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1 Introduction

Everything’s connected, all along the line.

Cause and effect. That’s the beauty of it.

Our job is to trace the connections and reveal them.
— Terry Gilliam (”Brazil”)

1.1 Functional Genomics

All science is either physics or stamp collecting.
— FErnest Rutherford, physicist

Genes code for proteins, some of which in turn regulate other genes. This
network of gene regulation, combined with protein interactions, can be very
complex. The traditional approach to research in Molecular Biology has been
an inherently local one, examining and collecting data on a single gene, a single
protein or a single reaction at a time. This is, of course, the classical reductionist
stance: To understand the whole, one must first understand the parts. Over
the years, this approach has led to some remarkable achievements, allowing us
to make highly accurate biochemical models of such favorites as bacteriophage
Lambda [71, 7].

However, with the advent of the “Age of Genomics” an entirely new class
of data is emerging. As the goal of structural genomics—sequencing entire
genomes—comes into sight, the focus is gradually shifting to functional ge-
nomics.

Specifically, functional genomics refers to the development and ap-
plication of global (genome-wide or system-wide) experimental ap-
proaches to assess gene function by making use of the information
and reagents provided by structural genomics. It is characterized by
high throughput or large scale experimental methodologies combined
with statistical and computational analysis of the results. [42]

Biology used to be a data-poor science, out of necessity having to rely on
carefully designed hypothesis and meticulously planned experiments. Over the
past couple of years, however, it has been rapidly evolving into a data-rich
field, opening up the possibility of data-driven research—for which Hood coined
the term “discovery science” [1]—rather than hypothesis-driven research. Such
analysis-without-hypothesis has often been compared pejoratively to a fishing
expedition. But perhaps, as Geshwind [30] states, it is “fishing, but with a stick
of dynamite in a stocked pond”. Obviously, there is a trade-off to be made
between unbiased analysis—allowing for the possibility of entirely innovative
conclusions—and uninformed analysis—ignoring all the accumulated wisdom of
the field.

Unfortunately, the arrival of this flood of large scale data has so far not been
accompanied by an equal abundance of computational techniques to handle the



data. Researchers who were used to looking at perhaps a few tens of mea-
surements from very focused experiments are suddenly faced with literally tens
of thousands or even millions of measurements. Initially, analysis of this data
was mainly of a descriptive nature, consisting of little more than lists of how
many genes were previously unknown, which genes are under or overexpressed
under certain circumstances, etc. More recently, simple statistical techniques
such as clustering and classification are being discovered, and—occasionally—
reinvented. The goal of this dissertation is to develop computational tools to
analyze this data at a higher level of complexity, by attempting to determine the
underlying network of regulatory interactions that causes the behavior observed
in these large scale measurements.

Of course, this large-scale data is an equally valuable resource for researchers
who are focusing on individual genes. But can we really expect to construct a
detailed biochemical model of, say, an entire yeast cell with some 6000 genes
(only about 1000 of which were defined before sequencing began, and about
50% of which are clearly related to other known genes), by analyzing each gene
and determining all the binding and reaction constants one by one?

Rather than waiting until we have worked out all the biochemical details, we
would like to be able to analyze such large systems in a genome-wide fashion at
some intermediate level of representation, without having to go all the way down
to the exact biochemical reactions. At the very least, such an intermediate-level
analysis could help guide the traditional biochemical approach towards those
genes most worthy of attention among these thousands of newly discovered
genes. Ideally, a sufficiently predictive and explanatory model at an intermediate
level might obviate the need for an exact understanding of the system at the
biochemical level. For now, we will be satisfied with “cherry-picking” the most
salient features of the regulatory networks, without trying to achieve an accurate
model of the entire system.

1.2 An intermediate representation

Everything is deeply intertwingled.
— Theodor Holm Nelson

I intend to focus on genetic regulatory networks at the level of single cells.
This ignores the extra complexity that comes with cell to cell interactions and
spatial differentiation (see Reinitz and Sharp [72] for example), but is still of
major importance to cellular biology. A biological system can be considered to
be a state machine, where the change in internal state of the system depends on
both its current internal state and any external inputs. The goal is to observe
the state of a cell and how it changes under different circumstances, and from
this to derive a model of how these state changes are generated. The state
of a cell consists of all those variables—both internally and externally—which
determine its behavior. Included are the concentrations of all the chemical
species (DNA, RNA, proteins, metabolites, etc.) involved in the inner working of
the cell, concentrations in the environment of the cell, receptors presented on the



membrane, volume, position in the cell cycle, location of structural components
within the cell, and so on. A sufficiently informative subset of these will have
to be chosen, usually consisting of concentrations of certain key elements within
the cell.

It is unlikely we will ever achieve a simultaneous measurement of the full set
of important variables within a cell. In the immediate future, it seems likely we
will primarily be focusing on mRNA data, plus perhaps protein data. Exogenous
inputs or important intermediates which are missing in our set of measurements
are impossible (or at least very difficult) to model. It should be emphasized that
these models are, therefore, not intended to imply biochemical mechanism, but
merely a higher-level view of regulation. This distinction is especially important
for the small data sets used in Section 4.

The intermediate representation most familiar to molecular and cell biolo-
gists is a directed graph, with the nodes representing the key elements—often
genes, proteins or metabolites—being modeled, and the arcs representing how
these influence the production or destruction of others. To formalize this sort of
description, we might want to add weights—positive or negative—to these arcs,
and define how the inputs to a node interact. Figure 1 illustrates how a simple
network model might be represented. Even though it consists of only six nodes,
the dynamical behavior of the network is far from obvious. Nevertheless, the
network representation provides a clear and concise summary of the regulatory
interactions, and higher-level structures (such as the two pathways from a to e)
can easily be extracted.

Figure 1: Example of a simple, 6-node regulatory network. For simplicity,
no input-output mapping is specified, and interactions have been given a sign
(regular arrowheads are positive, flat ones are negative) but not a specific weight.
Nodes a and e receive external inputs (e.g. signaling molecules). Nodes a and
c are auto-inhibitory, i.e. they will repress their own activation. Notice also the
two pathways for upregulation of e by a.

1.3 Additive regulation models: A simple model of gene
interaction

One of the simplest ways to model a system of interacting variables is to assume
that the change in each variable over time is given by a weighted sum of all other



variables!:
J

where y; is the level of the ith variable, b; is a bias term indicating whether 7 is
expressed or not in the absence of regulatory inputs, and weight w;; represents
the influence of j on the regulation of i. We will say that A is a regulator of
B if the network model predicts a causal relationship between the level of A
and the change in level of B (i.e., an “arrow” in the network), regardless of
the underlying mechanism of this regulation. Note that this is a more general
interpretation of the terms “regulator” and “regulate” than is normally used in
biology.

For a continuous-time system we get the corresponding differential equation:

dy;
g = ij,'yj + b; (2)
J

Because of the nature of interactions between regulatory factors, gene regu-
lation is often context sensitive, e.g. A upregulates C, but only if B is present
as well. The model presented here cannot implement such a nonlinear inter-
action between A and B in the regulation of C. However, the model should be
able to extract the linear component of this regulation, i.e. that both A and B
upregulate C, even if the regulation is not independent.

Obviously, an additive model like this will be a gross simplification for almost
any natural system, but modeling a gene network with such a minimal model
might allow us to extract at least the “Most Significant Bits” of information
we’re looking for: Which genes regulate which other genes (i.e. which interaction
factors wj; are nonzero)? If gene j regulates gene 4, is j an inducer or repressor
of i (i.e. is wj; positive or negative)?

In Chapter 4, we will examine a purely linear model such as this, apply it
to real gene expression data, and compare the results with the literature on the
genes involved.

Note that the variables in Equation 2 can theoretically become negative, or
unboundedly large. Since these variables typically correspond to concentration
levels, we may want to impose realistic upper and lower bounds. Most genes
exhibit a sigmoidal dose response curve: As the concentration of the inducing
regulatory signals increases, the gene activation at first increases slowly, then
more rapidly, and finally saturates at a maximum level. For an added level of
realism, we therefore add a sigmoidal transfer function to Equation 2:

dy;
e S(; wjiy; + bi) 3)

With an additional noise component ¢(t), such a system is generally called a first-order
auto-regressive, or AR(1) time series model [39].




where S(-) is some sigmoidal function, e.g. S(z) = (1+e7%)~!, S(z) = tanh(z),
or a more biologically justified dose-response curve (although it should be noted
that some studies indicate that the behavior of the entire network may not be
very sensitive to the exact shape of the sigmoid [32]).

Note that the addition of a nonlinear response also allows us to model a large
class of interesting nonlinear interactions between regulators. For example in
the example above, where both A and B must be present to upregulate C,
wac and wpe individually may be too small to exceed the lower threshold
of the sigmoidal S(-), but their combination may be large enough to cause a
significant upregulation of gene C.

Because decay of gene products is often an important factor in their regula-
tion, we can also add an extra decay term to each gene as follows:

dy;
i 5<2j2wjiyj + bi) — Diy; (4)

where D; is the decay rate for gene i. The resulting model is very close in form
to a specific type of recurrent neural networks, and can be fitted to real data in
the same manner.

The idea to use a neural network representation to model regulatory net-
works is not new, dating back at least to Bray’s work on cell signaling and paral-
lel distributed processing networks [14]. The reasons for using a neural network
model, rather than a more general differential equation model, are twofold. The
neural network has a straightforward graphical representation which is close to
what researchers are already used to—a very important advantage considering
that refinement of these sorts of models usually benefits greatly from collabo-
ration with scientists in the field. Secondly, a large variety of efficient learning
algorithms have already been developed for neural networks, whereas determin-
ing the parameters in a more general differential equation model would require
more general-purpose optimization methods.

Various researchers have used variants of this representation to model genetic
regulatory networks. Most notably, Mjolsness, Reinitz and Sharp [66] used a
gene regulation model as in Equation 4, interspersed with a simple model of cell
division, to model small gene networks involved in pattern formation during
the blastoderm stage of development in Drosophila. Weaver et al. [94] used
a discrete-time version of Equation 3, and showed it is possible to reconstruct
randomly created networks of this kind, given enough time series data generated
by the network.

Unfortunately, with so many researchers arriving at similar models indepen-
dently, a variety of different names have been invented for them: connectionist
model (Mjolsness et al. [66]), linear model (D’haeseleer et al. [23]), linear tran-
scription model (Chen et al. [17]), weight matrix model (Weaver et al. [94]).
Considering the core of all these models is the use of a weighted sum to imple-
ment gene regulation, I propose we file them under the more general classifica-
tion of additive requlation models®>. This distinguishes these models from other

2In statistics, models consisting of a nonlinear function of a weighted sum of inputs are



representations which may make use of weight matrices, such as Savageau’s
power law formalism[75]: dy;/dt = a; [] y;J - Bl y;.”ﬁ, where the two terms
account for the production and destruction of the gene product ¢, vj; and wy;
are the kinetic orders, and «; and 3; the rate constants for these elemental
processes.

One implicit assumption of these models is that the concentrations of the
chemical species are continuous, i.e. that stochastic fluctuations due to single
molecules can be ignored. We know that this does not hold at least for some
proteins which are present in concentrations of only a couple of molecules per
cell. Indeed, there are indications that stochastic fluctuations may actually be
exploited by some organisms [7]. However, differential equations are widely used
to model biochemical systems. Hopefully, a continuous approach will prove to
be appropriate for the majority of interesting mechanisms.

1.4 Caution to the reader

A number of new technologies are producing a flood of genomic-scale data about
the internal state of a cell. Unfortunately, even though these data sets look large
to a biologist, they are large “along the wrong dimension”, i.e. a large number
of variables are measured, but the number of individual measurements of any
one variable is still relatively small.

The network models employed here require a substantial number of data
points. For example, a common rule of thumb in the neural network commu-
nity is to use at least a couple times more measurements than weights in the
network. This would imply hundreds of data points for the small set of 65 genes
used in Chapter 4, or tens of thousands of data points for yeast (~ 6000 genes).
Conventional wisdom would suggest that these sorts of models are underdeter-
mined given the small number of data points currently available.

I intend to show that a shortage of data points does not invalidate the use
of these models, as long as we can determine which parts of the model are well
determined versus poorly determined. Indeed, much of this dissertation could
be viewed as an exercise in distinguishing the few nuggets of well determined
interactions from an otherwise poorly determined model. Unfortunately this
does mean that it is not yet possible to infer a complete network model as
in Figure 1. For now, we will settle for being able to infer those individual
connections within the network which are best supported by the data.

Even for those relatively well determined parts of the model, we may not
be able to show results with the same level of significance as with some simpler
(but less powerful) methods. However, I view this approach not so much as a
direct way to find “scientific truth” (however that is defined in one’s favorite
discipline: P < 0.057), but rather as a way to derive interesting new hypotheses
to guide experimentalists in further investigation.

No doubt, as the measurement technologies mature, and larger data sets
become publicly available (and calibrated with each other), the usefulness and

also called Generalized Linear models [65], whereas models consisting of a weighted sum of
nonlinear (nonparametric) functions of inputs are called Generalized Additive models [91].



accuracy of the network models developed in this dissertation will increase. The
trend towards data sets with large numbers of measurements definitely bodes
well in that respect.

2 Modeling issues

By a model is meant a mathematical construct, which,

with the addition of certain verbal interpretations, describes observed
phenomena. The justification of such a mathematical construct

is solely and precisely that it is expected to work.

— John von Neumann

Various types of gene regulation network models have been proposed, and
the model of choice is often determined by the question one is trying to answer.
In this Chapter we will briefly address some of the decisions that need to be
made when constructing a network model, the tradeoffs associated with each,
and the choices made for the modeling approaches in this dissertation.

2.1 Level of biochemical detail

Gene regulation models can vary from the very abstract—such as Kauffman’s
random Boolean networks [50]—to the very concrete—like the full biochemi-
cal interaction models with stochastic kinetics in Arkin et al. [7]. The former
approach is the most mathematically tractable, and its simplicity allows exami-
nation of very large systems (thousands of genes). The latter fits the biochemical
reality better and may carry more weight with the experimental biologists, but
its complexity necessarily restricts it to very small systems. For example, the
detailed biochemical model of the five-gene lysis-lysogeny switch in Lambda
phage [7] included a total of 67 parameters—resulting from almost 50 years of
research on Lambda—and required supercomputers for its stochastic simulation
(in 1998).

In-depth biochemical modeling is very important for understanding the pre-
cise interactions involved in common regulatory mechanisms. However, it is
doubtful we could construct such a detailed molecular model of, say, an entire
yeast cell with some 6000 genes by analyzing each gene individually and de-
termining all the binding and reaction constants for each molecular interaction
one-by-one—at least not in the near future. Likewise, from the perspective of
drug target identification for human disease, we cannot realistically hope to
characterize all the relevant molecular interactions one-by-one as a requirement
for building a predictive disease model. There is a need for methods that can
handle large-scale data in a global fashion, and that can analyze these large sys-
tems at some intermediate level, without going all the way down to the exact
biochemical reactions. For this reason, and because of the limited amount of
data available, we will choose a more abstract model, and attempt to infer very
general regulatory interactions without specifying the precise mechanism.



2.2 Boolean or continuous

The Boolean (ON/OFF) approximation implicitly assumes highly cooperative
binding (very “sharp” activation response curves) and/or positive feedback loops
to make the variables saturate in ON or OFF positions. However, if one exam-
ines real gene expression data, it seems clear that genes spend a lot of their time
at intermediate values: gene expression levels tend to be continuous rather than
binary. Furthermore, important concepts in control theory that seem indispens-
able for gene regulation systems either cannot be implemented with Boolean
variables, or lead to a radically different dynamical behavior: amplification,
subtraction and addition of signals; smoothly varying an internal parameter
to compensate for a continuously varying environmental parameter; smoothly
varying the period of a periodic phenomenon like the cell cycle, etc. Feedback
control (see e.g. [27]) is one of the most important tools used in control theory
to regulate system variables to a desired level, and reduce sensitivity to both
external disturbances and variation of system parameters. Negative feedback
with a moderate feedback gain has a stabilizing effect on the output of the
system. However, negative feedback in Boolean circuits will always cause oscil-
lations, rather than increased stability, because the Boolean transfer function
effectively has an infinite slope (saturating at 0 and 1). Moreover, Savageau [76]
identified several rules for gene circuitry (bacterial operons) that can only be
captured by continuous analysis methods. Positive and negative modes of reg-
ulation were respectively linked to high and low demand for expression, and
a relationship was established between the coupling of regulator and effector
genes and circuit capacity and demand.

Some of these problems can be alleviated by hybrid Boolean systems. In par-
ticular, Glass [31, 33] has proposed sets of piecewise linear differential equations,
where each gene has a continuous-valued internal state, and a Boolean external
state. Researchers at the Free University of Brussels [90, 89] have proposed an
asynchronously updated logic with intermediate threshold values. These sys-
tems allow easy analysis of certain properties of networks, and have been used
for qualitative models of small gene networks, but still do not seem appropriate
for quantitative modeling of real, large-scale gene expression data.

Since we are primarily interested in modeling real gene expression data, we
will opt for a continuous-valued model.

2.3 Deterministic or stochastic

One implicit assumption in continuous-valued models is that fluctuations in the
range of single molecules can be ignored. Differential equations are already
widely used to model biochemical systems, and a continuous approach may
be sufficient for a large variety of interesting mechanisms. However, molecules
present at only a few copies per cell do play an important role in some biological
phenomena, such as the lysis-lysogeny switch in Lambda phage [71]. In that
case, it may be impossible to model the behavior of the system exactly with a
purely deterministic model.
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These stochastic effects—which have mainly been observed in prokaryotes—
may not play as much of a role in the larger eukaryotic cells. In yeast, most
mRNA species seem to occur at close to one mRNA copy per cell [92, 44],
down to 0.1 mRNA/cell or less (i.e. the mRNA is only present 10% of the
time or less in any one cell). Low copy numbers like these could be due to
leaky transcription and not have any regulatory role. Also, if the half-life of
the corresponding protein (typically measured in hours or days) is much larger
than the half-life of the mRNA (averaging around 20 min in yeast [43]), the
protein level may not be affected by stochastic fluctuations in mRNA. Analysis
of mRNA and protein decay rates and abundances may allow us to identify
those few genes for which stochastic modeling may prove necessary.

Particle-based models can keep track of individual molecule counts, and often
include much biochemical detail and/or spatial structure. Of course, keeping
track of all this detail is computationally expensive, so they are typically only
used for small systems. A related modeling technique is Stochastic Petri Nets
(SPN’s), which can be considered a subset of Markov processes, and can be
used to model molecular interactions [36]. Whereas fitting the parameters of a
general particle model to real data can be quite difficult, optimization algorithms
exist for SPN’s. Hybrid Petri Nets [4, 63] include both discrete and continuous
variables, allowing them to model both small-copy number and mass action
interactions.

Additional sources of unpredictability can include external noise, or errors
on measured data. The Bayesian approach to unpredictability is to construct
models that can manipulate probability distributions rather than just single
values. Stochastic differential equations could be used for example. Of course,
this does add a whole new level of complexity to the models. Alternatively, a
deterministic model can sometimes be extended by a simplified analysis of the
variance on the expected behavior.

Since the role of stochasticity is unclear for the systems we're interested in
(typically eukaryotes), we will choose for the simpler of the two approaches: a
deterministic model.

2.4 Spatial or non-spatial

Spatiality can play an important role, both at the level of intercellular inter-
actions, and at the level of cell compartments (e.g. nucleus vs. cytoplasm vs.
membrane). Most processes in multicellular organisms, especially during devel-
opment, involve interactions between different cells types, or even between cells
of the same type. Some useful information can probably be extracted using a
nonspatial model, but eventually a spatial model may be needed.

Spatiality adds yet another dimension of complexity to the models: spa-
tial development, cell type interactions, reservoirs, diffusion constants, etc. In
some cases, the abundance of data—spatial patterns—can more than make up
for the extra complexity of the model. For example, Mjolsness et al. [66] used
a time series of one-dimensional spatial patterns to fit a simple model of eve
stripe formation in Drosophila. Models like the ones proposed by Marnellos
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and Mjolsness [62] for the role of lateral interactions in early Drosophila neuro-
genesis provide experimentally testable predictions about potentially important
interactions.

Current large-scale gene expression data typically does not include any spa-
tial aspects, so we will use a non-spatial model.

2.5 Forward and inverse modeling

Some of the more detailed modeling methodologies listed above have been used
to construct computer models of small, well-described regulatory networks. Of
course, this requires an extensive knowledge of the system in question, often
resulting from decades of research. In this dissertation, we will not focus on
this forward modeling approach, but rather on the inverse modeling, or reverse
engineering problem: given a specific set of measurements, what can we de-
duce about the unknown underlying regulatory network? Reverse engineering
typically requires the use of a parametric model, the parameters of which are
then fit to the real-world data. If the connection structure of the regulatory
network (i.e. which genes have a regulatory effect on each other) is unknown,
the parametric model will necessarily have to be very general and simplistic,
providing little insight into the actual molecular mechanisms involved. Once
the network structure is well known, a more detailed model might be used to
estimate individual mechanism-related parameters, such as binding and decay
constants.

3 Data requirements for network inference

Number is the ruler of forms and ideas,
and is the cause of gods and demons.
— Pythagoras

In this Chapter, we will start by examining the amount of data needed to
be able to reconstruct various different network models—a question with great
practical importance, but unfortunately no exact answers. As we increase the
number of variables to model, the size of the parameter space increases expo-
nentially. This “Curse of Dimensionality” is examined in Section 3.2. Lastly,
the data requirements for network inference imply we may need to combine data
sets from different sources and of different types. These issues are explored in
the final two Sections.

3.1 Sample complexity

The ambitious goal of network reverse engineering comes at the price of requiring
more data points. How many data points are needed to infer a gene network of
N genes depends on the complexity of the model used to do the inference. As
we will see, constraining the connectivity of the network (number of regulatory

12



inputs per gene) and the nature of the regulatory interactions can dramatically
reduce the amount of data needed.

3.1.1 General network models

We can derive an absolute lower bound on the amount of information—in bits—
needed to construct general network models, using Information Theory®. Sup-
pose we want to derive a sparse network model of N genes, where each gene is
only affected by K other genes on average (the “connectivity” of the network).
This corresponds to constructing a sparsely connected, directed graph with N
nodes and NK edges. There are N2 possible edges between all N genes, and
only NK actual edges, so there are ( 11\\;() possible models of N genes with K
interactions on average. To specify the correct model, we then need

N? N2
log (NK) = o8 RV = NE)! ®)

bits of information. We can use Stirling’s approximation to the factorial (n! ~
V2rn(n/e)™) to derive an approximation for log () (see, e.g., [20]):

log (Z) ~ alog(a) — blog(h) — (a — b)log(a — b) (6)
for a,b> 1. Equation 5 then becomes:
log (_7]\\;')
~ N’log(N?) — NKlog(NK) — (N* — NK) log (N* — NK) (7)
= N(N log(N) — K log(K) — (N — K) log(N — K)) (8)
~ NKlog(N/K) 9)

bits of information. The last approximation holds for K < N, such that log(N —
K) = log(N). Since each data point consists of N measurements, we will need
at least Q(K log(N/K)) data points to fully specify a model of this kind. Note

that, by Equations 8 and 6, we would get the same growth rate for a model
2

with ezactly K inputs per gene: Nlog (X) = log (N ). A similar derivation for
undirected graphs (i.e. inferring regulatory interactions, without specifying the
causal relationship) leads to a lower bound of Q(K log(N/2K)) data points.

If we further want to specify whether the interaction is positive or negative,
this only requires one extra bit of information per connection in the network.
In general, if we want to specify p, parameters per gene, with A, bits of preci-
sion each; and p, parameters per interaction, with Ay bits of precision, we get
NKog(N/K) + AppnN + \pr NK bits, or at least Q(K log(N/K) + Appn +

3first developed by Shannon [79], see Cover and Thomas [20] for a good introduction.
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AeprK) data points. Note that we have not specified how these regulatory in-
puts are combined, whether the regulatory function is linear or nonlinear, etc.
Each link and each node in the network could correspond to some arbitrary,
parametrized nonlinear function.

3.1.2 Boolean, fully connected

In a fully connected Boolean network, the output of each gene is modeled as a
general Boolean function of the outputs of all N genes. This means we need to
specify the output of each single gene, for each of the 2"V possible different states
of the network. In other words, we need to measure all possible 2%V input-output
pairs. This is clearly inconceivable for even fairly small numbers of genes.

3.1.3 Boolean, connectivity K

If we reduce the connectivity of the Boolean network to an average of K reg-
ulatory inputs per gene, the data requirements decrease significantly. To fully
specify a Boolean network with limited connectivity, we need to specify the con-
nection pattern between the N nodes (genes) and the rule table for a function
of K inputs at each. An absolute lower bound of Q (2K + Klog(N/K)) can
be derived using information theory.* A tighter lower bound can be found by
looking at a slightly simpler model, where we assume the pattern of connec-
tivity is given, by calculating how the number of independently chosen data
points should scale with K and N. Since this is a simpler model, its data re-
quirements should be a lower bound to the requirements for the model with
unknown connections.

Every data point (i.e. every input-output pair, specifying the state of the
entire Boolean network at time ¢ and ¢ + 1), specifies exactly one of 2X entries
in each rule table: Given this particular combination of the K inputs to each
gene at time ¢, the output of the gene is given by its state at time ¢t + 1. We will
estimate the probability P that all N rule tables are fully specified by n data
points, and calculate how the number of data points n needs to scale with P,
the number of genes N, and connectivity K.

The probability that one of 2K entries in a specific rule table is not specified
by a single data point is equal to 1 — 27%. For n (independent) data points
this becomes (1 — 27%)". Since every data point has to specify exactly one
entry in each rule table, the probabilities for each individual entry in a rule
table to be unspecified are not entirely independent (e.g. if 25 — 1 entries are
unspecified, the remaining entry has to be specified). However, for P =~ 1 (i.e.
we have enough data to have a good chance at a fully specified model), these
probabilities will be extremely close to zero, and we can approximate them as
being independent. The probability that all 2% entries in a single rule table are
specified by n data points is then approximately:

4As shown in Section 3.1.1, we need K log(N/K) bits per gene to specify the connection
pattern, and 2¥ bits per gene to specify the Boolean function.
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1-25(1-27%)" (10)

The probability that all N rule tables are fully specified by n data points
then becomes:

P (1-2K (1—2—K)")N (11)

Taking base-2 logarithms, we find:
¢ = —log(P) (12)
~ —Nlog (1 —2K(1- 2*K)") (13)

Further simplifying using log,(1 — 2) &~ —zlog,(e) for z < 1 (keeping in
mind that the quantity in Equation 10 is very close to 1), and taking logs again:

G~ N2K(1-27%)"log(e) (14)
Cy = —log(Cy/logle)) (15)
—log(N) — K —nlog (1 —27%) (16)

~ —log(N)— K +n2 log(e) (17)

If P~ 1, Cy will be a small, and C> a moderate positive constant (e.g. for
P =0.9 and P =0.999, Cs is 3.25 and 9.97 respectively). We can now express
n, the number of data points needed, in terms of NV, K and Cj:

n ~ 2K (K 4 log(N) + Cy) /log(e) (18)

which is © (25 (K +log(N))). This estimate agrees well with preliminary ex-
perimental results by Liang et al. [56] and Akutsu et al. [3].

3.1.4 Boolean, linearly separable, connectivity K

In addition to constraining the number of inputs per gene, we could also con-
strain the type of Boolean functions used in the network. A natural choice is the
set of linearly separable Boolean functions, i.e., those that can be implemented
using a weighted sum of the inputs, followed by a threshold function. Linearly
separable functions are well-behaved, in the sense that inputs always have either
an upregulating or downregulating effect. Non-linearly separable functions can
have inputs that are upregulating or downregulating, depending on the state of
the other inputs (the classical example of this is the Boolean XOR). Interest-
ingly, the vast majority of genes whose regulation is described in the literature
seem to have regulation functions which are linearly separable, when abstracted
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down to the Boolean level [40].> Combining a reduced connectivity with linearly
separable Boolean functions reduces the data requirements to Q(K log(N/K))
[41].

3.1.5 Continuous, additive, fully connected

When we look at network models with continuous-valued expression levels, we
need to choose a parametrized model of regulation functions. (As opposed to
Boolean functions, functions over the reals are not enumerable, so we would
need infinite amounts of data to fit a “general” continuous-valued function). As
mentioned in Section 1.3, and in analogy with Section 3.1.4, we will focus on
additive regulation models. For models with continuous expression levels, the
data requirements are less clear than for the Boolean models. In the case of
linear (D’haeseleer et al., 1999) or quasi-linear® additive models [94], fitting the
model is equivalent to performing a multiple regression, so at least N + 1 data
points are needed for a fully connected model of N genes”.

3.1.6 Continuous, additive, connectivity K

Data requirements for sparse additive regulation models are as yet unknown, but
based on the similarity with the equivalent Boolean model, we speculate it to be
of the form Q(K log(N/K)). A promising avenue of further research in this area
may be the results on sample complexity for recurrent neural networks, which
have a very similar structure to the models presented here. An analysis based on
PAC-learning shows that the number of training instances needed to accurately
learn the dynamical behavior (as opposed to the network weights) for a fully
connected network is lower-bounded by Q(N) and upper-bounded by O(N*)
[54]. However, this is based on a worst-case analysis, and might be reduced
to O(N) for the general case [83]. There are a few neural network techniques
(such as Winnow and Weighted Majority [57, 58, 59]) that are known to scale as
O(K log(N) and perform quite well in the presence of many irrelevant inputs.
However, these techniques are specific for classification tasks with feedforward
networks, using a multiplicative weight update (one could think of them as doing
a binary search on the decision surface). It is unclear how these algorithms could
be extended to a recurrent network with continuous outputs.

3.1.7 Clustering

Finally, to allow for comparison with gene clustering methods, we examined
data requirements for clustering based on pairwise correlation comparisons. In

5 Although notable exceptions to this certainly exist: in Drosophila, hunchback, one of the
key regulatory genes in embryonic development, has a concentration-dependent regulatory
effect on Kriippel [77].

6 Also known as generalized linear.

"Note that this result is not directly comparable to the Boolean case: the fully connected
Boolean network uses arbitrary Boolean functions, and the estimate for linearly separable
Boolean functions (equivalent to the additive functions used here) assumes K < N
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that case, as the number of genes being compared increases, the number of
data points will have to increase proportional to log(IN), in order to maintain a
constant, low level of false positives. Claverie [18] arrived at a similar logarithmic
scaling for binary data (absent/detected).

For this simple abstraction of clustering, we will say that two genes cluster
together if their correlation is significantly greater (with a significance level
a) than a certain cutoff value p.. We test whether we can exclude the null
hypothesis p < p. based on the measured correlation coefficient r over the
available data points. Because of the large number of comparisons being made,
we need to reduce the significance level for the correlation test with the number
of tests each gene is involved in. We can use the Bonferroni correction, a =
o'/N, in order to keep the expected number of false positives for each gene
constant.® In order to be able to use the same cutoff-value for the measured
correlation r,, to decide whether two genes cluster together, the number of data
points will have to increase as the significance level for each test grows smaller.

If the real correlation coefficient p is close to 1.0, the distribution of the mea-
sured correlation coefficient r is very asymmetrical. The following z-transformation,
developed by Fisher [26], is approximately normally distributed with mean z(p)
and variance 1/(n — 3) (with n the number of data points):

2(r) = %m(””) (19)

1—r

We can now devise a single-sided test on z(r) to answer the question: If
z(r) > z(rs), what is the significance level with which we can reject the hypoth-
esis z(p) < z(p.) (and thus p < p.)? At the tail of the normal distribution, the
area under the normal curve to the right of z(r,) can be approximated by:

o0
1 =z(pc)? o Glra)=2(pe))?
a= ———e 222 dz & e~ 252 (20)
(/ : oV 2w V27 (2(ra) — 2(pe))
Z2=2Z(Ta

Taking natural logs, replacing o with the Bonferroni correction a = o'/N,
and with o = 1/y/n — 3, we arrive at:

In(@) = In(N) ~ —% In(n —3) ~In (Va7 (2(ra) - 2(p0)))

—(n—3) (2(ra) — 2(pc))” /2 (21)

81n fact, it is sufficient that the false positives do not grow faster than the true correlations.
If we assume the number of true correlations per gene increases at least as N7 with the number
of genes (with 0 < v < 1, i.e. both the number of clusters and number of genes per cluster
increases), then a = o/ /N'~7 suffices. (For example, when the number of true correlations
grows linearly with N, i.e. v = 1, we can allow the number of false positives to grow linearly as
well, s0 no correction is needed.) When we plug a = o/ /N1~7 into Equation 20, the resulting
growth rate for n is similar to the one for @ = a'/N.
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72 .
(Z(’f‘a) - Z(pc))2
(1n(¥) + In(1/a") = In(n = 3)/2 = In (V27 ((ra) = 2(p.))) ) (22)

n =~ 3+

Although this defines n recursively, as a function of In(n — 3), the dominant
term will be In(N). In other words, if we want to use the same cutoff value
ro to decide whether p > p., we need to scale the number of data points
logarithmically with the number of genes. Strictly speaking, this analysis only
holds for correlation tests, but we can expect similar effects to play a role in
other clustering algorithms.

3.1.8 Summary

Table 1 provides an overview of some of the models considered, and estimates
of the amount of data needed for each. These estimates hold for independently
chosen data points, and only indicate asymptotic growth rates, ignoring any con-
stant factors. Note also that these estimates reflect the amount of data needed
to be able to reconstruct the entire network correctly.® As mentioned before,
we are content with being able to extract the most significant interactions.

| Model | Data needed
General: Klog(N/K) + Anpn + Aepr K
Boolean:
fully connected 2N
connectivity K 2K (K +log(N)) [21, 56, 3]
linearly separable, connectivity K | K log(N/K) [41]
Continuous:
additive, fully connected N+1
additive, connectivity K Klog(N/K) (*) [21]
Clustering:
pairwise correlation log(N) [21]

Table 1: Sample complexity for various network models. Fully connected: each
gene can receive regulatory inputs from all other genes. Connectivity K: at
most K regulatory inputs per gene. Additive, linearly separable: regulation can
be modeled using a weighted sum. Pairwise correlation: significance level for
pairwise comparisons based on correlation must decrease inversely proportional
to number of comparisons. (*): conjecture.

For reasonably constrained models, the number of data points needed tends
to scale with log(N) rather than N, and that the data requirements for network
inference are at least a factor K larger than for clustering.

9For example, the sample complexity for reconstructing a single gene in a Boolean, sparsely
connected network scales with 2K K, rather than 2% (K + log(N)) (using Equation 10 rather
than 11 in Section 3.1.3)
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In practice, the amount of data may need to be orders of magnitude higher
because of non-independence and large measurement errors (see also [86]). Higher
accuracy methods such as RT-PCR yield more bits of information per data point
than ¢cDNA microarrays or oligonucleotide chips, so fewer data points may be
required to achieve the same accuracy in the model. (Conversely, if measure-
ment accuracy is low, more data points may be required.) So far none of the
sample complexity estimates on this sort of network models includes accuracy
of the data. However, we may be able to use a rough guideline provided by in-
formation theory, by looking at the information capacity of a Gaussian channel.
It can be shown that the maximum amount of information (in bits) encoded in
a Gaussian distributed variable with variance P = 0%, when measured together
with an additional Gaussian noise with variance N = ¢%, is given by:

1 P
I = S logy(1+ 1) ~ logy(0p) — logy(ow) (23)

where the approximation is within 5% for oy < op/3. In other words, ev-
ery halving of the measurement error increases the amount of information per
measurement by one bit. This may not sound much, but consider that with
a 10% measurement noise, the information capacity is only I = 3.3 bits per
measurement. The logarithmic scaling does indicate a decreasing usefulness of
improving accuracy much further, especially in view of significant amounts of
inherent variability in the systems being measured.

Note that modeling real data with Boolean networks discards a lot of infor-
mation in the data sets, because the expression levels need to be discretized to
one bit per measurement. In the example above, with I ~ 3.3 bits per measure-
ment, discretizing to one bit would throw away almost 70% of the information
contained in the signal. Continuous models will tend to take better advantage
of the available information in the data.

Another important issue in design of gene expression experiments is whether
to allocate the—so far—often limited and expensive supply of microarrays or
oligonucleotide chips to collecting more replicates, or more individual data
points. Again, from an information theoretic point of view, n replicates reduce
the noise variance by a factor of n, increasing the information content at most
with log(n). Independent measurements on the other hand increase the infor-
mation content proportional to n, and are therefore—theoretically—preferred.
However, if the noise on the measurements is significant, it will generally be
much harder to extract this additional information without a very good model
of the noise involved. Replicates have often been required for publication for
other types of biological experiments (usually at least triplicates, so a standard
error can be estimated), and it seems like the consensus may be moving in that
direction for expression data as well [34, 55]. As the cost per experiment de-
creases, this issue will likely resolve itself in favor of doing more measurements
altogether, i.e., more experiments and more replicates per experiment.

19



3.2 The Curse of Dimensionality

Measuring more variables allows for a more exact model, but makes the correct
model exponentially harder to find.

When faced with the task of modeling an unknown process, our intuition
tells us to observe as many parameters of the system as possible. This is clearly
reflected in the current tendency to measure the expression levels of more and
more genes simultaneously, rather than to measure these expression levels as
often as possible.

However, in Machine Learning it is well known that the more variables one
models, the harder the modeling task becomes, because the space of models
to be searched increases exponentially with the number of parameters of the
model, and therefore with the number of variables. This is often referred to as
the Curse of Dimensionality [12].

Does this mean that our intuition about modeling is wrong? Not necessarily.
Although we humans do want to be able to look at as many variables of the
problem as possible, we rather quickly select those we think are really important
to the system, and simply ignore the others. Our reason for wanting to know
all the variables is so we wouldn’t miss any of the important ones, not so we
could include all the non-important ones in our model. In order to achieve an
accurate model, we must at least measure those variables which are important
to the process being studied. If some intermediate variables are not measured, it
may be possible to infer them during the modeling process, but this can be very
hard. We should be as inclusive as possible in which variables we measure, and
try to eliminate redundant variables after the data is collected. Careful selection
of the input variables is crucial to get around the Curse of Dimensionality. Use of
a priori information can also help narrow down the range of plausible models. As
we saw in Section 3.1, narrowing down the range of plausible models by putting
on additional—realistic—constraints can simplify the search for the best model
considerably. For example, constraining the genes to be regulated by no more
than 5-7 other genes will simplify the number of regulatory interactions we need
to consider. Similarly, for Boolean networks, constraining the types of Boolean
functions to those that are biologically plausible can significantly reduce the
number of Boolean rules that match the data.

Constraining the model by using a priori information about what is biolog-
ically known or plausible is probably the most important weapon we have to
fight the Curse of Dimensionality. How precisely to include this information
into the inference process is the true art of modeling.

3.3 Types of data

To infer the regulation of a single gene, we need to observe the expression of
that gene under many different combinations of expression levels of its regu-
latory inputs. This implies sampling a wide variety of different environmental
conditions and perturbations. Therefore, the gene network inference techniques
we will cover all have one thing in common: they tend to be data-intensive.
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Gene expression time series yield a lot of data, but all the data points tend
to be about a single dynamical process in the cell, and will be related to the
surrounding time points. Therefore, a 10-point time series can generally be ex-
pected to contain less information than a data set of ten independent expression
measurements under different environmental conditions, or with mutations in
different pathways. The advantage of a time series is that it can provide crucial
insights into the dynamics of the process. On the other hand, data sets consist-
ing of individual measurements provide an efficient way to map the attractors of
the network. Both types of data, and multiple data sets of each, will be needed
to unravel the regulatory interactions of the genes.

3.4 Combining different data types

The need for large amounts of data means that successful network modeling
efforts will probably have to use data from different sources, and deal with dif-
ferent data types such as time series and steady-state data, different error levels,
incomplete data, etc. Whereas clustering methods can use data from different
strains, in different growth media etc., combining data sets for reverse engineer-
ing of regulatory networks requires that differences between the experimental
conditions be quantified much more precisely. Likewise, data will have to be
calibrated properly to allow comparison between data sets. Relative expression
ratios have limited usefulness unless they can be calibrated with respect to other
data sets post facto (e.g. using expression levels relative to a given standard). In
this respect, there is a growing need for a reliable reference in relative expression
measurements. An obvious approach could be to agree on a standard strain or
tissue pool and carefully controlled growth conditions to use in all data collec-
tion efforts on the same organism. Alternatively, a reference mRNA population
with fixed relative concentrations of mRNA’s could be generated artificially, or
perhaps even derived directly from the genomic DNA.

As individual data sets become larger, the amount of analysis that can be
done within a single data set increases as well. But unless we can have confidence
in comparing results from different experimenters, we potentially miss out on
an enormous resource: the combined data of all researchers examining the same
organism.

4 A linear model of CNS development and in-
jury

We will start by examining the most simple form of additive regulation models:
a purely linear one, where changes in expression levels are linearly correlated
with expression levels of other genes. This first-order approximation model is
then applied to a set of real-world gene expression time series on development
and injury of rat central nervous system. We first examine some of the higher-
level properties of the resulting linear model (such as limited connectivity of
the network), and find that they are biologically plausible. Next, we develop a

21



methodology to identify those specific weights in the network which are well-
defined by the data. The results of this analysis compare favorably with what
can be found in the literature regarding these genes.

4.1 A first-order approximation

Have no fear of perfection — you’ll never reach it.
— Salvador Dali

The whole idea of correctness is totally overrated.
— Stephanie Forrest, 10/29/99

As we will show, even the simplest form of the additive regulation model
(Equation 1) can give interesting and suggestive results. Of course, a linear
model such as this is unlikely to be much more than a caricature of the real
system, and should be thought of as a first-order approximation. This is because
its purely linear form cannot correctly model nonlinear interactions. However,
we do expect it to be able to capture many important linear components of gene
regulation. In that sense, it has similar strengths and weaknesses as using linear
(Pearson) correlation to analyze any real-world variables. Although it is not an
optimally fitting model, the majority of applied statistics is, similarly, based on
linear correlations. The value of a coarse model like this is mainly exploratory.
It serves to direct further detailed investigation by suggesting novel hypotheses
about the system.

Let us first rewrite Equation 1 as a difference equation, explicitly introducing
the time step At:

Ay;
y Z wji Y;(t (24)

where y;(t) is the expression level of gene ¢ at time ¢, Ay;(t) = y;(t + At) —y;(t),
wj; indicates how much the level of gene j influences gene ¢, and b; is a constant
bias factor to model the activation level of the gene in the absence of any other
regulatory inputs. Each “node” in the regulatory network model performs a
simple summation of its inputs, as illustrated in Figure 2.

Note that we could equivalently rewrite this equation as an update rule, by
multiplying both sides by At and adding y;(¢):

i(t+ At) = Z wi; y;(t) + b (25)

where wj; = Atwj; (+1if i = j), and b; = Atb;. In this more general form of
an update rule, there is no implicit assumption that y(t) should be a smooth—
or even continuous—function in time. It is included here mainly to illustrate
the similarity with the Boolean network formulation, and some earlier work
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changein genei

constant bias

Figure 2: Schematic illustration of a node in the linear network model. The
input from all regulatory genes is summed up, together with a constant bias
term. The result determines the change (i.e., slope) in expression level of the
corresponding gene.

on continuous models using an update rule formulation.!® Note also that the
parameters wj; and b; are dependent on the time step At in this formulation.

It is important to keep in mind that it is not the current expression level
which is regulated in the first place, but rather the transcriptional state of the
gene. Whereas the transcriptional state may show an on-off behavior at small
time scales, the actual expression level is due to the accumulation of mRNA,
essentially related to the integral of the transcriptional state of the gene over
time!!. Since we want to model real gene expression, with expression levels
y that are smooth in time, i.e. y(t + At) = y(t), we will instead use the
difference equation formulation of Equation 24 If we choose At small enough,
the parameters w;; and b; of Equation 24 will approach the parameters of the
corresponding differential equation (and therefore be independent of the time
step At):

wile) > i)+ (26)

In addition to regulation by other genes within the data set, the genes may
also be affected by changes in a number of exogenous inputs which we will
have to include in the model (e.g. externally added chemicals in a toxicological
experiment, depletion of nutrients in the growth medium, changing temperature,
etc.):

10For example, Weaver et al. [94] generated random sparse weight matrices w’ for an up-
date rule similar to Equation 25, and showed that the corresponding network models can be
reconstructed given enough data generated by the network. In their experiments, the gener-
ated “expression levels” y(¢) often jumped around erratically from time point to time point.
Comparing Equations 24 and 25 shows that w’ = Atw + I, so in order to get a smooth time
series for small At, w’ should be close to the identity matrix. It is the weight matrix w which
corresponds to our intuitive notion of a connection matrix, not w’.

' This observation also was the inspiration for Glass’s work on modeling gene regulation
using a hybrid Boolean model with piecewise linear dynamics [31, 33], where the expression
level increases or decreases linearly, depending on whether the gene is ON or OFF.

23



Ayz z wj; Y (t) + Z Vi Tie ( (27)

where z(t) is the level of exogenous input k at time ¢, vg; accounts for the
effect of this input on the expression level of gene i.

Because of the need for fairly large amounts of data, measured under different
conditions, we may need to combine several data sets. In fact, the data I will
be using (see Section 4.2 contains measurements on two different tissue types.
Differences in gene expression between tissues are caused by regulatory inputs
to the genes. Some of these regulatory inputs will be included as variables
in our model, others might not. We could account for those extra regulatory
variables which are purely tissue-specific (i.e. they vary depending on tissue,
but do not vary within a given tissue) by adding an additional “endogenous”
input for each. However, under the linear assumption, the total effect of all
these tissue-specific inputs can be summarized with a single tissue-specific term
T;; for each additional tissue [:

Ay, Zwﬂy, +ka,$k )+ Tuim +b; (28)
]

where 7; is an indicator variable which is 1 iff the particular data we are mod-
eling comes from tissue | (otherwise 0), and 7j; sums up the tissue-specific
differences in regulation by other variables that are not included in the data set.
Equivalently, we can think of genes having a different default expression state
within each tissue. For a single tissue, this default expression state was modeled
using the bias term b;. Likewise, we can think of Tj; 77 + b; (which is constant,
but different for each tissue type) as modeling the default expression state in
tissue .

Given the time series y;(t), finding these parameters requires solving a least
squares system of linear equations, or, equivalently, performing a multiple re-
gression of each gene on all other genes. In Section 4.3 we will show how we can
apply a model such as this on real data.

4.2 Data sets

It is a capital mistake to theorize before one has data.
Insensibly one begins to twist the facts to suit theories,
instead of theories to suit facts.

— A. Conan Doyle

Wen et al. [96] have published a Gene Expression Matrix of 112 mRNA
species measured at nine different stages during the development of rat cervical
spinal cord: embryonic days 11-21 (E11, E13, E15, E18, E21), postnatal days
0-14 (P0=E22, P7, P14), and adult (A=P90). More recently, the same team
developed a similar data set [80] of 70 mRNA species measured at nine time
points during development of rat hippocampus (E15, E18, P0, P3, P7, P10,
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P13, P25, A=P60), and at ten more time points (Oh=P25, 0.5h, 1.5h, 3h, 6h,
24h, 48h, 10d, 21d, 32d, 49d) following injury of the central nervous system
by injection with kainate (kainic acid), a glutamatergic agonist which causes
seizures, localized cell death, and severely disrupts the normal gene expression
patterns.

The unequal spacing of time points was carefully chosen to coincide with the
varying rate of development and response to injury of the rat central nervous
system. The genes measured are only a tiny fraction of the total number of
genes expressed in these tissues. However, they were selected to be representa-
tive of some of the major gene families assumed to play an important role in
CNS development, intracellular signaling or transcriptional regulation in gen-
eral: neurotransmitter synthesizing and metabolizing enzymes, neurotransmit-
ter receptors, various signaling peptides (neurotrophins, heparin binding growth
factors, insulin-like growth factors) and their receptors, cell cycle proteins, tran-
scription factors, as well as developmental marker proteins and some expressed
sequence tags (EST’s).

Each data point in these time series is the result of measurements on three
separate animals. This ensures high accuracy, eliminates some of the variabil-
ity between individuals, and gives us an idea of the variability at each point
(“triplicate standard deviation”, see Section 4.4.2 for an example of how this
additional information can be exploited). When I started working on these
data sets, these were the largest publicly available gene expression time series
in terms of number of time points, using a high fidelity gene expression assay.
As of this writing, they still stand out for their relatively high quality, although
they have since been surpassed in terms of number of genes and number of data
points.

Considering the large amount of overlap between the mRNA species for the
data sets (65 species in common) and the related tissue types (rat cervical spinal
cord and hippocampus), it is possible to join them into one larger data set of
65 genes by 28 time points, consisting of 1) cervical spinal cord development, 2)
hippocampus development, and 3) hippocampus injury. The regulatory “hard-
ware” of the genes is the same, though different parts of it might be active
in different contexts. Combining data from different tissues allows us to get a
more complete picture of the regulatory interactions, provided we account for
tissue-specific differences in regulation.

As mentioned before, The choice of these data sets should be viewed in a
historic perspective (even though they are only a couple of years old!): they
were the best that was available at the time. However, it should be pointed out
that they are far from optimal for the sort of models we are interested in. In
particular, they consist essentially of whole-tissue samples, measuring the aver-
age expression levels in the entire cervical spinal cord or entire hippocampus of
an individual. These tissue can be further subdivided into different anatomical
regions, each of these regions typically consists of several functionally different
layers of cells, and each of these layers consist of different cell types. This obvi-
ously violates our earlier statement that we want to focus on genetic regulatory
networks at the level of single cells, ignoring cell to cell interactions and spatial
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differentiation. Yet, as we shall show, even from these coarse-grained, whole-
tissue measurements, we are able to derive genetic regulatory interactions which
compare well with the existing literature.

Initial analysis of the Gene Expression Matrix presented in Wen et al. [96]
was based mainly on similarities between temporal gene expression patterns
measured using a Euclidean distance metric [81]. Genes were clustered hierar-
chically, and waves of activation were identified, representing sets of genes that
were turned on in a sequential manner during the course of development.

I have previously presented a preliminary statistical analysis of this data set
(D’haeseleer et al. [22]), in which relationships between individual genes were
inferred based on linear correlation, rank correlation and mutual information.
Several gene pairs with high linear correlation were identified, as well as a num-
ber of genes with high rank correlation but non-significant linear correlation.
Although the number of data points per gene was insufficient to derive real
results, the use of mutual information (see, e.g. [79, 20]) to derive causal in-
ferences was illustrated. Since then, a few other groups have analyzed this data
as well. For example, Wahde and Hertz [93] used the clusters derived in Wen
et al. [96] to construct a little cluster network.

4.3 Fitting the model

Truth . . . and if mine eyes

Can bear its blaze, and trace its symmetries,
Measure its distance, and its advent wait,

I am no prophet - I but calculate.

— Charles MacKay

The data sets used here cover two tissue types, and include one single ex-
ogenous output to the system (kainate). Equation 28 becomes:

Ay;(t)
At ; wji Y;(t) + Ki () + Tim + bs (29)

where k(t) is the kainate level at time ¢, K; is the influence of kainate on gene
i, 7 is an indicator variable for tissue type (7 = 0 for spinal cord, 7 = 1 for
hippocampus), and T; accounts for all the differences in regulation between
tissue types. Figure 3 shows schematically what a “node” in the corresponding
linear network model looks like.

Because the original data sets consist of raw ratiometric RT-PCR measure-
ments, we first normalize the expression level of each gene with respect to its
maximum level over all three data sets. This gives us a basis to compare the
interaction strengths of the genes. Normalization is more commonly done with
respect to the average signal, or with respect to the standard deviation of the
signal. However, since this data is a coarse and non-uniform sampling of a
time-series, these concepts are ambiguous (Should we average over the data
set? Over the interpolated time series? Should we weight the time series based
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Figure 3: Schematic illustration of a node in the linear network model for the
CNS development and injury data. The input from all regulatory genes is
summed up, together with an input from the kainate level, a constant bias term,
and an additional term to cover tissue-specific differences in regulation. The
result determines the change (i.e., slope) in expression level of the corresponding
gene.

on developmental speed?). In addition, the maximum expression level of a gene
is a useful biochemical concept, related to its production and decay rates.

The linear model in Equation 29 can be fit to a time series finely sampled
at equidistant time points At. Considering the extremely non-uniform spacing
of the measurements (half hour interval after kainate injection, more than two
months interval before the final adult cervical spinal cord measurement), we
next constructed a finely interpolated time series from the data. Because the
modeled variables correspond to concentration levels, we need to avoid negative
values in the interpolation. This is achieved by first taking the logarithm of the
expression values, applying the interpolation on these log expression levels, and
then taking the exponential of the resulting interpolation. We use a piecewise
cubic interpolation method, more specifically a multivariate variant of Akima
interpolation [2]. This is a local, C* (continuous in the first derivative) method,
where the interpolation only depends on the nearest data points, and which
does not tend to show the spurious excursions between data points common
to, for example, cubic spline interpolation (which also imposes C? continuity).
An interpolation rate of 10 time points per hour gives us 5 interpolated points
between the two closest measurements: fine enough to yield a reasonable ap-
proximation to the differential equation, while still allowing us to calculate the
least squares fit over the entire 7-month data set. We get 24241 interpolated
time points for the spinal cord data (101 days), 16081 for the hippocampus
development data set (67 days), and 11761 for the hippocampus kainate injury
data set (49 days), for a total of 52083 interpolated time points.

The kainate concentration x(t) is zero during the spinal cord and hippocam-
pus time series, jumps from zero to one at Oh for the kainate time series, and
then exponentially decays back to zero: k(t) = e~ (*-0%/Pxa_ Kainate tends to
disappear from the brain after several hours [95]. We chose an estimated decay
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constant of Dg 4 = 100 min, corresponding to a half-life of 69.3 min.'2

Note that the (nonlinear) interpolation has a crucial side-effect: it introduces
an implicit additional smoothness constraint on the time series between the
measured data points. This smoothness constraint is justified by the effort that
went into determining at what time points measurements should be taken. If
the measurement rate is fast enough to keep up with the fastest developmental
or perturbational changes in the system, we can assume the trajectory of the
system between data points to be smooth.

Normally, trying to fit a model with 68 x 65 parameters (including the ad-
ditional terms in Equation 29) using only 28 x 65 data points would lead to
a highly underdetermined system. In other words, we would be able to find
infinitely many models—with different sets of parameters—that all fit the data
perfectly. However, the additional smoothness constraint on the data, allows us
to exclude all those models that behave very erratic in between the measured
data points. In addition, it also assures that the system has a single optimum,
so the fitting becomes (barely) feasible. We do expect there to be many dimen-
sions in which the optimum is poorly determined, corresponding to parts of the
model for which not enough data is available. Section 4.4.2 will illustrate how
one can identify which parts of the model are well or underdetermined.

The actual fitting of the model to the data requires a small amount of linear
algebra, which is summarized in Appendix 5.3. The end result is a matrix
W, containing the least squares fit of the parameters wj;, K;, T; and b; in
Equation 29. The computational complexity of finding a least-squares solution
for a linear model is O(TN?), where T is the total number of time points in
the interpolation, and N is the number of genes. Not surprisingly, the shortage
of original data points relative to the number of dimensions of the problem
results in a poorly conditioned system, with condition number 6.1 - 10*. This
condition number gives an upper bound for how much the relative error in Y
(the interpolated gene expression time series) could be magnified in the least
squares solution, W+.13 In other words, if we are given Y plus some small error
term §Y, the resulting weight matrix will be W+ plus some error SW™. For
a poorly conditioned system, the relative error ||[§W||/||W|| may be much
larger than the relative error in the input, ||§Y||/||Y]||, and the magnification of
this error is upper-bounded by the condition number of the system (in this case,
the condition number of the augmented input matrix, ?, see Appendix 5.3):

6W]] o 9]
Wl =Y (30

However, this is a worst-case scenario and assumes, among other things,
that the error in Y can vary independently for each interpolated time point. In
reality, the nonlinear interpolation spreads out any errors in the original data

12As we will see in Section 4.4.2, knowing the exact in vivo decay rate Dx 4 for kainate
is not crucial, as randomly varying Dg 4 within a fairly large range has little effect on the
results.

13This is just yet another way of saying the model is poorly determined: a large range of
parameter sets W all show a good fit with the input data Y
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sets over a range of interpolated time points, improving the conditioning of the
system with respect to the original data sets. In Section 4.4.2, we show that
the noise in the input data gets multiplied by a factor of “only” 29.7 in W:
not as bad as 6.1 - 10%, but still poorly conditioned. In fact, the main goal of
Section 4.4.2 is to determine which parts of W are the least affected by the poor
conditioning of the system (and the noise in the input data).

Likewise, the condition number of W is 6.3 - 10*, indicating that small
amounts of noise in Y (¢) could result in large changes in the slope dY (t)/dt.
However, it turns out that the dynamical behavior of the system is surprisingly
robust. If we initialize the system with the gene expression levels measured at
the very first time point and apply the model iteratively, we can reconstruct the
trajectory through state space almost perfectly for all three data sets. Figure 4
shows the original and reconstructed time series for three representative genes.
The interpolated time series (not shown) are nearly indistinguishable from the
reconstruction. The very close fit is likely due to overfitting, but it does show
that errors do not accumulate, despite the poor conditioning of W. Analysis
of the eigenvectors of the linear system also reveals that the final expression
levels are close to fixed points of the system (within 3% for the spinal cord and
hippocampus “adult” expression levels, within 9% for the final hippocampus in-
jury expression levels): the linear model settles into an attractor in state space
corresponding to the adult expression levels of the real organism.

4.4 Results and validation

A theory has only the alternatives of being right or wrong.
A model has the third possibility: it may be right, but irrelevant.
— M. Figen

Before we address the issue of which individual parameters are well deter-
mined versus poorly determined, Section 4.4.1 will look at some of the overall
properties of W. Just as the average of a large number of poor estimators can
yield a good estimator, the hope is that these global properties may be bet-
ter determined than the individual parameters. Next, Section 4.4.2 shows how
we can “separate the wheat from the chaff”: identify the few well determined
interactions in the network model. In Section 4.4.3 we put the class of most
robust parameters (those due to the effect of kainate on the genes) to the test
by comparing them with what is known in the literature. Section 4.4.4 does the
same for the most robust gene-to-gene parameters.

4.4.1 Biologically plausible properties?

The linear model assumes that every gene is regulated by every other gene.
However, when we look at the least squares fit of the model to the real data, we
find that many of the parameters of the model are close to zero. Figure 5 shows
a distribution of interaction weights that is very sharply peaked around zero
(with 25th and 75th percentiles at +0.258 o, compared to +0.674 ¢ for a normal
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Figure 4: Original (dots) and reconstructed time series (lines) for nestin(top),
GRa4 (middle) and aFGF (bottom). Time is in days from birth (day 0, corre-
sponding to postnatal day PO or embryonic day E22). Dotted line: spinal cord,
starting day -11 (E11). Solid line: hippocampus development, starting day -7
(E15). Dashed line: hippocampus kainate injury, starting day 25 (P25)
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distribution). This means the connection matrix is a good approximation to a
sparse matrix, i.e., each gene is only influenced by a limited number of others,
as we would expect for the real connection matrix. For a rough estimate of the
number of “nonzero” parameters, we can fit the distribution with a mixture of
two zero-centered Gaussians: more than 80% of the parameters get assigned
to the narrowest Gaussian (o7 = 0.068), the rest to the much broader second
Gaussian (o9 = 0.375).

350 T T T T T T T

300 1

250

200

150

100 [ 1

50 1

! ! adad (W | ) 1

-2 -15 -1 -05 0 0.5 1 1.5 2
size of weight

o

Figure 5: Histogram of average parameter values w. Note the sharp peak at
Z€ro.

The sum of input weights to each gene is close to zero, i.e. there seem
to be no genes that are primarily upregulated or downregulated. In fact, the
distribution of the sums of input parameters is significantly much closer to zero
than would be expected based on the distribution of parameters (¢ = 0.542
versus expected o = 1.648).1% This may partially be an artifact of the model,
because there are no fixed upper and lower expression thresholds for each gene.
Predominantly positive (or negative) inputs to a gene would cause a increasing
(decreasing) expression level, so positive and negative inputs must be balanced.
More surprisingly, the distribution of input sum is close to zero even if we
exclude the bias term b; for each gene. In other words, we see few instances
of genes which are “OFF” in the absence of regulatory inputs and which are

14The expected standard deviation of the sum (assuming the parameters are picked ran-
domly from the distribution of parameters) is v/68 o0params for the input vector, V65 oparams
for the output vector, with oparams = 0.200
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upregulated by those inputs, or “ON” in the absence of regulatory inputs and
downregulated.

Looking at the sum of output parameters from each gene (or other input
such as kainate etc.), we see that this sum varies significantly more than ex-
pected based on the distribution of parameters (¢ = 2.513 versus expected
o = 1.611)."In other words, there seem to be genes that have a predominantly
positive (e.g. GR~1) or negative (e.g. IGF II) regulatory effect on the other
genes, which is in agreement with our biological knowledge.

Whereas the sum of input or output vectors tells us about the sign of regula-
tion, the magnitude of the vectors informs us about the strength of regulation.
We see a few significantly larger (e.g. GR~y1) and especially more small mag-
nitude output vectors than expected, given the distribution of parameters.!5 It
seems likely that the model has discovered that some genes are important regu-
lators, while many others are not. This explanation is reinforced by a significant
negative correlation (r = —0.46) between output magnitude and average trip-
licate variability for the gene, i.e. genes with less variation among the three
replicates per time point had higher output magnitude. Important regulators
are presumably more tightly regulated themselves, and thus would be expected
to show less variability.

Surprisingly, we see a similar pattern for the input vectors: a few genes have
large regulatory input parameters,'® many others have all small regulatory in-
puts. Here, this variation is explained by a significant correlation (r = 0.79)
between the magnitude of input vectors, and the standard deviation of slopes
between time points. Since the linear model correlates expression levels with
changes in expression levels, genes with rapid changes between time points will
tend to have larger regulatory input parameters.” Each gene has a characteris-
tic scale for its input parameters, corresponding to how fast the expression level
of the gene changes throughout the time series. Instead of a mixture of “zero”
and “nonzero” parameters, distribution of parameter values in Figure 5 should
probably be considered as a mixture of distributions at these different scales.

When we divide the genes into functional categories, other interesting pat-
terns emerge. The categories used were: §HTR (Serotonin Receptors), AChR
(Acetylcholine Receptors), GABA-R (GABA Receptors), GluR (Glutamate Re-
ceptors), ICS (Intracellular Signaling), NME (Neurotransmitter Metabolizing
Enzymes, including GAD), cell cycle, glial, growth factor, insulin and IGF, neu-
ronal, neurotrophin, progenitor, synaptic, trans-regulation, and other.

NME and GluR are the main input classes, with weights coming from these
genes on average more than twice as large as from other genes. Both categories

15Based on 100 random permutations of the parameter matrix.

161n our earlier work [23], this was assumed to be a sign of a poorly determined gene: poorly
determined variables are often fitted using a number of very large inputs, which mostly cancel
each other out. However, as we will see in Sections 4.4.4 and 4.4.3, one of the genes with
highest input magnitude (BDNF) also has very well determined input parameters.

7No such correlation was found between output vector magnitude and average expression
level, and no other significant correlations were found between input and output magnitudes,
average and standard deviation of expression levels, slopes, or average triplicate standard
deviation.
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are known to play an important role in development and injury of the central
nervous system. Also important are ICS (46% larger weights), SHTR (45%
larger) and trans regulation (35% larger). A notable exception to primary reg-
ulation by NME and GluR is growth factor, which gets most input from ICS.
We also observed that there is a tendency for genes in one functional class to
receive more inputs from genes in the same class.

In summary, the least squares solution for the linear model results in a
sparsely connected network, in which all genes have both positive and negative
inputs, some genes are predominantly positive or negative regulators, there are
a small number of important regulators with stable expression patterns, regu-
latory inputs are scaled by the speed of change in expression level of each gene,
some of the main regulatory gene categories are known to play an important
role, and there is more regulation within a functional category than between
categories. All these high-level properties can be considered plausible from a
biological point of view.

4.4.2 Robust parameters

All theorems are true.

All models are wrong.

And all data are inaccurate.

What are we to do?

We must be sure to remain uncertain.
— Leonard A. Smith

Because we expect large parts of the model to be underconstrained, we per-
formed a Monte Carlo analysis to assess the effect of noise in the input data
on the resulting parameters, and used this to determine the most robust pa-
rameters. As mentioned earlier, every value in the original data sets is really
an average of triplicate experiments. This gives us high accuracy, and a rough
estimate of the standard deviation at each measurement. We used this infor-
mation to construct 40 new input data sets, adding a small amount of Gaussian
noise (with the same standard deviation) to each. We then generated the linear
model for each of these perturbed data sets, and analyzed the variability of the
parameters over those 40 perturbed models.

To reflect our uncertainty about the kainate decay constant Dg 4 used to
generate the kainate time series, we also lognormally perturbed Dg 4 around
its estimated value of 100 min. This did not qualitatively change the results'®.
Similarly, continuity or discontinuity in the slope of the interpolated kainate
time series!® at the time of kainate injection had little effect on the results,

180ver the 40 perturbed models, Dx 4 varied from a minimum of 45.55 min (half-life of
31.57 min) to a maximum of 205.13 min (half-life of 142.18 min).

19When interpolating the kainate time series, the default slope at Oh is determined by the
Oh and 0.5h data points. In contrast, the slope for unperturbed animals (at postnatal day
25, but without kainate injection) can be estimated from the hippocampus development time
series. Using the slope calculated based solely on the kainate time series would therefore
be equivalent to introducing a discontinuous jump in slope. Alternatively, we can force the
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indicating that the time resolution in the kainate time series is sufficient to
capture the initial dynamics of the response. The results listed below are for
Dx 4 lognormally perturbed around 100 min, and a discontinuous slope of the
interpolated kainate time series.

For each parameter in the model, we calculated the average magnitude w
of the parameter, and compared it to its standard deviation o, over all 40
perturbed models. Note that although the original triplicate standard deviations
are only a very rough estimate of the real variability for each gene and each time
point, o, will be the result of some weighted average of a large number of these.
In fact, for the specific weight wj;, oy;, will be some weighted average of all
the triplicate standard deviations for both y; and y;, at all time points, over all
data sets. Just as the average of two poor estimators is itself a more accurate
estimator (in fact, with half the variance of the original estimators), o,;, will
have much greater accuracy than any of the triplicate standard deviations it is
based on.

The Z-score of a parameter w is defined as Z,, = |@|/oy, and indicates how
many standard deviations the mean of the parameter is away from zero. From
this Z-score, we then compute a P walue, indicating the probability that the
“real” value of the parameter for the best-fit linear model is zero, or even has
opposite sign from w (i.e., the probability that this weight w is a false positive).
We could simply count what fraction of the perturbed models have zero or even
the opposite sign for the parameter in question. However, this would require
many more than 40 runs to get sufficient accuracy in the P values. If we assume
each parameter has a similar distribution, we can look at the distribution of all
parameters, each normalized with respect to its mean w and standard deviation
0w-20 To estimate the P value for a specific value of Z, we count the number of
instances where (w — @) /o, > Z, and divide by the total number of parameters
(40 x 68 x 65). The Z-scores (or their derived P values) are then used to identify
robust parameters.

Note that the P values used here do not necessarily indicate the probability
that the parameters found correspond to real biological regulatory interactions.
They simply reflect the probability, given the noise on the input data, that the
best-fit linear model for the true expression time series includes a parameter
with this sign. In some instances, fitting a nonlinear interaction using a linear
model may require a number of spurious linear terms. These parameters may
be necessary for a good fit, and thus receive a high Z-score. Our hope is that
gene regulation has sufficiently strong linear component that this first-order
approximation with a linear model will mainly yield biologically relevant results.

kainate time series interpolation to start with the slope found at P25 in the developmental
time series.

20The perhaps more standard—but less accurate—approach would be to assume all param-
eters have a Gaussian distribution over the 40 perturbed models. The distribution estimated
above turns out to have a slightly sharper peak and longer tails than the Gaussian, resulting
in larger P values for high Z, and smaller P values for low Z.
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Figure 6: Left: Average magnitude of parameters vs. Z-score. Black points are
kainate — gene parameters. Inset: log-log plot shows clearly that the kainate
parameters on average have significantly higher Z,, and higher |@|.

Figure 6 shows the Z-scores and average magnitude of all parameters. Sur-
prisingly, the most robust parameters in the model are the parameters K,
indicating the effect of kainate on each gene (black dots in Figure 6). This is
probably because of the very fast and drastic effect of kainate-induced seizures
on the system, as compared to the slow and subtle changes during development.
Table 2 lists a number of the kainate — gene parameters with the highest Z-
scores. Note that a few parameters (e.g. Kainate — 5-HT;g) have a high Z-score
but a low average magnitude. Such highly consistent but small parameter val-
ues may reflect a real but minor regulatory influence, or simply an absence of
regulation (e.g. compensation for nonlinear effects).

Since it is unlikely that kainate actually regulates all these genes directly,
we must assume there are some intermediate steps missing. Including an even
earlier time point may shed some light on the precise sequence of regulation,
especially for the BDNF/IGF II/S1008 trio which also show gene-to-gene in-
teractions (see Section 4.4.4). It should be noted, however, that most of the
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existing literature on kainate response looks at much coarser time scales (typ-
ically hours), and that the 0.5 hr time interval in this data set is the shortest
reported in the literature for kainate response.

| Parameter | o | ow | Zuw | P, |
Kainate — IGF II —1.157 [ 0.238 | 4.854 | 4.355-10~1
Kainate —» BDNF +0.750 | 0.165 | 4.534 | 7.834-10~*
Kainate — TCP +0.542 | 0.092 | 5.894 | 2.828 -10~°
Kainate — S10083 +0.531 | 0.099 | 5.379 | 1.923-10*
Kainate — G67I86 | +0.379 | 0.076 | 4.964 | 3.620-10~*
Kainate — 5-HTg | +0.208 | 0.044 | 4.732 | 5.430-10~*

Table 2: Robust kainate parameters. IGF II: insulin-like growth factor II;
BDNF': brain-derived neurotrophic factor; TCP: T-complex protein; G67I86:
glutamate decarboxylase 67 (GADG67) splice variant 186; 5-HTp: serotonin (5-
hydroxytryptamine) receptor 1B

Kainate — IGF II: Kar et al. [49] found that IGF I, IGF II and insulin
receptor sites show a marked decrease after kainate administration, suggesting
“possible involvement of these growth factors in the cascade of neurotrophic
events that is associated with the reorganization of the hippocampal formation
observed following kainate-induced seizures.” We found a four-fold decrease in
IGF II mRNA levels one half hour after onset of seizures, followed by a two-
fold increase in IGF I after 6 hours, and a large decrease of all IGF’s and IGF
receptors around 10-21 days. Our model suggests that it is IGF II which initially
sets off the widespread changes in expression levels of insulin, the insulin-like
growth factors, and their receptors following kainate administration.

Kainate — BDNF: BDNF is upregulated by kainate via two different
promoters in hippocampal neurons [68], and the BDNF mRNA increase due
to kainate is not blocked by protein synthesis inhibitors, indicating BDNF is
regulated as an immediate early gene [16]. In the kainate injury time series,
BDNF expression levels increase five-fold one half hour after onset of seizures.
In the adult brain, BDNF is thought to play a major role in the development
of kainate-induced hypertrophy in granular neurons of the dentate gyrus region
of the hippocampus: administration of antisense deoxynucleotides for BDNF
(sequestering the complementary BDNF mRNA) after kainate administration
totally prevented neuronal hypertrophy [38]. Hippocampal BDNF levels are also
correlated with severity of seizures and the extent of neuronal loss in the CA1l
and CA3 regions of the hippocampus, and administration of exogenous BDNF
exacerbates the damage to CA3 neurons [73]. Interestingly, in immature (20-
day-old) rats, which normally do not show neuronal loss following kainic-acid
induced seizures, BDNF apparently has a neuroprotective effect: antisense de-
oxynucleotide administration results in longer seizure duration and loss of CA1
and CA3 pyramidal cells and hilar interneurons inside the dentate gyrus [87].

Kainate — TCP: The case for kainate regulation of TCP (T-complex pro-
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tein) is rather speculative, even though it is the single most robust parameter
in our linear model. One intriguing link is the mapping of the epilepsy suscepti-
bility locus EJM1 on chromosome 6 [74], near a human homologue of the mouse
T-complex [25]. If TCP is indeed a major gene involved in kainate neurotoxicity,
TCP gene defects might cause increased susceptibility to epilepsy.

Kainate — S1003: S1008 is known to be upregulated five fold in human
temporal lobe epilepsy [37]. S1008 protects hippocampal neurons from damage
induced by glucose deprivation [9], “suggesting that its elevation in neurological
disorders may be a compensatory response.” Perhaps its overexpression is a
consequence of glucose deprivation due to neuronal hyperexcitation by kainate.
Lastly, S1008 induces apoptotic cell death in astrocytes [46], which protect
against kainate neurotoxicity [64]. Hence, overexpression of S1004 might cause
aggravation of kainate toxicity by astrocyte apoptosis.

Kainate — G67I86: G67I86 is an embryonic splice variant?! of GAD67 [13],
expressed in mice from E10.5 to E15.5 (corresponding to rat E12 to E17), and
not detectable in adult brain [85]. GAD synthesizes the fast-acting neurotrans-
mitter GABA from glutamate. The short leader peptide translated from G67186
is not enzymatically active, but is thought to exert some unknown regulatory
function [85]. Mature GAD67 mRNA was known to be upregulated in hip-
pocampal dentate granule cells four hours after kainic acid injection [78, 24].
However, the more fine-grained time series used here shows that G67I186 mRNA
levels increase first (0.5h-1.5h), followed by a second embryonic splice variant
G67180%2 (1.5h), and finally the adult GAD67 mRNA (1.5h-24h). This is the
same sequence in which these splice variants occur during development [85], in-
dicating that GADG67 expression after kainate injury may be recapitulating its
developmental program. Such recapitulation of developmental processes plays
an important role in regeneration of the peripheral nervous system following
injury, and has also been implicated in the central nervous system [19, 98, 97].

Kainate — 5-HT;p: Kainate administration causes a release of serotonin
in the hippocampus [88], which would be expected to provoke a compensatory
down-regulation of the 5-HT g serotonin receptor instead [48]. However, the
interaction between serotonin and 5-HT,;g is more complicated than that: 5-
HT;p is an autoreceptor [48], i.e., activation of the receptor causes an inhibition
of serotonin release. In addition, receptor activation will also cause a desensi-
tization of the 5-HT;p receptor [70]. It is conceivable that this complex set of
feedback loops might cause a transient upregulation of 5-HT g by kainate. In-
deed, the 5-HT;p expression time series shows a transient upregulation, peaking
at 1.5-3h, followed by a decrease below the original expression level.

The direct effect of kainate is a transient phenomenon, lasting at most a
couple of hours. It could be argued that we might be able to derive these
kainate parameters directly from the first few time points in the kainate injury

21(G67186 contains a 80 bp insert not found in the adult GAD67 mRNA. This insert includes
a stop codon which truncates the translation of the mRNA, resulting in a short leader peptide
rather than the full-length GAD67 protein.

22367180 contains a 6bp shorter insert than G67I86, and is translated into the leader pep-
tide, plus a truncated but enzymatically active GAD67 protein.
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time series, in which all the effort involved in integrating results from three
separate time series is entirely superfluous.

One can indeed find reasonable, intuitive estimators for K; and the corre-
sponding Z-score Zk, using the change in expression level between the first two
time points, Ay;(0,0.5) and the triplicate error ¢;(0) and ¢;(0.5) at those time
points (see also Figure 7):

Ay;(0,0.5
k = %QKQ (slope of the time series) (31)
Ay;(0,0.5)
) —— "~ T 32
“ 7:(0) + 03(0.5) 7K (32)
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Figure 7: Estimates for kainate parameters K; and their Z-score Zg,, based on
the first two time points in the kainate time series. The original data points
are solid, interpolated time points hollow. k; is the slope between the two first
time points in the data set, z; is a measure of the significance of the change in
expression level.

These simple estimators k; and z; show a reasonable correlation to the results
obtained by fitting the linear model to all three complete time series: r = 0.84
and r = 0.83 respectively. Unfortunately, this nice correlation starts to break
down in the most interesting region: for those genes with high Z-score. For
the ten genes with highest Z-score, the correlation between k; and K; is only
barely significant: » = 0.67, and the correlation between 2; and Zk, is no longer
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significant: r = 0.47. The estimates are even worse for the six genes listed in
Table 2:

o k; strongly underestimates K; for IGF II (k; = 0.696; K; = 1.157)

e k; strongly overestimates K; for BDNF (k; = 1.215; K; = 0.750).

e 2; strongly underestimates Zg, for S1008 (z; = 3.333; Zg, = 5.379)

e 2; strongly underestimates Zg, for 5-HT 5 (z; = 3.667; Zk, = 4.732),
e z; strongly overestimates Zx, for G67I86 (z; = 12.333; Zk, = 4.964)

o 2z; strongly overestimates Zg, for BDNF (z; = 7.156; Zg, = 4.534).

Of the six genes with largest Z-scores, TCP is the only one with accurate
estimations. Both estimators are particularly unreliable for high values. Al-
though their accuracy is probably sufficient to pick up most of the important
interactions, it is clear that adding in the rest of the kainate time series, as well
as the two developmental time series, significantly improves the results.

4.4.4 Results: Gene-to-gene parameters

Kainate is an exogenous input to the system, so the immediate effects of kainate
administration are easy to isolate. In addition, kainate injury as a model of
temporal lobe epilepsy is very well studied. The gene-to-gene interactions on the
other hand are much harder to unravel, both in vivo as in vitro, and consequently
less information about them is available in the literature.

In the linear model, the parameters accounting for the gene-to-gene inter-
actions have much smaller Z-scores than for the kainate-to-gene interactions.
The gene-to-gene parameters with Z,, > 1.0 are listed in Table 3. Interestingly,
GR~1 and IGF II—accounting for seven out of ten entries in the table—also
have the highest magnitude output vectors, which we interpreted as a sign of
important regulatory genes in Section 4.4.1. None of the Z-scores are significant
at the P = 0.05 level, although in total we only expect about one false positive
in this table of ten parameters. Remember that the goal of this model is pri-
marily to generate interesting new hypothesis to guide further research. From
that point of view, nine out of ten is quite acceptable.

GFAP — GFAP; BDNF — BDNF: It is interesting to note that two
out of the ten gene-to-gene parameters in Table 3 are autoregulatory, i.e., a
gene downregulating itself. Although these specific genes are not known to
regulate themselves, in general such negative feedback loops are an important
homeostatic mechanism.

BDNPF, IGF IT - BDNF, S1008: BDNF and S1005 seem to be regulated
by BDNF itself, and IGF II. Moreover, the regulation by IGF II is in both
cases roughly twice as strong as the regulation by BDNF (2.02 times as strong
for S1008, 1.64 times as strong for BDNF, well within the error bounds on
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Parameter | o | ow | Zw | Py |

GFAP — GFAP —0.277 | 0.243 | 1.138 | 0.097
BDNF — BDNF —0.973 | 0.719 | 1.353 | 0.072
IGF II — BDNF —1.598 | 1.494 | 1.070 | 0.106
BDNF — 51008 —0.343 | 0.294 | 1.165 | 0.093
IGF II — S1008 —0.693 | 0.617 | 1.123 | 0.099
GRvy1 — GRa4 +1.144 | 1.108 | 1.032 | 0.112
GRy1 — GRp2 +1.036 | 0.965 | 1.074 | 0.106
GR~y1 — G67180/86 | +1.471 | 1.307 | 1.126 | 0.098
GRvy1 — AChE +0.992 | 0.895 | 1.108 | 0.101
GRvy1 - NFM +0.795 | 0.718 | 1.108 | 0.101

Table 3: All gene-to-gene parameters with Z-score greater than 1.0. GFAP:
glial fibrillary acidic protein; BDNF: brain-derived neurotrophic factor; IGF II:
insulin-like growth factor II; G67I80/86: glutamate decarboxylase 67 (GADG67)
splice variants I80 and I86; AChE: acetylcholinesterase; NFM: neurofilament
medium; GRa4, GRA2, and GRy1: GABA, receptor subunits a4, 2, and 1.

these parameters). This might lead us to infer the presence of a hidden node??
regulating BDNF and S1004, as in Figure 8. All three of these genes are growth
factors, playing a role in differentiation and development of neurons, as well as
in neurite outgrowth. Both IGF II and BDNF induce differentiation of CNS
stem cells-derived neuronal precursors, and IGF I and BDNF may act together
or sequentially to promote differentiation [8] (the combination of IGF II and
BDNF was not examined, but IGF II was found to have a similar effect as
IGF I on differentiation). Furthermore, IGF II and S1003 have almost opposite
effects on the growth of developing serotonin and dopamine neurons in vitro [60].
The interactions between BDNF, IGF II and S1008 may play an important role
in differentiation of developing neurons into different cell types.

oo S
DSTHENC &

Figure 8: Alternative models for the interaction between BDNF, IGF II, and
S1005. Note that BDNF was drawn twice for clarity.

231nterestingly, the combination (BDNF + 1.8 IGF II) shows an even higher Z-score for
regulating BDNF and S1008 (1.434 and 1.332), and a higher average Z-score overall (0.503
versus 0.476 for BDNF alone and 0.436 for IGF II alone)
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GR~y1 -+ GRa4, GRA2: GRv1 is a GABA, receptor subunit. Each pen-
tameric GABA receptor consists of five subunits, and so far, 19 mammalian
subunit types (plus several splice variants) have been identified, grouped into
seven classes: 6 a subunit types, 4 8,3 v, 1d, 1€, 1 7w, and 3 p [10]. In the
CNS, GABA receptors generally consist of combinations of a and 8 subunits,
plus one or more of the 7, §, or € types, allowing for possibly hundreds of dif-
ferent GABA 4 receptors. The upregulation of a4 and 2 by 1 seems to imply
the coordinate regulation of an a432y1 GABA, receptor by its 1 subunit.
This specific receptor combination has not previously been described, perhaps
because a4 and 1 are less common subunits, a4 antibodies have yielded in-
consistent results, and a frequently used $2/3 antibody does not distinguish
between 32 and 33 subunits. However, a4y 24 has been detected in the cor-
tex, striatum and hippocampal pyramidal cells [69], 432§ has been detected in
thalamus and hippocampal dentate granule cells [69] (0 is known to substitute
for v in some receptors), a4, $2, and §-mRNA levels are tightly correlated in
individual dentate granule cells [15], and the hippocampus does contain some
of the highest concentrations of both a4 [52] and 1 [53].

GR~1 — G67I80/86: GABA is implicated in neuronal development, and
it is thought that GAD (the enzymes(s) which synthesize GABA from gluta-
mate) regulates the expression of GABA receptors via GABA, and that GABA
receptor activation in turn regulates GAD expression [82]. GAD67, a4, 81 and
~v1 expression is associated with proliferation and development in the rat em-
bryonic and early postnatal CNS [61]. Considering the timing, this GAD67
expression presumably consists mainly of the embryonic splice variants G67180
and G67I86. Total GABA 5 receptor mRNA was found to be highly correlated
(R=0.99) with total GAD mRNA in cervical spinal cord [82], and it seems likely
that the GABA A receptor subunits which appear transiently during spinal cord
development (a4, a5, 81, 2, v1, and «3) would be highly correlated with the
transiently expressed GADG67 variants.

GR~y1 — AChE: GABA has been conjectured to control the development
of cholinergic neurons, and indeed, AChE expression is downregulated by acti-
vation of GABA, receptors [51]. Exposure to GABA has also been shown to
downregulate GABA 4 receptor subunit v1, as well as al, 52, 84, and 2 [11],
so perhaps the effect of GABA on AChE (and $2) is due to downregulation of
~v1.

GR~y1 — NFM: NFM (neurofilament medium) is a neuronal marker, so it
is not surprising that NFM would be upregulated in conjunction with a number
of neurotransmitter receptors (a4, 52, v1) and neurotransmitter metabolizing
enzymes (G67180/86, AChE). It has also been noted that GAD family mRNA
expression parallels neurofilament expression [82].

Interestingly, GRy1 and IGF II—accounting for seven out of ten entries
in the table—also have the highest magnitude output vectors, which we inter-
preted as a sign of important regulatory genes in Section 4.4.1. Whereas IGF
IT is known to be an important regulator, no such role for GR~1 has been pos-

24The precise subtype of 8 and vy was not identified
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tulated before. The GR~y1 gene product is part of a receptor complex, and
would not be expected to play any direct regulatory role. Nevertheless, it is
not unheard off for a protein with a primarily structural role in the cell to also
have a regulatory effect (for example, CASK, a cytoskeleton protein acting as
a structural girder for cell junctions, is known to enter the nucleus and directly
regulate gene expression [45]). Alternatively, some other factor not included
in our data set may be driving the coordinate regulation of these genes, and
be most highly correlated with GRv1 (e.g., GRy1 may have few other regula-
tory inputs, and may show a faster response to this regulator than the other
genes), in which case the best causal explanation within the scope of the data
set would be regulation by GRyl. Either way, the model shows a significant
coordinate regulation of these gene and, lacking any other explanations, further
investigation of the role of GRy1 may be warranted.

5 Conclusions

This is not the end.

It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.
— Winston Churchill, 10 November 1942

5.1 The story so far...

Rather than giving up on these network models because they are officially “un-
derdetermined”, I have shown that they can indeed be applied to infer at least
part of the regulatory interactions between genes from large-scale gene expres-
sion data. The first important result is a rather theoretical one: the estimates
of data requirements in Chapter 3 show that, as long as we impose sufficient
constraints on the network models, their data requirements might only scale
logarithmically with the number of variables (number of genes). This compares
favorably with the data requirements for clustering, although it is still perhaps
an order of magnitude or more larger.

In practice, the lack of data compared with the number of parameters of the
data turned out to be much more of a stumbling block than I had originally
anticipated. In retrospect, the underdetermined nature of the model should not
have come as a surprise, simply based on the dimensionality of the data, and the
significant correlations between the measurements. Nevertheless, I showed that
it is indeed possible to identify some portion of the significant weights in the
model, using the knowledge we have regarding the variability of the individual
measurements. This points out yet again how crucial it is to know the error
behavior of the data one is working with. A common trend towards the usage
of replicate experiments may allow for more widespread use of this technique.

The linear model used in Chapter 4 is an extreme simplification, and should
be regarded only as a first-order approximation. The tissues studied consist of
multiple functional regions, multiple layers within each region, and multiple cell
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types within each layer, all of which can be expected to exhibit different ex-
pression patterns during development and injury. Also, the number of variables
used is only a small fraction of the important variables that play a role in these
tissues. Protein, neurotransmitter, and neuropeptide levels are missing entirely.
Nevertheless, we find we can isolate several important known regulatory inter-
actions. Other predictions generated by the model seem quite plausible when
compared with current knowledge, and form useful new hypotheses that can
guide further experimentation.

5.2 Directions for future research

Some further refinements could still be made to the linear model. For example,
to capture the change in developmental speed around birth, we could explicitly
add an additional input to the system for the “birth” event.

Rather than using the ordinary least squares solution, we could use a weighted
least squares. This would allow us to (1) weigh expression levels according to
the corresponding triplicate standard deviations on the measurements, (2) weigh
interpolated time points based on the location within the interpolation interval
(higher weight close to the real data points), (3) give equal weight to all the
intervals between real data points (at the moment, their “weight” in the least
squares solution is essentially proportional to the length of the interval, giving
much higher weight to the final data points which are months apart). Note that
the use of the Monte Carlo analysis in Chapter 4 essentially already covers the
first two points: measurement with a larger triplicate standard deviation will
get perturbed more, resulting in a smaller contribution to the Z-score of the as-
sociated weights. Similarly, perturbations in the real data points will probably
cause larger perturbations in the interpolated time points, particularly in those
interpolated points farthest away from the real data points.

Lastly, since the linear model essentially performs a multiple regression of all
genes on all genes, perhaps we could exploit some of the techniques developed
to determine the significant inputs in multiple regression. Some of these are
based on adding additional penalty terms to the optimization to account for the
number of inputs, size of input weights, etc.

The introduction of dynamic Bayesian network methodology for gene ex-
pression analysis is an especially promising development. The nonlinear neural
network presented in the Introduction is essentially similar to a nonlinear dy-
namic Bayesian network, as pointed out by Murphy and Mian [67]. Bayesian
networks do not so much provide a different model, but rather a new perspec-
tive from an area which has a very thorough theoretical foundation, just as the
neural network perspective provides us with useful insights and efficient tools
to tackle a set of nonlinear differential equations.

5.3 A look towards the future

As of this writing, we are still in the exponential phase of deployment of large-
scale gene expression measurement technologies. Frost & Sullivan [28] estimate
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approximately a doubling in the number of arrays used for each of the next
two years, with a prediction of well over 1.5 million arrays used in 2003. Con-
sidering the nearly constant stream of new technologies, this may very well be
an underestimate. Miniaturization, automation and mass-production will likely
reduces the cost per gene expression experiment to a few dollars per chip. Once
these technologies start influencing our daily lives—probably primarily as diag-
nostic tools in a hospital setting—there is no predicting how pervasive they will
become.
As these genome-scale technologies mature, we can expect to see:

e More whole-genome measurements, rather than selected subsets of genes,
increasing the need for analysis tools that can deal with large amounts of
superfluous variables.

e Higher accuracy, allowing better distinction between genes with similar
expression patterns. At the moment, some people still view array data
essentially as qualitative data: useful as a first approach, but in need of
validation by other means if one actually wants to publish a result. With
increasing accuracy, automation, and understanding of the errors, large
scale gene expression technology will likely become generally accepted as
a quantitative measurement tool.

e Possibly higher time resolution, as we get more experience with response
times of the very fastest genes. To observe the very fastest changing genes,
we may very well have to resort to lab-on-a-chip approaches to do the
measurement in situ, before the mRNA decays. For now, time resolutions
on the order of a few minutes are definitely feasible, and sufficient for the
vast majority of mRNA species.

e More data points, making the sorts of approaches presented here more
effective. As mentioned before, in order to infer the regulation of any gene,
one has to thoroughly exercise the different inputs to the gene. The recent
trickle of very large data sets (such as Hughes et al. [47]: 300 separate
measurements on yeast, all calibrated) are likely only the beginning.

e More replicates, resulting in better error models and a better appreciation
of why and when genes show increased variability. Currently, replicates
are mainly used for averaging (thus reducing the error variance), and for
assigning significance levels to the amount of up- or down-regulation of
a gene. However, as I have illustrated in Chapter 4, they also provide a
crucial tool to identify well-determined regulatory interactions in the data.

Especially the advent of larger data sets and more data sets with replicates
Should make the modeling methodologies developed here more widely applica-
ble. We can also expect to see production of more large-scale non-mRNA data,
bringing with it an increased need for integration between disparate data types
within the same computational analysis, as well as integration with other infor-
mation sources, such as literature data bases, etc. The Bayesian approach to
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learning neural networks—adding additional knowledge as priors on the result-
ing network—provides for a very flexible tool to integrate these disparate types
of data.

After the explosion of genomic-scale data, we are finally starting to see a
smattering of computational tools that can deal with this data. I hope the
techniques I have developed here will be a useful addition to this growing ge-
nomic biologist’s tool chest. Much work yet remains to be done, and as the
technologies and analysis tools develop, we will likely identify other challenges.

As the saying goes: “in the land of the blind, the one-eyed man is King”
large-scale gene expression technology has given us an “eye” into the internal
workings of cells. It’s still only one eye, so we're only seeing half the picture.
And it’s still somewhat blurry, but we’re furiously developing lenses. But what
a difference one eye makes...
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Appendix A: Fitting the linear model

I believe the day will come when the biologist will—without being a
mathematician—not hesitate to use mathematical analysis when he requires it.
— Karl Pearson, in Nature, 1901

First, we rewrite Equation 29 in matrix notation:

AZ—S:) —Wi(t) + R s(t) + Tr+ B (33)
where A¥ (%), ¥(t), K, T and B are now column vectors containing the corre-
sponding values of Ay;(t) = v;(t + At) —y;(t), vi(t), K;, T; and b; for all 65
genes, and W is a 65 x 65 matrix containing the parameters w;;. To simplify,
we can include the parameters K, T and B as extra columns in the matrix W
(which now becomes a rectangular 65 x 68 matrix), provided we add x(t), 7,
and a unit constant as additional “inputs” to ¥(¢) in the right hand side.

Ay(t) ygt;

S;t — - — Ht

T=[WKTB]- N (34)
1

For convenience, we will call the augmented weight matrix VA\?, and the
augmented input vector y(¢). Note that we have one such equation for each
time interval in each of the interpolated time series. We can combine these into
a single matrix equation:

AY ~ ~
WY
=W (35)

where AY is a 65 x 52080 matrix, containing A¥(t) = y(¢t + At) —§(¢) for all
52080 interpolated time intervals of each time series; and Y is a 68 x 52080

matrix, containing ¥(t), k(t), 7, and a unit constant for all but the last time
points of each time series:

y1(2)-97(1) - yi(na)-yi(nael)  y7(2)-yi (1) - yi(na)-yy(nel) g1 (2)-97(1) - 97 (ne)y7 (nad)

AY = - - - - - -
Y (2ya (1) - yx (ns)-yX (nsl) YR (2)-yx (1) - ¥R (na)-vR (nwl) vk (2)-yx (1) - yR (ne)-yX (nal)
spinal cord hippocampus hippocampus
development development kainate injury
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yi(1) yi(ns—1) yi(1) yr(nn—1) yF(1) yf (nk—1)
Y= i@ - yi(ns—1) Yy Q) -y (na=1) yk(1) - yk(ng—1)
0 . 0 0 . 0 k(1) -+ K(ng—1)
0 0 1 1 1 1
1 1 1 1 1 I
(36)
w11 - WNa1 K, T by
W= . : : : : (37)
winy - wnnN Ky Ty by

where N is the number of genes (N = 65), ngs, n, and ng are the number of
interpolated time points in the spinal cord development, hippocampus develop-
ment and hippocampus kainate injury time series, respectively (for convenience,
the interpolated time points are ordered from 1 to n in each time series), and
yi(t), yi(t) and yk(t) are the interpolated expression levels in those three time
series. Note that the kainate level k(¢) (third row from the bottom in Equa-
tion 36) is zero except for the kainate injury time series, and that the tissue
indicator variable 7 (second row from the bottom in Equation 36) is 0 for spinal
cord and 1 for the two hippocampus time series. .
I Y were an invertible square matrix, we could solve for W exactly using
W =AY /At - Y ! Since Y is rectangular, and has more rows than columns,
the system is overdetermined and no exact solution for Equation 35 is possible.
However, we can find the least squares solution W7 using the following formula
(see, e.g., [84, 35]):

w+ = S gr (?T?) ' (38)

At

(Or, if Y is rank-deficient, we could use the pseudoinverse [84, 35] to find a
unique least squares solution). The resulting 65-by-68 matrix W gives us the
least squares fit for the parameters wj;, K;, T; and b; in Equation 29.
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