documents previously encountered. Therefore, we use

publication-time as the default ordering for incoming documents, and study if there

is an advantage to preserving the original temporal sequence of articles (see Chapter

6). We explore alternative training regimes in future work. Figure 4.2 illustrates

this stream of labeled documents (blue for relevant and red for irrelevant) followed

by unlabeled grayed documents. A relevant (blue) document d is shown producing a

polyspecific APC, Ad with features sampled from d. Monospecific T-cells bind sub-

sequently stochastically to the features presented on Ad. Newly introduced features

f are biased with more Rf or more Ef based on whether they first occur in a relevant

or irrelevant document respectively (see Figure 4.2). New features f occurring in un-

labeled documents are treated as irrelevant features and biased with more Ef . Once

the T-cells bind to the APC, they interact according to the last three reaction rules

(see Section 3.4) and all remaining T-cells that do not bind to the APC undergo cell

death with the death rates dR and dE. Finally, document d is classified as relevant

if the majority of its features f have more Rf than Ef , and irrelevant otherwise (see

Figure 4.4).
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4.3 Cellular Dynamics and Parameters

Carneiro et al [CLC+07] showed in the CRM that the cellular dynamics simulated in

silico can lead to a bistable attractor of “healthy” and “unhealthy” states. Evidence of

the bistable states via interactions between Effector and Regulatory T-cells underlying

the crossregulation model are also relevant in vivo [APABD+01].

The resulting state was shown to depend on the initial population proportions of

E and R T-cells when the APC size is fixed [CLC+07]. R T-cells require adequate

amounts of E T-cells to proliferate, but not too many that can out-compete R for the

specific features presented by APC. Thus, “healthy” T-cell dynamics is identified by

observing the co-existence of both E and R T-cells with R ≥ E. “Unhealthy” T-cell

dynamics, on the other hand, is identified by observing E >> R or the disappearance

of R T-cells. This can be the result of larger populations of E than R T-cells, or

sufficiently large APC, in which case, E have higher chances of proliferating than

R T-cells. That is because E T-cells can proliferate independently of neighboring

T-cells according to interaction rule 3, however, R rely on E T-cells in on order to

proliferate according to interaction rule 4.

In the text classification context, features associated with relevant documents

should have more R than E T-cells in the artificial cellular dynamics whereas fea-

tures associated with irrelevant documents should have many more E than R T-cells

(see Figure 4.2). Therefore, in the training phase, we bias features that occur for the

first time in relevant documents with more R T-cells whereas those from irrelevant

documents we bias with more E T-cells. This initial bias might be erroneous as a rel-

evant feature might first occur in an irrelevant document and vice versa, however, we
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assume that the collective dynamics of T-cells and feature co-occurrence in documents

will automatically correct the bias, as we discuss and test in chapter 6.

In the testing phase, when an unlabeled document d contains features Ad that

are specific mostly to E rather than R T-cells, we can classify it as irrelevant—and

relevant in the opposite situation. Fig. 4.4 illustrates the classification example of

the relevant document in Fig. 4.3 where APC is exemplified.

The ABCRM is controlled by 6 parameters:

• E0 is the initial number of Effector T-cells generated for all new features

• R−0 is the initial number of Regulatory T-cells generated for all new features in

irrelevant and unlabeled (testing) documents

• R+
0 is the initial number of Regulatory T-cells generated for all new features in

relevant documents

• dE is the death rate for Effector T-cells that do not bind to APC

• dR is the death rate for Regulatory T-cells that do not bind to APC

• nA is the maximum number of slots in which each feature f is repeatedly pre-

sented on APC

In the immune system, millions of novel T-cells are randomly generated in the

thymus every day to attempt to predict future/unseen antigens. In our algorithm, in

contrast, we generate T-cells only for features (e.g. words) occurring in the document

corpus. This is reasonable because the space of meaningful words in a language
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Figure 4.2: A stream of ordered labeled documents (blue for relevant and red for
irrelevant) followed by ordered unlabeled grayed documents is introduced to the sys-
tem. Each document d is represented by a polyspecific APC Ad that arbitrarily
presents the features f of d as antigens such that the monospecific Ef (red cells) and
Rf (blue cells) T-cells can recognize and bind to them. Newly introduced features f
are biased with more Rf or more Ef based on whether they first occur in a relevant or
irrelevant document respectively. New features f occurring in unlabeled documents
are treated as irrelevant features and biased with more Ef . Once the T-cells bind
to the APC, they interact according to the last three reaction rules (see Section 3.4)
and all remaining T-cells that do not bind to the APC undergo cell death with the
death rates dR and dE. Finally, document d is classified as relevant if the majority of
its features f have more Rf than Ef , and irrelevant otherwise.
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Figure 4.3: A polyspecific artificial antigen presenting cell Ad (representing document
d) presents antigens/features f ∈ Fd such that only monospecific artificial Ef and Rf

T-cells can bind to it and proliferate according to equations (2-4) for every pair of
antigens/features. In this example of a legitimate e-mail document, all features f are
relevant (self) except for fRolex, which has relatively more E than R T-cells, since it
tends to be associated with spam (nonself).
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Figure 4.4: A document is assessed based on the E-to-R ratios for all its features.
The axes represent the number of R and E cells. In this example, the document has
most of its features with higher R and is therefore classified as relevant.
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is largely fixed and much smaller than the space of possible polypeptide epitopes

in biology. Nonetheless the space of possible word combinations, features, such as

bigrams and n-grams quickly grows. In future work, we aim to study methods to

generate new feature combinations for a much larger repertoire of antigens/T-cells.

When (textual) features are encountered for the first time, a fixed initial number

of E0 effector T-Cells and R0 regulatory T-Cells is generated for every new feature

f . Many factors such as APC size (determined by nA) and death rates (dE and

dR) play a huge role in the T-cell dynamics for each feature. However, in order

to train on the basis of labeled documents, we rely only on the initial numbers of

E and R T-cells by varying them for features occurring in relevant and irrelevant

documents in the training phase, and unlabeled documents in the testing phase. More

Regulatory than Effector T-cells are generated for features that occur in documents

that are labeled relevant (R+
0 > E0), while fewer Regulatory than Effector T-cells are

generated in the case of irrelevant or unlabeled documents (R−0 < E0) (see Fig. 4.2).

Features appearing in unlabeled documents for the first time are treated as features

from irrelevant documents, assuming that new features are irrelevant (nonself) until

neutralized by the collective dynamics given their co-occurrence with relevant ones.

Naturally, relevant features will occur in irrelevant documents and vice versa.

However, the assumption is that relevant features tend to co-occur more frequently

with other relevant features in relevant documents and similarly for irrelevant features.

Therefore, the proliferation dynamics defined by the 4 reactions and guided by co-

binding to APC slots is expected to correct the erroneous initial bias, a hypothesis

we will test in chapter 6.
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In the original CRM model [CLC+07], T-cells that do not bind to a presented

antigen die at a certain death rate determined by dE and dR. Cell death is supposed

to help the algorithm forget old features and focus on more recently encountered ones.

In chapter 6, we also test the effect of cell death in the dynamics of our model when

applied to biomedical document classification.

Finally, the decentralized and self-organized adaptive immune system is supposed

to adapt to varying intrusions of self and nonself antigens and still be able to discrim-

inate between them. Therefore, in chapter 5 we study the capability of our method

to handle classification in changing environments such as varying class imbalance (by

varying the class proportions of the validation data) and concept drift when applied

to spam detection.

4.4 Algorithm

We implemented the ABCRM (using PHP 5.0) and ran many different experimental

setups. The cellular interaction dynamics defined by the interaction rules (1-4) for a

sequence of documents and its subsequent classification based on E-to-R ratios of its

features is illustrated in Fig. 4.2. A detailed pseudocode of the algorithm follows:



Chapter 4. Agent Based Cross-Regulation Model 64

Algorithm Pseudocode:
Input: Stream of labeled and unlabeled documents

Output: Labels for unlabeled documents

foreach document d at time t = t + 1 do

Generate APC Ad presenting each f ∈ Ad at nA randomly distributed slot positions.

Let Ct contain |Ek| and |Rk| T-cells for all features k in the cellular dynamics at time t.

foreach f ∈ Ad do

if T-cells Ef 6⊂ Ct and T-cells Rf 6⊂ Ct then

|Ef | = E0 (i.e. generate E0 Effector T-cells for f)

if d is labeled relevant then

|Rf | = R+
0 (i.e. generate R+

0 Regulatory T-cells for f)

end

else

|Rf | = R−0 (i.e. generate R−0 Regulatory T-cells for f)

end

Update Ct with Ef and Rf

Let T-cells Ef , Rf bind specifically to matching f on Ad

end

end

foreach pair (f, g) on Ad do

Apply the interaction rules and update Ct+1 with the total number of E, R T-cells:

(Rf , Rg)→ Rf + Rg

(Ef , Eg)→ 2.Ef + 2.Eg

(Ef , Rg)→ Ef + 2.Rg

end

foreach T-cells Rh, Eh ⊂ Ct that do not bind to Ad do

Cull Eh and Rh according to death rates dE and dR

end

if d is unlabeled then

Let R(d) =
∑

f∈Ad
(

Rf√
R2

f+E2
f

) and E(d) =
∑

f∈Ad
(

Ef√
R2

f+E2
f

)

if R(d) ≥ E(d) then

Classify d as relevant

end

else

Classify d as irrelevant.

end

end

end
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The ABCRM runs with a complexity of O(N ·m + N · |Ad| · nA) per iteration3,

where N is the number of documents, m is the maximum number of features in the

corpus, |Ad| is the number of features sampled per document and nA is the number

of positions in slots in which a feature is presented on the APC. The first part of the

equation N ·m corresponds to the cell death over all documents N for all inactive (not

binding) T-cells specific to featuresm. The rest of the equationN ·|Ad|·nA corresponds

to the presentation of |Ad| features each in nA slots on Ad over all documents N .

Our parameter search for training the ABCRM is non-optimal as it exhaustively

searches all parameter space requiring millions of iterations, however, this can be

improved using heuristic search strategies in the future. Let nA be a constant,

where nA < 30 (see Chapter 6 for the ranges of nA explored). Let |Ad| be an-

other constant, where |Ad| ≤ 50 features are sampled from every document (see

Chapter 5). Therefore, the complexity grows as O(N · m) which is faster than the

quadratic optimization of SVM but slower than the linear computation of NB —

hence, ONB(N) < OABCRM(N ·m) < OSVM(Nx) where x ∈ [1.8,2.1] [CRS03] for a

fixed corpus size of many documents, assuming that the number of iterations needed

to optimize the ABCRM is a constant. Note that m can also be fixed to a constant

number of features, where m = 650 (see Chapter 6) includes the most important fea-

tures for discriminating between protein-protein interaction relevant and irrelevant

biomedical articles (see Figure 4.5).

3A number of iterations is initially required to optimize our algorithm by searching for the best
configuration of parameters. For an exhaustive search on all 6 parameters, this number can be in
the order of hundreds of thousands as we discuss in chapter 6
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4.5 Application to Binary Document Classification

Our chief aim is to first establish a prototype of the ABCRM as a document clas-

sifier and then explore various parameters and representation scenarios to improve

its classification performance and better understand the underlying mechanisms of

T-cell cross-regulation dynamics and collective classification.

In chapter 5, we first test a prototype of the ABCRM on the binary classification

problem of spam detection. The goal is to test if the ABCRM can classify. In

other words, whether the collective behavior of T-cell cross-regulation dynamics as

currently understood can function as a classifier. Since no model which includes

multiple populations of T-cells has been previously studied, just showing that the

system can classify is an advance in our understanding of T-cell cross-regulation

dynamics as a general principle of classification in bio-complexity. Since we show

that the ABCRM achieves promising results comparable to those obtained by a Naive

Bayes classifier, the results are interesting from a bio-inspired computing viewpoint.

In chapter 6, we test the ABCRM on bio-medical document classification, another

binary classification problem that is more relevant to our research interest. Moreover,

we explore various parameters and configurations of our algorithm that optimize

the ABCRM and provide insights about immune memory, cell death, concept drift,

collective and self-organized behavior.
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Figure 4.5: The complexities per iteration of NB, ABCRM and SVM for a fixed
number of features m = 650, as done in chapter 6, and for the first 1000 documents
leads to the inequality ONB(N) < OABCRM(650·N) < OSVM(Nx) where x ∈ [1.8,2.1],
in this example x = 2.



Chapter 5

Application to Spam Detection

Los ordenadores son inùtiles. Sólo pueden darte respuestas.

Computers are useless. They can only give you answers

Pablo Picasso

In this chapter we test a prototype of our agent-based cross-regulation model on

the publicly accessible Enron e-mail datasets (http://www.iit.demokritos.gr/ ionan-

dr/publications/). The goal is to test our method’s ability to classify, therefore we

compare its performance with that of a Naive Bayes classifier. We also study the

ability of our method to track concept drift, its resilience to spam-to-ham ratio varia-

tions and its ability to generalize on new data. This chapter is adapted from relevant

published articles [AHR08b, AHR08a].

5.1 Introduction

Spam detection is a binary classification problem in which e-mail is classified as

either ham (legitimate e-mail) or spam (illegitimate or fraudulent e-mail). Spam is

very dynamic in terms of advertising new products and finding new ways to defeat

68
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anti-spam filters. The challenge in spam detection is to find the appropriate threshold

between ham and spam leading to the smallest number of misclassifications, especially

of legitimate e-mail (false negatives).

The vertebrate adaptive immune system learns to discriminate between self and

nonself substances (known as pathogens) such as viruses and bacteria that intrude

the body. These pathogens often evolve new mechanisms to attack the body and

its immune system, which in turn adapts and evolves to deal with changes in the

repertoire of pathogen attacks. A weakly responsive immune system is vulnerable

to attacks while an aggressive one can be harmful to the organism itself, causing

autoimmunity, described by reactions against self antigens. Given the conceptual

similarity between the problems of spam detection and immunity, we investigate the

applicability of our agent-based cross-regulation model (ABCRM) to spam detection.

Machine learning techniques such as support vector machines [KA01], Naive Bayes

classifiers [SDHH98, MAP06] and other classification rules have excelled in textual

e-mail classification. However, most of these algorithms generally lack the ability to

detect concept drift since they rely on fixed training data [Tsy04] as described earlier

(see Chapter 2).

Concept drift is very common in spam due to new advertisements and spam obfus-

cation techniques such as Bayesian poisoning [MFRI+06, GC06]. Research in spam

detection is now focusing on detecting concept drift, for instance, ICBC is a cluster-

based classification method that uses incremental learning mechanisms to adapt to
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concept drift [DCS06]. An improved SpamHunting system uses instance-based rea-

soning based on a tunable instance retrieval network for e-mail selection to outper-

form classical machine learning techniques [FRID+07a]. Another challenge in spam

detection is marked by the inconsistency of spam-to-ham ratios between training

and testing data: dynamically imbalanced classification (see Chapter 2). Algorithms

based on Artificial Immune System (AIS) [Oda05, BB06] are another area of exciting

development. AIS models are inspired by diverse models of the adaptive immune

system [Hof01] such as negative selection, clonal selection, danger theory and the

immune network theory (see Chapter 3).

Since our ABCRM is quite compelling in the simplicity by which it achieves dis-

crimination between self and nonself antigens (see Chapter 4), we expect our method

to be useful for e-mail binary classification. Moreover, its dynamic nature, in principle,

makes it a good candidate algorithm to deal with concept drift in e-mail classifica-

tion. Therefore, we study the ability of our model to track concept drift by measuring

the drop in classification performance over time. We also study the resilience of our

adaptive model to spam-to-ham ratio variation in comparison to a Naive Bayes clas-

sifier. In summary, our goal is to establish an immune-inspired document classifier

and in future work, we plan to compare our method with other classifiers that deal

specifically with concept drift.
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5.2 ABCRM Configuration for Spam Detection

Here we discuss some of the techniques used for feature selection and parameter

configuration of our ABCRM when applied to spam detection.

5.2.1 Text Processing and Feature Selection

Spam detection often focuses on e-mail headers (e.g. sender, receiver, relay servers...)

or textual content (e.g. subject, body). However, we are interested only in the latter

for understanding the applicability of our method to text document classification. All

words constituting the e-mail subject and body are lowercased and stemmed using

Porter’s algorithm [Por80b] after filtering out common English stop words and words

of length less than 3 characters (see Chapter 3). A maximum of |Ad| processed unique

features are sampled and presented by the artificial APC that corresponds to the e-

mail document (see Chapter 4). These antigen presenting cells have nA slots per

feature f (that specific Ef and Rf can bind to). Examples of APC representing ham

and spam e-mails are illustrated in Figure 5.1. The breaking up of the e-mail message

into constituent portions (features) is inspired by the natural process in biology, but

is simplified in this model to select the first and last |Ad|
2

unique features in the e-

mail. The assumption is that the most indicative information is in the beginning

(e.g. subject) and the end of the e-mail (e.g. signature), especially concerning ham

e-mails.
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Figure 5.1: An example of APC representing ham (upper) and spam (lower) e-mails
with T-cells binding specifically to features presented on APC. In the case of the
ham e-mail, new features with relatively large populations of E T-cells (e.g. “winch-
ester”) become relevant by co-occurring with relevant features with relatively large
populations of regulatory T-cells, that suppress the proliferation of neighboring E
T-cells (e.g. Ewinchester and Ewww). However, spam features such as “www”, have
their effector T-cells (e.g. Ewww) proliferate in spam e-mails with many neighboring
(on the APC) E T-cells from co-occurring spam features.
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5.2.2 Settings and Parameters

Let |Ad| ≤ 50 be the first and last non-overlapping unique features selected from each

e-mail. Let nA = 10 be the number of APC slots per feature and Let E0 = 6, R+
0 = 12,

and R−0 = 5 (see Chapter 4 for definitions of these parameters). These initial E and

R populations for features occurring for the first time, are based on the initial ratios

used in the CRM [CLC+07, p. 6], given a fixed APC size. Different parameter values

can lead to similar, better or worse classification performances, therefore our choice

of parameters is not necessarily optimal. While our main goal here is to establish an

original agent-based bio-inspired model and test its applicability to text classification,

we explore various configurations and parameter ranges in the following chapter on

another application. We use the same cellular dynamics and classification criteria

described in Chapter 4 to classify an e-mail document as either spam or ham (see

Fig. 5.2 for a graphical description).

5.3 Validation

In order to validate our method as a classifier, we train it on a batch of 200 e-mails

and then test it on a distinct batch of e-mails that varies in size and class imbalance

based on validation forms in order to test for our method’s robustness to dynamic

class imbalance and it’s ability to track concept drift.

Three forms of validation are conducted: random partition validation, that is

similar to a 2-fold cross-validation, sequential partition validation for evaluating the

importance of the order in which e-mails are presented to the system as well as



Chapter 5. Application to Spam Detection 74

Figure 5.2: Spam classification is based on R-to-E ratios for all features sampled from
the e-mail document as described in Chapter 4.
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unbalanced validation scenarios, and dynamic validation using a sliding window,

that is particularly useful to study concept drift in spam and ham over time. For

every validation scenario, we do the following:

For each of the six Enron sets, we obtain 10 independent partitions. Each partition

is balanced and consists of 200 training (50% spam) and 200 validation e-mails (50%

spam) .

5.3.1 Random Partition Validation

In this case, we do not use time-sequence information: the 10-subset partitions are

randomly sampled and therefore we can sample many variations of these partitions.

We produce five different 10-subset partitions and compute performance statistics

(e.g. mean and standard deviation).

5.3.2 Sequential Partition Validation

In this case, the partitions are chosen consecutively according to time-stamp (see Fig.

5.3). Each partition consists of 200 training and 200 validation e-mails that follow

in the order of time the email was received. The training data is balanced with 50%

spam whereas the validation data is studied for balanced and unbalanced scenarios

as follows:

Balanced Scenario

Validation data is balanced (50% spam).
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Figure 5.3: Sequential partition validation uses a partition of documents for training
and a distinct partition of e-mails that follow in time-stamped order for testing. The
partitions are non-overlapping. The size of each training and testing partition is 200
e-mails.
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Unbalanced Scenario

Validation data is unbalanced in two different cases: 30% and 70% spam. In the case

of 70% spam or 70% ham, the additional e-mails are from the partition of e-mails

that follows in time order. Since each partition is independent, training and testing

in one partition does not affect performance in the one that follows.

5.3.3 Dynamic Validation

In this validation scenario, for each of the six Enron sets, we train each classifier

on the first 200 e-mails (50% spam) and then test on overlapping windows of 200

testing (50% spam) e-mails that follow in the order of time the email was received.

The sliding shift is 10 e-mails and the range is between e-mail 201 and e-mail 2800

resulting in 260 slides (see Fig. 5.4). We report classification performance for each

slide and the average performance over all slides for each Enron dataset as discussed

next.

5.4 Performance Evaluation

We compute variation statistics (mean, standard deviation and 95% CI) of the F-score

and Accuracy measures for each Enron data set by averaging the performance over

all partitions [FS06]. We use the paired student t-test to compare the classification

performances of two methods in order to accept or reject the null hypothesis H0 that

assumes that the two performance results were drawn from the same distribution.

The rejection of H0 depends on the p-value (p) and can mean that one method
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Figure 5.4: Dynamic evaluation of stream data using a sliding window for the first
training set and testing sets that follow in time-stamped order. The size of each
training and testing set is 200 e-mails.
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moderately outperforms the other with p < 0.05, or strongly outperforms the other

with p < 0.01. Otherwise, both methods are statistically indistinguishable (tied). Our

statistical comparisons of p < 0.05 and p < 0.01 are presented in the last two columns

of the classification performance tables. Furthermore, our statistical comparison for

p < 0.05 is confirmed with visual comparisons using the 95%CI, that is illustrated in

Figures for some of the experiments.

5.4.1 Sequential Partition Validation

In the case of unbalanced data, we evaluate only a balanced selection of the results.

In other words, after classification, we under-sample the documents from the class

with more instances (70%) to make it equivalent to the class with fewer instances

(30%), since F-score and Accuracy can be biased in unbalanced scenarios. In the

following chapter, we use better metrics such as AUC for measuring performance in

unbalanced classes.

5.4.2 Dynamic Validation

In order to measure the decline in classification performance, which is a measure of

concept drift, we also perform a linear regression of accuracy and F-score, using least

squares and we compute the slope coefficients and the coefficient of determination R2

for each.
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5.5 Data

Given the assumption that personal e-mails (i.e. e-mails sent or received by one

specific user) are more representative of a writing style, signature and themes, it would

be preferable to test the ABCRM on e-mails from a personal mailbox. Unfortunately,

this is not offered by the most common spam corpus of spamassasin1 and similarly

for ling-spam2. In addition, the ABCRM algorithm requires time-stamped e-mails,

since order of arrival affects final E and R populations. Time-stamped data is also

important for analyzing concept drift over time, thus we cannot use the PU1 3 data

described by Androutsopoulos et al. [AKCS00]. Delany’s e-mail data set4, introduced

by Delany et al. [DCTC05a], meets the requirements in terms of time-stamped and

personal ham and spam for two personal mailboxes and spam, however its features

are hashed and therefore it is not easy to make tangible conclusions based on their

semantics. In this chapter, we show trajectories of “healthy” and “unhealthy” T-cell

populations for ham and spam features over time that are only meaningful using

original words in lieu of hash numbers.

The enron-spam5 preprocessed data perfectly meets the requirements in terms

of being personalized, time-stamped, and in comparison to the data publicized by

Delany et al. [DCTC05a], it is a larger data set and it keeps the original words. The

enron-spam data is composed of six personal mailboxes that were made public after

the Enron scandal. The ham mailboxes belong to the following Enron employees:

1http://spamassassin.apache.org/publiccorpus/
2http://www.aueb.gr/users/ion/publications.html
3http://www.iit.demokritos.gr/skel/i-config/downloads/enron-spam/
4http://www.comp.dit.ie/sjdelany/Dataset.htm
5http://www.iit.demokritos.gr/˜ionandr/publications/
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Dataset ham + spam time-stamp range
Enron1 farmer-d + g [12/99, 06/00], [12/03, 01/05]
Enron2 kaminski-v + sh [12/99, 05/00], [05/01, 07/05]
Enron3 kitchen-l + b [2/01, 06/01], [08/04, 03/05]
Enron4 williams-w3 + g [4/01, 01/02], [12/03, 06/04]
Enron5 beck-s + sh [1/00, 11/00], [05/01, 03/05]
Enron6 lokay-m + b [6/00, 7/01], [08/04, 10/04]

Table 5.1: The Enron-spam preprocessed datasets

farmer-d, kaminski-v, kitchen-l, williams-w3, beck-s and lokay-m. Combinations of

four spam datasets were added to the ham data from spamassassin (s), HoneyProject

(h), Bruce Guenter (b) and Georgios Paliousras’ (g) spam corpora and then all six

datasets were tokenized [MAP06]. In practice, some spam e-mails can be personalized,

which unfortunately cannot be captured in this dataset since the spam data comes

from different sources. The 6 Enron data sets vary in the number of e-mails they

contain, therefore we trim them such that only the first 1500 e-mails of every Enron

dataset are used to facilitate comparison in the following experiment.

5.6 Results

We report on the classification performance of a simple prototype of the ABCRM and

compare it with a multinomial NB classifier. We compare both classifiers when trained

on balanced data and tested on balanced and unbalanced data in order to understand

their resilience to unforeseen class imbalance. Then, using the dynamic evaluation,

we compare the classification performance of both classifiers over time knowing that

a drop in the performance indicates the presence of concept drift. Finally, we test for

the generalization of both methods on data distinct from the training data.
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Dataset ABCRM Naive Bayes p<0.01 p<0.05

Enron 1
F-score 0.87 ± 0.02 0.94 ± 0.02 NB
Accuracy 0.86 ± 0.02 0.94 ± 0.02 NB

Enron 2
F-score 0.88 ± 0.04 0.94 ± 0.01 NB
Accuracy 0.86 ± 0.05 0.94 ± 0.01 NB

Enron 3
F-score 0.87 ± 0.01 0.94 ± 0.02 NB
Accuracy 0.86 ± 0.01 0.94 ± 0.02 NB

Enron 4
F-score 0.88 ± 0.03 0.93 ± 0.05 tie NB
Accuracy 0.88 ± 0.03 0.93 ± 0.04 NB

Enron 5
F-score 0.92 ± 0.02 0.95 ± 0.02 tie NB
Accuracy 0.92 ± 0.02 0.95 ± 0.02 NB

Enron 6
F-score 0.85 ± 0.05 0.91 ± 0.04 NB
Accuracy 0.82 ± 0.08 0.92 ± 0.04 NB

Average
F-score 0.88 ± 0.04 0.93 ± 0.03 NB
Accuracy 0.87 ± 0.05 0.93 ± 0.03 NB

Table 5.2: Results for the random partition validation. F-score and Accuracy mean
± sdev of 10 randomly sampled partitions for 50% spam ratio Enron data sets for
ABCRM and Naive Bayes.

In the first validation experiment, NB outperforms the ABCRM statistically for

all Enron data sets as shown in the last two columns of Table 5.2. However, in the

second experiment, which preserves the time order in which e-mails were received,

NB and the ABCRM are more competitive, where NB outperforms the ABCRM in

only three Enron data sets and ties with the ABCRM in the remaining three as

shown in the last two columns of Table 5.3. When comparing NB with the ABCRM,

the two-tailed 95%CI illustrated as boxes in Figure 5.5 show similar results to the

paired student t-test comparisons presented in table 5.3. Figure 5.5 shows that NB

outperforms the ABCRM in Enron 3 in terms of F-score and in Enron 2 in terms of

accuracy, whereas the two classifiers are comparable for the remaining Enron sets.

Moreover, when testing on unbalanced data, the ABCRM outperforms NB in

three Enron data sets for 30% spam and ties with NB in the remaining three, while
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it outperforms NB in five and loses to two Enron data sets for 70% spam as shown in

the last two columns of Tables 5.4 and 5.5 respectively. Therefore the results suggest

that the ABCRM can be more resilient to spam-to-ham ratio variations than NB.

The two-tailed 95%CI values illustrated as boxes in Figure 5.6 confirm most of our

statistical comparisons with the ABCRM outperforming NB for Enron sets 1 and 6 in

terms of F-score and Enron 6 in terms of accuracy for 30% spam. Similarly, ABCRM

outperforms NB in Enron 1 in terms of F-score and Enron sets 1 and 6 in terms of

accuracy for 70% spam. In the remaining case ABCRM and NB are comparable.

The improved performance of the ABCRM, in the sequential over the random

partition validation, unveils the important role of the sequential order of documents

to which only dynamical systems are sensitive to. In the light of the above, we assume

that the order in which the documents are processed can provide our method valuable

information to track concept drift. We further investigate problem of concept drift in

the dynamic validation, by measuring the drop of classification performance over time,

and in Chapter 6, by studying various document-shuffling scenarios and comparing

them to that of time-stamp ordered documents.

While the overall performance of both algorithms was comparable for the sequen-

tial validation data with an advantage for NB for 50% spam for all Enron datasets (see

Figure 5.7), the average performance of NB drops for 30% spam ratio (5% lower F-

score than ABCRM on average) and 70% spam ratio (9% less accurate than ABCRM

on average) as reported in Tables 5.4 and 5.5, however, the ABCRM maintains a

relatively good performance.
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Arguably, the performance of NB could be increased, in the unbalanced spam-to-

ham ratio experiments, by unbalancing the Naive Bayes equation (see Chapter 2).

But this would imply that, in real situations, one would need to know a priori the

spam-to-ham ratio for a given user. The ABCRM model, on the other hand, does

not need to adjust any parameter for different or varying spam-to-ham ratios—it is

automatically reactive to whatever ratio it encounters. It has been shown that spam-

to-ham ratios indeed vary widely [MW04, DCTC05a, DCT06], hence we conclude

from the ability of the ABCRM to automatically handle spam-to-ham ratio variation

that our method is more beneficial for dynamic data classification, and this should

be further investigated (see Chapter 6).

Natural cell death is supposed to play an important role in immune memory,

however, here we implement the prototype of the ABCRM without cell death (i.e.

dE = 0 and dR = 0). Nevertheless, we explore ranges of cell death rates and study

their effect on immune memory and learning in Chapters 6 and 7 respectively.

5.6.1 Dynamic Evaluation Results.

In this experiment, we study the performance of our method over time after training

on the first 200 e-mails of each Enron data set. In figure 5.8, we observe T-cell

dynamics leading to “healthy” and “unhealthy” states for the features ‘rolex’, which

is obviously spam and ‘fyi’ (i.e. “for your information”), which appears to be one of

the most ham words besides the word ‘enron’. These trajectories of T-cell populations

are similar to the ones reported in the CRM with E >> R for “unhealthy” and R ≥ E

for “healthy”.
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Dataset ABCRM Naive Bayes p<0.01 p<0.05

Enron1
F-score 0.9 ± 0.03 0.89 ± 0.04 tie tie
Accuracy 0.9 ± 0.03 0.87 ± 0.05 tie tie

Enron2
F-score 0.86 ± 0.06 0.92 ± 0.07 NB
Accuracy 0.85 ± 0.06 0.93 ± 0.05 NB

Enron3
F-score 0.88 ± 0.04 0.93 ± 0.03 NB
Accuracy 0.87 ± 0.05 0.92 ± 0.04 tie NB

Enron4
F-score 0.92 ± 0.05 0.92 ± 0.05 tie tie
Accuracy 0.92 ± 0.05 0.91 ± 0.06 tie tie

Enron5
F-score 0.92 ± 0.03 0.94 ± 0.04 tie NB
Accuracy 0.91 ± 0.03 0.95 ± 0.03 NB

Enron6
F-score 0.89 ± 0.04 0.91 ± 0.02 tie tie
Accuracy 0.88 ± 0.05 0.9 ± 0.03 tie tie

Average
F-score 0.9 ± 0.05 0.92 ± 0.04 tie tie
Accuracy 0.89 ± 0.05 0.91 ± 0.05 tie tie

Table 5.3: Results for the balanced sequential partition validation. F-score and Ac-
curacy mean ± sdev of 10 sequential partitions for 50% spam ratio Enron data sets
for ABCRM and Naive Bayes.

Dataset ABCRM Naive Bayes p<0.01 p<0.05

Enron1
F-score 0.93 ± 0.02 0.88 ± 0.04 ABCRM
Accuracy 0.89 ± 0.03 0.85 ± 0.04 tie ABCRM

Enron2
F-score 0.88 ± 0.02 0.88 ± 0.03 tie tie
Accuracy 0.82 ± 0.04 0.85 ± 0.03 tie tie

Enron3
F-score 0.9 ± 0.02 0.87 ± 0.03 tie ABCRM
Accuracy 0.85 ± 0.04 0.84 ± 0.04 tie tie

Enron4
F-score 0.93 ± 0.04 0.89 ± 0.12 tie tie
Accuracy 0.9 ± 0.07 0.88 ± 0.12 tie tie

Enron5
F-score 0.9 ± 0.03 0.88 ± 0.04 tie tie
Accuracy 0.85 ± 0.05 0.86 ± 0.04 tie tie

Enron6
F-score 0.9 ± 0.02 0.77 ± 0.04 ABCRM
Accuracy 0.85 ± 0.03 0.75 ± 0.04 ABCRM

Average
F-score 0.91 ± 0.03 0.86 ± 0.07 tie tie
Accuracy 0.86 ± 0.05 0.84 ± 0.07 tie tie

Table 5.4: Results for the unbalanced sequential partition validation (30% spam).
F-score and Accuracy mean ± sdev of 10 partitions for 30% spam for ABCRM and
NB.
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Figure 5.5: Results for the balanced sequential partition validation. F-score and
Accuracy variation plots for ABCRM (blue) and NB (red) for each of the six Enron
datasets. The black horizontal bars indicate the mean, the boxes indicate the 95%CI
and the whiskers indicate the standard deviation. These results are for the static
evaluation scenario. The values are reported in Table 5.3.
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Figure 5.6: Results for the unbalanced sequential partition validation. F-score and
accuracy variation plots for ABCRM (blue) and NB (red) for each of the six Enron
datasets with varying spam-to-ham ratios: 30% and 70% spam. The black horizontal
bars indicate the mean, the boxes indicate the 95%CI and the whiskers indicate the
standard deviation. The averages of these values over all Enron datasets are reported
in Tables 5.4 and 5.4.
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Figure 5.7: Results for the balanced and unbalanced sequential partition validation.
F-score and Accuracy average variation statistics (mean, sdev and 95%CI) over all
Enron sets for ABCRM (blue) and NB (red) for the partition evaluation.
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Figure 5.8: “Healthy” and “unhealthy” trajectories of T-cell population sizes (|Ef | in
red and |Rf | in blue) for f={‘fyi’, ‘rolex’} respectively. Circles on the x-axis indicate
occurrences of f in documents x.
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Dataset ABCRM Naive Bayes p<0.01 p<0.05

Enron1
F-score 0.86 ± 0.07 0.73 ± 0.03 ABCRM
Accuracy 0.87 ± 0.05 0.63 ± 0.05 ABCRM

Enron2
F-score 0.71 ± 0.14 0.84 ± 0.06 tie NB
Accuracy 0.76 ± 0.09 0.83 ± 0.05 tie tie

Enron3
F-score 0.82 ± 0.08 0.8 ± 0.05 tie tie
Accuracy 0.84 ± 0.06 0.74 ± 0.09 tie ABCRM

Enron4
F-score 0.86 ± 0.11 0.78 ± 0.05 tie tie
Accuracy 0.87 ± 0.09 0.71 ± 0.08 ABCRM

Enron5
F-score 0.72 ± 0.15 0.85 ± 0.1 tie tie
Accuracy 0.77 ± 0.08 0.85 ± 0.09 tie NB

Enron6
F-score 0.8 ± 0.1 0.76 ± 0.02 tie tie
Accuracy 0.83 ± 0.07 0.68 ± 0.04 ABCRM

Average
F-score 0.79 ± 0.12 0.79 ± 0.07 tie tie
Accuracy 0.83 ± 0.08 0.74 ± 0.1 tie tie

Table 5.5: Results for the unbalanced sequential partition validation (70% spam).
F-score and Accuracy mean ± sdev of 10 partitions for 70% spam for ABCRM and
NB.

A feature f that is once relevant but then becomes irrelevant (and vice versa) over

time, according to its Ef -to-Rf ratio, is either the result of the automatic correction

of the possibly erroneous initial bias, or an example of concept drift, in which the

relevance of f to one class, changes over time. in Figure 5.9 we see a log-log trajectory

of a feature that is initially assumed spam since it first occurs in a spam e-mail, but

then after co-occurring with ham features in ham e-mails it maintains “healthy” T-

cell dynamics. We leave the issue of automatic correction of T-cell dynamics for the

following chapter and address concept drift here.

We assume that a drop in the classification performance is evidence of concept

drift in either ham or spam. In order to track concept drift, we compute the slope

coefficients, αAccuracy, αFscore and their corresponding R2 for the least square linear

fit of Accuracy and F-score. Declined slopes with high slope coefficients indicate
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Figure 5.9: The feature ‘call’ is initially biased with |Rcall| < |Ecall| since the feature
‘call’ initially occurs in an irrelevant document, however it is then automatically
corrected by the T-cell dynamics leading to follow a “healthy” trajectory with |Rcall >
|Ecall| as shown in this log-log plot.
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the presence of concept drift. However, the results in the penultimate two columns

of Table 5.6 and the plots in Figure 5.10 show negligible drop in performance for

both methods in all Enron data sets. Since both classifiers maintain a relatively

high performance, it is unclear whether there is no concept drift or both methods

are capable of tracking it effectively. The results are inconclusive. We use different

techniques to detect concept drift in the following chapter.

In terms of performance, both the ABCRM and NB are competitive with NB

outperforming ABCRM in 3.56 Enron sets and ABCRM outperforming NB in 2 Enron

sets.

Dataset ABCRM NB αperfABCRM ,R2 αperfNB, R2 p < 0.01 p < 0.05

Enron1
F-score 0.95 ± 0.01 0.93 ± 0.01 0.00,0.06 0.00,0.28 ABCRM
Accuracy 0.95 ± 0.01 0.93 ± 0.01 0.00,0.11 0.00,0.36 ABCRM

Enron2
F-score 0.92 ± 0.01 0.95 ± 0.01 0.00,0.02 0.00,0.00 NB
Accuracy 0.92 ± 0.01 0.94 ± 0.01 0.00,0.00 0.00,0.04 NB

Enron3
F-score 0.93 ± 0.02 0.92 ± 0.03 0.00,0.60 0.00,0.00 ABCRM
Accuracy 0.94 ± 0.02 0.92 ± 0.02 0.00,0.67 0.65,0.63 ABCRM

Enron4
F-score 0.92 ± 0.03 0.92 ± 0.01 0.00,0.42 0.00,0.59 tie tie
Accuracy 0.92 ± 0.03 0.93 ± 0.01 0.00,0.43 0.00,0.58 NB

Enron5
F-score 0.90 ± 0.02 0.96 ± 0.03 0.00,0.42 0.00,0.55 NB
Accuracy 0.90 ± 0.02 0.96 ± 0.03 0.00,0.45 0.00,0.55 NB

Enron6
F-score 0.93 ± 0.01 0.95 ± 0.01 0.00,0.60 0.00,0.02 NB
Accuracy 0.93 ± 0.02 0.95 ± 0.01 0.00,0.75 0.00,0.00 NB

Average
F-score 0.92 ± 0.02 0.94 ± 0.02 NB
Accuracy 0.93 ± 0.03 0.94 ± 0.02 NB

Table 5.6: ABCRM vs NB F-score, accuracy, their slope coefficients (αFscore and
αAccuracy), and their corresponding R2 for all Enron sets over time.

5.6.2 Generalization and Overfitting

In this last experiment, we study the ability of our method to generalize on new data

with respect to NB. More specifically, we compare the classification performance of our

6Assuming each Enron consists of comparing both F-score and Accuracy
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Figure 5.10: Negligible drop in both F-score and accuracy over time for ABCRM and
NB, showing no signs of concept drift.



Chapter 5. Application to Spam Detection 94

ABCRM Testing ABCRM Training NB Testing NB Training
F-score 0.9 ± 0.05 0.92 ± 0.04 0.92 ± 0.04 0.99 ± 0.01
Accuracy 0.89 ± 0.05 0.90 ± 0.08 0.91 ± 0.05 0.99 ± 0.01
Fscoredrop 2.17% 7.07%
Accuracydrop 1.11% 8.08%

Table 5.7: F-score and Accuracy mean ± sdev of 10 runs for 50% spam ratio Enron
data sets using ABCRM and NB when tested on the same training data set and on
a distinct one showing the % drop in classification performance.

method to that of NB when tested on the same data set it has been trained on versus

a separate data set since a substantial drop in performance is evidence of overfitting.

We use the aforementioned “sequential partition validation’’ for 10 partitions for all

Enron sets when testing on a distinct validation set, and we compare the average

performance with that of testing on the same sequential 10 partitions that we trained

on.

The drop in classification performance is measured using the following scoring

methods:

AccuracyDrop =
Accuracy(Training)− Accuracy(Testing)

Accuracy(Training)
(5)

FscoreDrop =
Fscore(Training)− Fscore(Testing)

Fscore(Training)
(6)

The results in Table 5.7 show that the ABCRM generalizes better with a 1% and

2% drop in classification performance in comparison to NB with a 8% and 7% drop

in classification performance.

Note that it is more common to compare the performance of k-fold cross-validation

on the optimized parameters with that of testing on a distinct data set, however, we
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do not search the parameter space here. in Chapter 6, we optimized the classification

performance of the ABCRM and then test it on a distinct validation set.

5.7 Summary

In this chapter, we test a prototype of the ABCRM on the Enron data and we

conclude that it is capable of classifying. We also compare it with NB and show that

it is competitive in general and resilient to spam-to-ham ratio variations in particular.

The classification results, even though not stellar, seem quite promising especially in

the areas of spam-to-ham ratio variation. We also observe the importance of time-

stamp sequential order for the ABCRM, especially when comparing the first two

validation experiments, 5.3.1 and 5.3.2. In the following chapter, we analyze the

effect of sequential order by exploring the parameter space comprehensively.



Chapter 6

Application to Biomedical Document

Classification

I don’t express myself in my paintings. I express my non-self.

Mark Rothko

6.1 Introduction

In this chapter we give an introduction to biomedical document classification and dis-

cuss benchmarks, in particular, the article classification task of the Biocreative chal-

lenge. We fine-tune our algorithm and study its robustness under various experimen-

tal setups. We report our classification results on the Biocreative dataset and compare

them with state of art classifiers such as Naive Bayes and Support Vector Machines.

This chapter is adapted from relevant published articles [AHR10a, AHR10b, AHR].

Biomedical document classification (BDC) is a binary classification problem in

which biomedical articles are classified as either relevant or irrelevant to a certain

topic or query. BDC has received a lot of attention in the last few years given the

96
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ever increasing number of publications and the need to retrieve only a small relevant

portion of the data. Several organizations have dedicated conferences, competitions

and workshops to address this challenge: Critical Assessment of Information Extrac-

tion systems in Biology (Biocreative)1, Natural language processing of biology text

(BioNLP)2, Knowledge Discovery and Data Mining (KDD)3 and GENIA4.

6.2 Data

The Biocreative (Critical Assessment of Information Extraction systems in Biology)

challenge is an effort to enable comparison of various approaches to bioliterature

mining [AHKM+07, AHKM+08, KV07]. The various Biocreative challenges have

dedicated subtasks to the binary classification of PubMed articles, for instance, as to

whether they are relevant or irrelevant to Protein-Protein Interaction (PPI). Inter-

estingly in the second Biocreative challenge, the validation data did not relate much

to the training data possibly due to the publication time gap between the training

(since 1976) and validation (mostly from 2006) data [AHKM+08]. This could be an

example of abrupt concept drift. The order in which the articles were published may

be of importance to our model [AHR08b] and thus may help deal with the concept

drift especially in validation data consisting of more recent articles. Another issue

in BDC is that of class imbalance, especially since the number of relevant articles is

often much smaller than irrelevant ones. Medline stores more than 19 million articles

1http://Biocreative.sourceforge.net
2http://www.bionlp.org
3sigkdd.org
4http://www-tsujii.is.s.u-tokyo.ac.jp/
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of which a small subset is relevant to a particular concept, given the wide diversity

in bioliterature. Recently, Biocreative II.5 and III have tried to raise the class imbal-

ance challenge by offering around 10 times fewer relevant articles than to irrelevant

ones. To date, no AIS has been used for biomedical document classification. There-

fore, in this chapter we plan to test our original AIS classifier on both abstract and

full-text biomedical articles addressing the challenges of concept drift and imbalanced

classification

The article classification task of Biocreative II.5 [Kra09] was based on a training

data set (T ) comprised of 61 full-text articles relevant (PT ) to the topic of protein-

protein interaction (PPI) and 558 irrelevant ones (NT ). The realistic imbalance be-

tween the relevant and irrelevant instances is very challenging for common machine

learning techniques, since there are few instances of the topical category of interest to

generalize from. Because in a general scenario we cannot predict how imbalanced the

validation set will be, we first search for optimal ABCRM parameters on a smaller

sample of the training that is balanced in the numbers of relevant and irrelevant doc-

uments. For this purpose, we chose the first 60 relevant and sampled 60 irrelevant

articles that were published around the same date (uniform distribution between Jan

and Dec 2008) as illustrated in Figure 6.1. For final validation we used the entire

Biocreative II.5 testing data set (V ) consisting of 63 full-text articles relevant to PPI

(PV ) and 532 irrelevant ones (NV ) as also shown in Figure 6.1.
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           BC 2.5 TRAINING                     BC 2.5 TESTING 

 

Optimization 
Dataset 

Figure 6.1: Numbers of relevant (P ) and irrelevant (N) documents in the training (T )
and testing (V ) data sets of the Biocreative II.5 challenge. In the parameter search
stage, we use a balanced set of 60 PT (blue) and 60 NT (red) randomly selected articles
from the training data set. In the testing stage we use the unbalanced validation set
containing 63 PV (black) and 532 NV (black) documents. Notice that the validation
data was provided to the participants in the classification task of Biocreative II.5
unlabeled, therefore participants had no prior knowledge of class proportions.
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6.3 Configuration for Biomedical Document Clas-

sification

We have shown in Chapter 4 how our agent-based model can be used to recognize

features and classify textual documents. In this chapter, we test our method on BDC,

which is a binary document classification problem, to understand its applicability to

document classification in general and to BDC in particular. We discuss some of

the techniques used for feature selection, parameter configuration and classification

performance evaluation.

6.3.1 Text Processing and Feature selection

We pre-processed all articles by filtering out common words5 and porter stemming

[Por80a] the remaining words. We then ranked words/features f extracted from

training articles (T )6 according to two scores: the first one is the average TF.IDF

(see Chapter 2), and the second one is the separation score S(f) = |pP (f) − pN(f)|

(see Chapter 2) [AHKM+08, KAHK+10]. The final rank R(fi) for every feature fi

is given by the product of the ranks obtained from both scores; we used only the

650 top ranked features according to R(fi). Features such as “interact”, “lysat” and

“transfect” were top ranked as shown in Figure 6.3.1. See [KAHK+10] for more details

about the feature extraction procedure.

5The list of common (stop) words includes 33 of the most common English words from which we
manually excluded the word “with”, as we know it to be of importance to PPI

6For feature extraction we used both the training data of Biocreative II.5 and Biocreative II as
described in [KAHK+10]; all classifiers used the exact same feature set.
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Figure 6.2: We choose the top 650 ranked features according to the rank product
R(f) = TF.IDF(f) × S(f). We use 1

R(f)
in the y-axis for display purposes. Features

ranked below the 650th feature have negligible variation. These same features have
been used successfully with a linear classifier [KAHK+10].

6.3.2 Parameter Search Settings

We performed an exhaustive parameter search by training the ABCRM on 60 bal-

anced full-text articles (30 PT and 30 NT from BCII.5 training) and testing it on the

remaining 60 balanced ones (also 30 PT and 30NT from BCII.5 Training) as illustrated

in Figure 6.17. Each run corresponds to a unique configuration of the 6 parameters of

7Notice that this parameter search on the provided labeled training data uses only the information
available to the teams participating in Biocreative II.5 challenge, and none of the testing data whose
labels were revealed post-challenge.
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Parameter Range Step
E0 [1,7] 1
R−0 [3,12] 1
R+

0 [3,12] 1
dE [0.0,0.4] 0.1
dR [0.0,0.4] 0.1
nA [2,22] 2

Table 6.1: Parameter ranges used for optimizing the ABCRM

the ABCRM. The explored parameter ranges are listed in Table 6.1 which result in

a total of 192500 unique parameter configurations for each experiment. Finally, the

parameter configurations were sorted with respect to the resulting F-score measure

of performance (discussed below), which is a good measure combining precision and

recall when applied to balanced data [SJS06].

6.4 Robustness

6.4.1 Cell Death

This experiment aims to study the effect of cell death on immune memory and clas-

sification performance. In this experiment we compare the top 50 parameter con-

figurations according to F-score obtained using cell death (exp 1.1) to those with

no cell death (exp 1.2)—while training on both self and nonself documents. The

average performance for the top 50 parameter configurations shows the robustness

of the classification performance of the algorithm for each experimental setup. We
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observe a notable difference in classification performance that we validate statisti-

cally (according to the criteria in Chapter 2) to show that using cell death improves

the performance (see Fig. 6.3)—regardless of whether the algorithm is trained on

just relevant or on both relevant and irrelevant documents (see below). Therefore we

conclude that cell death, which helps in the forgetting of useless features and focuses

on more recent and frequent ones, improves classification performance. This suggests

that cell death is important for immune memory in the T-Cell cross-regulation model.

6.4.2 Training Sets

This experiment is conducted to show if we can rely solely on the positive set for

classification, or if the performance can be improved by training on both positive and

negative sets. We compare the top 50 parameter configurations according to F-score

obtained using training on positive only, also known as PU learning (experiments 2.1

and 2.2), to the previous experiments (1.1 and 1.2). This way we compare training

on positive documents only, with and without cell death. The results show that

using both training sets always (significantly) improves the robustness of classification

performance (see Fig. 6.3). Although the top performance obtained for 1.1 (training

on both classes with cell death) and 2.1 (training on positive documents with cell

death) is equivalent with F-Score=0.85 (see Table 6.2), the robustness as measured

by the performance of the top 50 parameter sets is significantly lower for experiment

2.1.
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Exp. F-Score E0 R+
0 R−0 dR dE nA

1.1 0.85 2 11 10 0.3 0.2 18
1.2 0.83 1 4 7 0.0 0.0 18
2.1 0.85 1 12 8 0.1 0.0 8
2.2 0.75 2 12 6 0.0 0.0 18

Table 6.2: Performance and parameters of top classifiers in experiments 1 and 2.

Figure 6.3: The first two experiments result in four experimental setups: 1.1) training
on both sets with cell death (red), 2.1) learning with cell death (green), 1.2) training
on both sets with no cell death (blue) and 2.2) PU learning with no cell death (yellow)
are clearly distinguishable for the top 50 configurations of each experiment on the plot
on the left. On the right, the horizontal lines represent the mean, the boxes represent
95%CI, and the whiskers represent standard deviation of F-scores from the top 50
parameter configurations
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6.4.3 Sequential Order

This experiment aims to establish how much the sequence order of processing docu-

ments impacts performance. In particular, we test if preserving the original temporal

order of biomedical documents results in better performance, as this would indicate

that the ABCRM can use its sequence-dependent dynamics to track the natural con-

cept or topical drift and thus improve classification. Therefore, we compared the

performance of the ABCRM when tested on a sequence of biomedical articles ordered

by the original publication, against randomly shuffling the articles. We tested four

distinct experimental setups in order to fully explore the influence of document order:

3.1 Ordered training set ⇒ ordered test set

3.2 Ordered training set ⇒ shuffled test set

3.3 Shuffled training set ⇒ shuffled test set

3.4 Shuffled training set ⇒ ordered test set

In the case of shuffled sets, we produced 8 runs with distinct random document

orderings; in those cases, performance is represented by central tendency. For this

and the following experiment we use training on both classes and using cell death

(exp 1.1) that resulted in the best F-score results from the previous two experiments.

Therefore exp 1.1 is equivalent to exp. 3.1.

The results of this experiment are summarized in Figure 6.4. The robustness of

performance of the first experimental setup (preserving temporal order of articles)
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Figure 6.4: The second two experiments result in 5 experimental outcomes. To
the left we show the top 50 parameter configurations ranked in terms of F-score for
experimental setups 1.1=3.1=4.1 (red circles), 3.2 (blue pluses), 3.3 (blue crosses),
3.4 (blue diamonds), and 4.2 (green triangles). To the right we show the mean (line),
95%CI (boxes), and standard deviation (whiskers) of F-scores for the top 50 parameter
configurations.

Exp. F-Score E0 R+
0 R−0 dR dE nA

1.1 = 3.1 = 4.1 0.85 2 11 10 0.3 0.2 18
3.2 0.85 2 7 6 0.0 0.0 20
4.2 0.86 3 8 7 0.2 0.1 14

Table 6.3: Performance and parameters of top classifiers in experiments 1.1=3.1=4.1,
3.2 and 4.2. Experiments 1.1, 3.1 and 4.1 are equivalent.
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is significantly above the other setups. Using the paired student t-test as described

in Chapter 2, we conclude that the ABCRM is sensitive to article order—i.e. if the

articles are shuffled, the performance is worse. While the performance of the best

classifier obtained via experimental setup 3.2 is equivalent to the best one obtained

for experimental setup 3.1 (F-Score = 0.85, see Table 6.3 and Figure 6.4), that setup

is very sensitive to parameter changes and the performance quickly and significantly

decreases for subsequent best classifiers (see Figure 6.4). Indeed, the performance of

the top 50 classifiers for experimental setups 3.2, 3.3, and 3.4 is statistically indistin-

guishable from each other, but is significantly lower than the performance of the top

50 classifiers for experimental setup 3.1. This means that there is indeed a conceptual

drift in the Biocreative II.5 article data stream, and the ABCRM can track it better

(and in a more robust manner) when publication date is used as the sequence for

processing articles than when the temporal order of articles is shuffled. This also

suggests that the process of T-Cell cross-regulation in the IS, as modeled here, can

track changing nonself environments.

It should be noted that in this experiment, the partitioning of training and test

data was done according to the time-stamp of documents. The documents in the test

set were published after all documents in the training set. Therefore, even in the

shuffled training and test sets (experimental setup 3.3), there is some preservation of

temporal order. In future work we will explore experimental setups where the training

and test sets are drawn from the same time-stamp distribution to better understand

the effects of concept drift and how well our model can track it.
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6.4.4 Initial Bias

In this experiment, we test for the effect of the initial biases introduced when features

are first encountered. The initial biases of regulatory T-cells injected in the dynamics

for a new feature fi, depend on whether the first document d where the feature is

encountered is labeled irrelevant/unknown (R−0 ) or relevant (R+
0 ). Since features will

occur in both relevant and irrelevant articles, this initial bias for a feature could be

detrimental, as a feature most associated with one class could be first encountered on

a document of the opposite class. Therefore, it is important to test if the dynamics of

the four reactions and APC feature co-presentation that define the ABCRM can self-

correct such erroneous biases. To perform this test, we altered the ABCRM algorithm

such that T-cells are incremented appropriately every time a feature occurs in a

document, and not just the first time the feature occurs (as the canonical algorithm

does). Specifically, every time a feature fi occurs in a document d, we increment

Ei = Ei+E0 and Ri = Ri+R
+
0 if d is labeled relevant and Ri = Ri+R

−
0 if d is labeled

irrelevant or unlabeled. We label this experimental set up 4.2, which was conducted

with cell death and training on both positive and negative documents. The results of

this experiment are also summarized in Figure 6.4. The performance of top classifiers

obtained for experimental setups 4.1 (same as 1.1 and 3.1 that are trained on both

training sets using cell death) and 4.2 (incremental experimental setup) is shown in

Table 6.3. While the best overall classifier is obtained with experimental setup 4.2,

the performance of both setups is statistically indistinguishable. Indeed, using the

paired student t-test as described above, we cannot reject the null hypothesis claiming

that both distributions of F-scores were drawn from a similar distribution. Therefore,
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we conclude that this modification does not improve the performance of the ABCRM

on the Biocreative data set, thus showing that the initial bias can be corrected by the

ABCRM collective dynamics and does not require incrementing T-cells for all new

features. Because features most associated with a given class tend to co-occur in text

with other features most associated with the same class, they will also tend to be

co-presented in APC and thus the relevant T-cells will proliferate with similar rates.

Therefore, the dynamics of the ABCRM can self-correct initial erroneous biases from

the natural textual co-occurrence of features. This shows that T-Cell cross-regulation

as modeled here can self-correct initial antigen misclassification by the IS, assuming

that antigens from one class (self/nonself) tend to co-occur with antigens from the

same class.

6.5 Validation and Conclusions

To test the ABCRM on the full, unbalanced testing set of the Biocreative challenge

(see figure 6.1), thus establishing its merit as a bio-inspired biomedical literature

mining classifier, we adopted the best parameter configuration from the canonical

ABCRM (experimental setup 1.1=3.1=4.1, see Table 6.3) obtained from the param-

eter search described above. We compared the ABCRM classifier with the multino-

mial Naive Bayes (NB) with boolean attributes [MAP06], and the publicly available

SVMlight implementation of SVM applied to normalized feature counts [Joa02]. All

classifiers were tested on the same features obtained from the same data.

Since the F-score and Accuracy are not very reliable for evaluating unbalanced



Chapter 6. Application to Biomedical Document Classification 110

ABCRM NB SVM Mean StDev. Median
Precision 0.22 0.14 0.24 0.38

Recall 0.65 0.71 0.94 0.68
F-score 0.33 0.24 0.36 0.39 0.14 0.38

Accuracy 0.71 0.52 0.74 0.67 0.30 0.84
AUC 0.34 0.19 0.46 0.43 0.17 0.44
MCC 0.24 0.13 0.31 0.31 0.19 0.33

Table 6.4: F-Score, Accuracy, AUC and MCC performance of various classifiers when
training on the balanced training set of articles and testing on the full unbalanced
Biocreative II.5 testing set. Also shown is the central tendency and variation of all
systems submitted to Biocreative II.5.

classification [SJS06], we also use the Area Under the interpolated precision and

recall Curve (AUC) and Matthew’s Correlation Coefficient (MCC) that we defined in

Chapter 2. The results are listed in Table 6.4, which also includes the central tendency

of the results of all systems submitted by all Biocreative II.5 participating teams

[Kra09, KAHK+10]. It should be noted that the ABCRM, NB, and SVM classifiers we

tested here, used only single-word features because we wish to establish the feasibility

of the method. In contrast, most classifiers submitted to the Biocreative II.5 challenge

(including another method from our group which was the top-performing classifier

[KAHK+10]) used more sophisticated features such as bigrams and problem-specific

entities. Therefore, it is not surprising that these methods as tested here performed

under the mean of the challenge.

Our goal was to establish the ABCRM as a new bio-inspired text classifier to be

further improved in the future with more sophisticated features. When we compare

its performance to NB and SVM on the exact same single-word features, the results

are encouraging. Indeed, based on the given measures, while SVM out-performed
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the ABCRM, the latter out-performed NB. Therefore, the dynamics of T-Cell cross-

regulation lead to a competitive collective classification of biomedical articles, which

we intend to develop further.

Our dynamical method offers a new perspective in machine learning that tradi-

tional classifiers such as NB lack. In Figure 6.5 we show how R (blue) and E (red)

T-cell population sizes are in transient states from the first document till the last one

for the 100 most discriminant features according to the S-score (see Chapter 2). The

parameter configuration used was that optimized for experiment 1.1 (see Table 6.2

for parameter values) that includes cell death. However, in Figure 6.5 we illustrate

the feature frequencies for each of the relevant (blue) and irrelevant (red) classes and

we observe a fast convergence to one solution, especially after document 60, that is

the last training document.

Nevertheless, in Figure 6.5 we observe “less’’ cellular dynamics when deactivating

cell death and using optimized parameter configuration from experiment 1.2. Cell

death plays a huge role not only for the immune memory to focus on recent and

frequent features but also in making this model more dynamical and robust. While

this experiment offers only a qualitative comparison between our dynamical method

and Naive Bayes, we leave quantitative analyses for future work.

In conclusion, we observe that cell death is useful for immune memory as it helps

forget old features/antigens and focus on more frequent or recent ones and training on

both labeled sets helps improve the classification results. We also observed that our

algorithm adapts to the initial bias of T-cell populations generated for new features,

and it performs best when tested on a sequence of articles ordered by publication
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Figure 6.5: R (blue) and E (red) T-cell population size from experiment 1.1 over 120
documents showing constantly changing dynamics
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Figure 6.6: Frequencies of features in Relevant (blue) and Irrelevant (red) documents
over 120 documents converging to one solution
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Figure 6.7: R (blue) and E (red) T-cell population size from experiment 1.2 over 120
documents converging to one solution
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date—showing that it can track concept drift in the biomedical literature. These

properties of our Artificial Life model also show that T-Cell cross regulation is capable

of efficient collective classification of nonself antigens and suggest that T-Cell cross-

regulation can naturally respond to drift in the pathogen population. Therefore T-

Cell cross-regulation defined by the 4 reaction rules and co-presentation of features in

APC can be seen as an effective general principle of collective classification available

to populations of cells. Clearly, there is still much to do to improve the model. For

biomedical literature mining applications, we need to test it with more sophisticated

features (as top classifiers in the field do). For our goal of understanding T-Cell

cross-regulation in the IS, we need to understand better how memory is sustained

in the collective cellular dynamics; for instance, how to sustain regulatory T-Cells,

which keep memory of self, in the dynamics even in the presence of very unbalanced

scenarios where there are many more nonself instances.

This original work [AHR10a, AHR10b, AHR] should be regarded not only as a

promising bio-inspired method that can be further developed and even integrated

with other methods but also as a model that could help us better understand the

behavior of the natural immune system.



Chapter 7

Conclusions and Future Work

Adde parvum parvo magnus acervus erit

Add a little to a little and there will be a great heap

Ovid

7.1 Contributions to the Immune System

Here we discuss some of the aspects of the immune system that may be of interest

to immunologists. We compare observations drawn from our bio-inspired model of

document classification (previous two chapters) to aspects of the immune system. We

hope to raise interesting questions and insights about T-cell dynamics in particular,

and the immune system in general.

7.1.1 Cell-Death and Immune Memory

The immune system possesses memory of previous infections and uses it to respond

to similar ones more effectively in the future [SL31]. However, the mechanism behind

116
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immune memory is still poorly understood. There are several theories, each supported

by experimental evidence.

The most established theory is that of hyper-sensitive memory cells that come in

two varieties, memory B-cells and memory T-cells [MWMW05]. Infections form two

types of long-term memory: humoral immunity, in which B-cells produce antibodies

that recognize and bind to nonself antigens, and cellular immunity, in which activated

T-cells proliferate and lead to the death of the infected cells. The memory of an

infection is retained for several years [SL31] and is measured by the population size

of memory cells even in the absence of the antigen of the infection.

It has been shown that the total number of memory cells is roughly constant and

any increase in the population is followed by a return to the constant concentration

[TR95]. This indicates that a homeostasis mechanism is able to regulate and maintain

the population size of memory cells. Evidently, no organism can accommodate the

infinite increase of cells and therefore apoptosis or programmed cell death takes care

of the elimination of some cells. Our experiments in Section 6.4.1 have shown how

cell death is useful for the immune memory to focus on recent and frequent features

or antigens. Moreover, our illustrations in Figures 6.5 and 6.5 show a substantial

difference in the T-cell population dynamics between using and not using cell death.

Cell death offers a much more dynamical system with constantly changing populations

of E and R T-cells.

The question of how memory cells are formed and maintained remains unanswered

with several theories trying to explain it:

The long-lived memory cell theory claims that the highly responsive B-cells
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and T-cells differentiate into long lived memory cells and do not undergo any cell

death or cell division for many years. However, there is no convincing evidence to this

especially given the short life span of these cells and indeed a series of experiments

on mice showed that T-cells continue to divide after primary response [TS94] and

another experiment shows that plasma cells in mice have a life span of only months

[SAWA98].

The emergent memory theory suggests that highly specific effector T-cells are

preserved from cell death by an enzyme such as telomerase. Telomerase increases

the length of telomeres, which are made of DNA sequences that protect the tips of

chromosomes from being shortened during cell reproduction [WPL+97]. Each cell can

reproduce a certain number of times that is predefined by the length of its telomeres,

that is shortened with every reproduction. Therefore, telomerase can establish long

term-memory for highly specific effector T-cells by allowing them to reproduce more.

The residual antigen theory suggests that antigens themselves can be stored

in the lymph node [PW97] and could keep the immune system active to sustain the

homeostasis of memory cell populations. This theory remains widely accepted by

immunologists [AGA05].

The immune network theory defined in chapter 3, is based on the assumption

that a network of B-cells with idiotopes and paratopes becomes capable of recognizing

nonself when all of its self-recognizing idiotopes have been regulated by other self-

recognizing paratopes. This network undergoes cycles of excitation and suppression

leading to a homeostatic memory pool. However, this theory received no sufficient

evidence to observe this behavior in vitro or in vivo.
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In the T-cell cross-regulation model, Sepulveda [Sep09] argues that initial pop-

ulations of the effector and regulatory T-cells are of similar sizes for an antigen.

However, the antigen population size diverges when these T-cells become long lived.

In other words, after many series of suppression and proliferation, T-cell populations

eventually become long lived to be either “healthy’’ with more regulatory T-cells or

“unhealthy’’ with more effector T-cells. In our simulations (see figure 5.8) we observe

trajectories of T-cell population sizes that diverge into either “healthy’’ (with more

regulatory T-cells) or “unhealthy’’ (with more effector T-cells) states, that are main-

tained over time. Moreover, we observe the emergent self-maintenance of features..

Figure 5.8 shows how regulatory T-cells are overwhelmed by constantly increasing,

self-maintained effector T-cells for the irrelevant feature of “rolex”.

Studies have demonstrated the dynamic nature of T-cell homeostatis that is main-

tained through constant competition and flux [Jam05]. In the original analytical

cross-regulation model, Carneiro et al. [CLC+07] claim that regulatory T-cells de-

pend on effector T-cells to maintain their population size since they cannot proliferate

independently. However, recent in vivo experiments report that the stability of the

regulatory T-cell lineage is maintained through self-renewal [RNJ+10]. Self-renewing

regulatory cells can result in interesting dynamics that we leave for future work. Our

ABCRM expands on a mathematical model of T-cell cross-regulation to deal with

multiple populations. In it, we observe that regulatory T-cells of a population can

be maintained and excited to proliferate by effector cells of distinct populations in a

homeostatic network of cellular interactions. This dependence of regulatory cells on
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T-cells from other populations was not possible in the original model due to its lim-

itation to only one population of T-cells. For example, figure 5.8 (below) shows the

trajectory of a healthy population size of T-cells, in which R T-cells are maintained

through their “interaction” with other populations of T-cells via APC. Moreover, R

T-cells need to bind to APC in order for this interaction with other populations of

T-cells to happen, and that is possible with the occurrence (illustrated as circles in

figure 5.8) of relevant features.

Therefore, we conclude that cell death is useful for immune memory and plays a

huge role in T-cell dynamics. In addition, we show how the expansion of a simple

cross-regulation model to deal with multiple antigens and populations of T-cells can

achieve binary classification via R T-cells that are maintained by other populations

of T-cells.

7.1.2 Negative Selection and beyond

Negative selection in the adaptive immune system is known to eliminate naive ef-

fector T-cells that recognize and bind to self antigens in the thymus. This prevents

the randomly generated T-cells, with various T-cell receptors, from recognizing and

attacking self antigens (autoimmunity) when later matured and released from the

thymus [Hof01]. Therefore, effector T-cells are trained to discriminate between self

and nonself antigens by “training” on a repertoire of self antigens in the thymus.

In the context of machine learning, this is similar to a situation known as positive

unlabeled (PU) learning. In section 6.4.2, we tested if we can rely solely on the

positive set for classification, as done in negative selection and PU learning, and
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whether the performance can be improved by training on both positive and negative

sets. The results showed that using both training sets could improve the classification

performance although training solely on relevant documents can be reliable.

As discussed in chapter 3, matured effector T-cells are still prone to escaping

the thymus without being trained on all self antigens. Self-recognizing effector cells

may lead to auto-immune diseases unless regulated by self-recognizing regulatory T-

cells that play a huge roll in the cross-regulation model. Nevertheless, both negative

selection and the cross-regulation model represent only a minute part of the adaptive

immune system, which itself represents only a part of the entire immune system.

While our aim was to study if such a subsystem of the adaptive immune system is

capable of classifying, our experiments also show that the immune system can benefit

from exposure to nonself antigens. Indeed, evidence shows that the ability for adult

mice to recognize grafts of foreign skin depends on earlier exposure to nonself antigens

[PPSO04, p.361].

7.2 Contributions to Complex Systems and Ma-

chine Learning

Our experiments from the previous chapters address challenges in machine learning,

such as dynamic class imbalance and concept drift, and raise interesting questions

about self-organized and adaptive systems that can classify using a collective behavior.
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7.2.1 Decentralized control and Robustness to dynamic class

imbalance

The immune system is a complex system of thousands of interacting cells that in-

teract to defend our body from malicious intruders. More specifically, the vertebrate

adaptive immune system consists of decentralized B-cells and T-cells that interact for

the purpose of discriminating between self and nonself antigens. The thymus gland,

bone marrow and spleen play a huge role in the differentiation and training of cells,

however, immune responses are orchestrated in a decentralized fashion by the inter-

action of millions of cells [Hof01]. The decentralized control exhibited by the immune

system, in which not a single cell or organ controls the classification of intruders,

makes the binary classification problem of discriminating between self and nonself all

the more compelling.

One of the biggest challenges of the immune system is adapting to the constantly

changing ratios between harmless and harmful intruders. The immune system is capa-

ble of discriminating between self and nonself antigens in healthy (only self antigens)

and unhealthy scenarios (unbalanced ratios between self and nonself antigens).

In machine learning, this same problem is characterized by changes in the ratios of

class instances. In binary document classification, a corpus may have more relevant

than irrelevant documents in the training set, but this may change in the validation

set in unpredictable ways. For example, in spam detection, a user is prone to be-

ing bombarded by undesired e-mails at any time. This results in an unpredictable

spam-to-ham ratio variation, and makes it hard for traditional machine learners to
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deal with this accurately. We call this problem “dynamically unbalanced classifica-

tion”. Therefore, a decentralized adaptive system that is capable of dealing with the

dynamically changing unbalance is needed.

In chapter 4, we used agent-based modeling to implement T-cell dynamics in a

decentralized fashion. In chapter 5, we have shown how our adaptive, decentralized,

agent-based model is capable of dealing with spam-to-ham ratio variations between

training and testing. Although the classification results in the balanced scenario were

in favor of NB for three of the cross-validation subsets and statistically indistinguish-

able between NB and the ABCRM for the remaining three, they were in favor of the

ABCRM in the imbalanced ones (see chapter 5), where NB did not cope as well with

balance changes. In chapter 6, we have also shown how our decentralized model is

capable of adapting to these changes when trained on a balanced set of articles and

tested on an imbalanced one. Note that NB can be tweaked for imbalanced classifica-

tion but the imbalance ratio cannot be known ahead of time. However, the ABCRM

is adaptive and auto-reactive to changes in class imbalance through its decentralized

control.

7.2.2 Collective Behavior of T-Cell Dynamics

When thousands of cells interact to discriminate between self and nonself, they do so

collectively in a self-organized manner. Our approach is based on the idea that the

immune system is a distributed collection of molecular constituents with no central

controller [SC01]. Therefore, its classification ability needs to result from a collective



Chapter 7. Conclusions and Future Work 124

classification process, defined as the ability of decentralized systems of many com-

ponents to classify situations that require global information or coordinated action

[Mit06]. Nature is full of examples of collective classification such as the dynamics

of stomata cells on leaf surfaces [PWMM04], biochemical intracellular signal trans-

duction networks [HKHR08], quorum sensing in bacteria [WS06] and social insects

[Pra05], etc. For example, colonies of the ant Temnothorax albipennis collectively

choose a site for their nest based on quorum rules that quantify the rate of direct en-

counters with their nest mates [ibid ]. We can study collective classification in general

models of complex systems such as Cellular Automata by identifying regular patterns

in the dynamics that store, transmit and process information [CM95, RH05, SHR+06].

But or approach here is based on a more realistic agent-based modeling of cellular

dynamics. In analogy with the interactions among T-cells and antigens that lead to

self/nonself discrimination in the immune system, words co-occurring in documents

can be seen as interacting in text in such a way as to allow us to distinguish between

relevant and irrelevant documents. Figure 7.1 illustrates the idea of “interacting”

words from one document to the other via their corresponding T-cells that interact

by adjacently binding to APC.

In chapter 4, we described our initial biases of E0 and R±0 for features that are

newly introduced to the cellular dynamics. Features f first occurring in a relevant

document are biased with moreRf than Ef (R+
0 > E0) whereas features first occurring

in an irrelevant or unlabeled document are biased with less Rf than Ef (R−0 < E0).

Nonetheless, this bias can be erroneous since a more relevant feature can first occur

in an irrelevant document and vice versa.
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Figure 7.1: An illustration of collective learning from document j to document j + 1
that follows in time order. In document j, relevant feature f1 (with R1 ≥ E1) “reg-
ulates” irrelevant or new feature f2 (with R2 << E2). Consequentially, in document
j + 1, feature f2 that is now relevant is capable of regulating another irrelevant or
new feature f4, etc.
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We tested the self-correcting ability of T-cell dynamics in chapter 6 by compar-

ing the classification performance with the erroneous initial bias to that of a minor

variation of our model in which T-cells are added incrementally every time a feature

occurs in a document and not only the first time. The performance under the second

condition was statistically indistinguishable from the original scenario, thus proving

that the initial bias is automatically corrected by collective T-cell dynamics.

7.2.3 Sequential Order and Concept Drift

The adaptive nature of the vertebrate immune system can be compared to incremental

learners in machine learning, which in contrast to batch learners, learn incrementally

or instance-by-instance [FS06]. While, incremental learning depends on the set of

instances previously encountered, it is not typically sensitive to the sequential order

in which the instances are presented. The ABCRM is novel in that it is based on

a dynamical system whose behavior depends on sequence presentation, not simply

the set of previously encounterd instances. This sequentially ordered data, known as

stream data, is very common in real-world application and is of particular interest to

modern machine learning.

A very common problem in stream data is concept drift, which we have previously

defined as the (gradual or sudden) change of underlying data distributions over time.

In section 6.4.3, we tested for concept drift in biomedical document classification

by comparing the classification performance on articles ordered by publication date

against that of randomly shuffled articles. The former setup outperformed the latter

one. This indicates that some useful information is available in the publication order,
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and our method was able to benefit from it. Indeed, the ABCRM is a classifier based

on a dynamical system framework, which makes it dependent on sequence of items

to learn from and classify. This establishes an alternative bio-inspired approach to

binary classification. It also highlights how much the immune system seems to be

dependent on the history of pathogens and primings it encounters.

7.3 Concluding Remarks and contribution

In this thesis, we have established an original bio-inspired classification method in-

spired by T-cell cross regulation of the adaptive immune system. We tested our

method on two binary document classification problems, using publicly available

benchmark: the enron dataset for spam detection and the Biocreative dataset for

biomedical document classification. From the first application we concluded that our

bio-inspired model is able to classify. We also obtained encouraging results that are

comparable to traditional classification methods. We studied the robustness of our

method to dynamically changing class imbalance and concept drift. Our method

was particularly promising in terms of resilience to dynamic class imbalance between

training and testing documents as experiments suggested it is more resilient to bal-

ance changes than NB. Also, our dynamical system has shown to benefit from the

order in which the documents were presented to track concept drift. This was evi-

dent from the drop of classification performance on documents that are shuffled in

time-stamped order.
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The cross-regulation model is based a theory of the cellular immunity of the adap-

tive immune system. deriving from cellular interactions. However, cellular immunity

is known to be complemented with a humoral response that is mediated by secreted

antibodies [Hof01]. Moreover, the adaptive immune system is complemented by the

innate immune system in order to discriminate between self and nonself antigens ef-

fectively. Therefore, we can hope for huge improvements in terms of classification

performance simply by aggregating our cross-regulation model to other artificial im-

mune systems that model other subsystems of the immune system. Moreover, our

immune-inspired binary classifier raises many questions about the generalization of

the model in terms of dealing with multiple-class classification and more complex

features that we leave for future work.

Our contribution was not limited to the machine learning but also to complex

systems and immunology:

• We developed a bio-inspired classifier based on T-cell cross-regulation using

agent-based modeling.

• We tested a prototype of our model on spam detection to show that T-cell

collective classification works.

• We optimized our model for bio-medical document classification to study the

robustness of our method and raise insights about the immune system and T-cell

dynamics:

– We concluded that cell death is useful for immune memory to focus on more

recent and frequent antigens. Also, regulatory T-cells are maintained in
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the memory pool by interacting with T-cells from other populations via

APC.

– We have shown that training on both self and nonself is more effective than

training on self alone and therefore AIS models such as the cross-regulation

model and negative selection can benefit from training on nonself antigens

as well.

– We have demonstrated how a dynamical system can be more robust to

dynamic class imbalance with spam-to-ham ratio variation.

– We have shown how the sequential order of documents is important for

our method to track concept drift.

7.4 Future Work

Our work addresses many questions about the applicability of our cross-regulation

agent-based model to binary document classification—specifically on real-world data

from spam detection and biomedical document classification— and the behavior of

T-cell dynamics. However, it also raises many new questions of whether it can be

extended for multi-class classification and whether it can be improved using more

complex features such as bigrams and trigrams. Testing our method on artificial data

can provide us and immunologists with better insights about T-cell dynamics and the

immune system, that is still in many perspectives, poorly understood.
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7.4.1 Artificial Data

So far, we have only tested our ABCRM on real-world data, namely enron data for

spam detection and Biocreative data for biomedical document classification. Many

artificial immune systems have been tested on artificial data, such as STAGGER

concepts [SG86]. However, none of these datasets characterize textual data. Our

future aim is to develop a benchmark of artificial textual data having similar zipfian

distributions, describing frequency distributions of words in corpora [TH03]. This

artificial data would allow us to accurately study various cases of concept drift and

class imbalance. We leave such an approach for future work.

Our benchmark can be useful for testing other classifiers with the presence of

concept drift and comparing results easily.

7.4.2 ABCRM N-gram Feature Selection

In terms of feature selection, our preliminary ABCRM samples single words from

documents and uses them as features. We plan to extend our algorithm to allow

more complex n-gram (unigrams, bigrams, trigrams...etc) features to be presented

as antigens. The selection of n-gram features can be evolutionary in such a way to

simulate the evolution of an immune system. The evolutionary selection of n-grams

can be guided by a feature selection method such as mutual information, information

gain or χ2 that are common in data mining [FS06]. However, we plan to use the S score

(see 2.3.3), which simply measures the absolute difference between the normalized

number of regulatory (Rf ) and effector (Ef ) T-cells specific to an n-gram feature f .

Highly discriminant n-gram features f have relatively high Ef or Rf , exclusively. The
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initialization of an n-gram f is based on the score of its components. For example, a

bigram feature fbi, constituting of the unigrams f1 and f2, is initialized if |score(f1)|

or |score(f2)| are above a certain threshold. When initialized, the n-gram initial R0

and E0 values are set to the mean values of the R and E of the n-gram components.

N-grams can solve the cross-affinity problem by allowing T-cells specific to “similar”

features, f1 and f2, to bind to the antigen complex fbi ≡ f1f2. The n-gram can be

extended to synonymous compounds (if f1 synonymous to f2), features with short edit

distance (very useful to account for Bayesian poisoning with f1 and f2 visually similar

with short edit distance), or co-occurring features (f1 and f2 co-occur in the same

document). Also, the combinatorial explosion of n-gram features can be handled in

a bio-inspired fashion by modeling T-cell turnover using clonal selection (see chapter

3) in the adaptive immune system.

7.4.3 ABCRM Generalization to Multi-classification

So far, we have only used ABCRM for binary document classification. Eventually, we

aim to have a general multi-classifier for documents. The immune system’s various

responses are orchestrated by several types of cells (e.g. T-helper cells, T-regulatory

cells, B-cells) [DN08]. Effector (E) and Regulatory (R) T-cells could sufficient for

binary classification, however, additional classes (for other responses) would require

additional cell-types.

Multi-classification can serve as a useful extension to the binary biomedical docu-

ment classification where some articles are neither strictly relevant nor strictly irrel-

evant but related. One of the second BioCreAtIvE tasks focused on protein-protein
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interaction (PPI) pair retrieval in bioliterature [KV07], however the real challenge

was in mapping extracted protein names to species-specific UNIPROT ids and there-

fore a multi-species document classifier was necessary. The BioCreAtIvE II.51 raises

the same multi-species classification challenge for PPI retrieval. We plan to address

the problem of multi-species document classification with ABCRM by having species-

relevant cell-types that are also PPI-relevant and therefore by the differentiation of

the Regulatory cell-type.

For example, in a document, a “human” relevant feature fh, would have a rel-

atively high RHfh (i.e. numerous human regulatory T-cells). Since regulatory cell-

types do not regulate each other, fh can be equally “mouse” relevant with high RMfh ;

such a feature examples many protein names shared between human and mice. How-

ever, fh could have high RHfh and RMfh , and still be PPI irrelevant with high Efh ,

in which case, fh would be classified as irrelevant. Species relevant regulatory cells

are capable of suppressing PPI relevant effector cells and therefore species relevant

regulatory cells are also PPI relevant.

Similarly for spam detection, ABCRM can be extended to multi-classification

specifically for legitimate e-mail or ham (e.g. urgent, mailing lists, family, work,

school). For example, “urgent” e-mails would have many features fu with high RUfu

and low Efu , however they could also relate to other categories such as “family” and

therefore have high RFfu as well. Spam can be categorized as well with spam-relevant

effector cell types that by pairing can only lead to more E proliferation (more spam).

The various effector cell types can be relevant to obfuscation techniques, advertised

1http://www.biocreative.org/
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products or intelligible foreign languages.

7.4.4 Spatio-Temporal Model of ABCRM

We aim to implement the ABCRM on a new agent-based framework known as Bit-

Bang [BMC06]. We will use an environment similar to Floriano’s [FMMK07] poison-

food (or irrelevant-relevant) model. In this model, polyspecific antigen presenting cells

(A) are allowed to bind to a maximum of two T-cells as assumed in the original CRM

[CLC+07]. A spatially sample pairs of horizontally, vertically or diagonally neigh-

boring features (e.g. words, bigrams) to present them as pairs of antigens. Antigens

attract monospecific Effector (E) and Regulatory (R) T-cells that are within vicin-

ity. T-cells that do not bind to A approach A such that they have higher chances of

binding to it next time. This would eventually allow for conclusive features to gather

around the bottom of the document (e.g. signatures in e-mail and footers in other

documents in general) and similarly for introductive features at the beginning (e.g.

“hi” and “hello” in e-mail and document titles or headers in general). On the other

hand, E that bind to A undergo proliferation unless suppressed by R according to

the previously described interaction rules. Newly proliferated T-cells are generated

around their parent T-cells while T-cells for features occurring are randomly scat-

tered around the document space. This application not only studies the importance

of spatial interaction but is also flexible to many variations that can help us study

A antigen preferential presentation (if there is any preference for some more infor-

mative antigens to be presented over others) and T-cell preferential attachment (if

there is preference for some T-cells to bind to the A over others). Answering these
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two questions could provide immunologists with insights about A preferential antigen

presentation and T-cell preferential binding to A in biology.
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