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Los Alamos National Laboratory

= U.S. Department of Energy (DOE) Laboratory managed by
the University of California.
» Annual Budget = US$1.200.000.000
» One of the largest multidisciplinary research institutions in the World.

— = 6.800 U.C employees plus 2.800 contracted personnel.

— 1/3 of researchers are Physicists, 1/4 Engineers, 1/6 Chemists and Material
Scientistcs. The remainder (1/4), works in Mathematics, Computer and
Computational Science, Biology, Geoscience and other disciplines.

— External scientists (from Academia and Industry), as well as students,
come to Los Alamos to work in research projects (basic and applied)
developing technology for future applications.

iy
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Systems Biology at LANL

Genomes To Life Program: DOEGenomesToLife.org

m DOE 10 year program on Systems Biology
» the next step of the Genome Project
» From whole-genome sequences, build a systemic understanding of complex
living systems
» Systems approach to Computational Biology

» DOE Mission: produce energy, sequester excess atmospheric carbon that
contributes to global warming, clean up environments contaminated from
weapons production, protect people from energy byproducts (e.g. radiation) and
from the threat of bioterrorism.

» Interdisciplinary: Biology, Mathematics, Computer and Computational Science,
Engineering, Physics, etc.
m 4 Goals:
|dentify and characterize molecular machines of life
Characterize gene regulatory networks
Characterize the functional repertoire of complex microbial communities

Develop computational methods and capabilities to advance understanding and
predict behavior of complex biological systems

v
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Systems Biology

From Systems Science to Post-Genome Informatics

Theword “system” isamos never used by itsdlf; it is generally accompanied by an
adjective or other modifier: physical system; biological system; social system[...] The
adjective describes what is specific and particular; i.e., it refers to the specific
“thinghood” of the system; the “system” describes those properties which are
Independent of this specific “thinghood.” [Rosen, 1986]

m Systems Science is is the methodology used to study
systemhood not thinghood properties in Nature.

» Modeling and Simulation of systems measured from and
validated in real things.

» It accumulates knowledge via Mathematical and Computational
analysis of classes of systems, models, and problems.
— Dynamical Systems, Automata Theory, Pattern Recognition, etc.

» |[nterdisciplinary Meta-Methodology
» Comparative, Integrative, Non-reductionist

m Historically Related to Cybernetics
» Complex Systems
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Systems Science

Dealing with Complex Systems

» \Weaver [1948] identified 3 types of problems in Science

» Organized Simplicity: systems with small number of components
— Classical mathematical tools: calculus and differential equations

» Disorganized Complexity: systems with large number of erratic
components
— Stochastic, Statistical Methods

» Organized Complexity: systems with a fair number of components
with some functional identity

— When the behavior of components depends on the organization and
function of the whole

— Techniques depend on Computer Science and Informatics. Require
massive combinatorial searches, simulations, and knowledge integration.

— The realm os Systems Science
» Complex Systems are systems of many components which cannot
be completely understood by the behavior of their components.

— Complementary models, Hierarchical Organization, Functional
decomposition [See Klir, 1991]
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Systems Biology

And its Involvement with Systems Science

= People
» Von Bertalanffy [1952, 1968], Mesarovic [1968], Rosen [1972, 1978, 1979,
1991], Pattee [1962, 1979, 1982, 1991, 2001], Maturana and Varela [1980],
Kauffman [1991], Conrad [1983], Matsuno [1981], Cariani [1987].
= Biology is the most Fundamental Inspiration for Systems Science
» Cybernetics and Control Theory derive Feedback Control from the
physiological concept of Homeostasis
» Automata Theory, Artificial Intelligence, Artificial Life derived from attempts
(by Turing, McCulloch and Pitts) to study the behavior of the Brain and
Evolution (Von Neumann)
» Self-Organizing, Autopoiesis, Complex Adaptive Systems from
developmental and evolutionary biology.
m But Systems Science has had a Small impact in the practice of Biology
» Due to a large gap between theoretical and experimental biologists.
— Systems-based theoretical Biology versus a reductionist view
— Theoretical biology has had more impact on other areas (Al, Alife,
Complexity, Systems Science) than Biology itself.
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Modeling Biological Systems

The Gap Between Experimental Reductionism vs. Systems View

The only consensus found among biol ogists about their subject is that biological systems
are complicated, by any criterion of complexity that one may care to specify. [Rosen, 1972]

» Biology must simplify organisms to study them — some type of
abstraction or modeling is needed.
» External (Functional) description (favored by Systems Thinking)
— Blackbox, input-output behavior of observables
— Tells us what the system does
— Function depends on repercussions in an environment
» Internal (structural) description (favored by Experimentalists)
— State description, trajectory behavior
— Tells us how the system does what it does
— Structural information can be measured for any component
» Ideally, we would like to move between the two descriptions
— But in Biology, the structural states we can measure, are not obviously
related to the observed functional activities (and vice versa).
— Thus, Systems Biology has mostly been relegated to deal with evolutionary
e i problems, and Experimental Biology to increase our knowledge of the
» molecular components of organisms
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Why Structural Reductionism is Not Sufficient

Destruction of Dynamical Properties

= Naive Structural Decomposition

» Breaks an organism into simpler components,
gathers information about those, and atempts to
assemble information about the organism from the
components

» But some properties of the original system cannot be
reconstructed from components

— E.g. the crucial stability properties of 3-body system cannot be
reconstructed from knowledge of 2-body or 1-body
constituents — the dynamics is destroyed.

— Think what this means for the methodologies of molecular
biology!
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How To Close the Gap

Coupling Structural Data with Functional Decomposition

= Biological Systems require “function-preserving” and
“dynamics-preserving” Decompositions

» In biology, the same physical structure typically is simultaneously
involved in several functional activities
— E.g. unlike airplanes, birds use the same structure (wing) as both propeller
and airfoll
» We must allow the simplifying decompositions to be dictated by
system dynamics
— Iterative Design of Experiments from Knowledge of Dynamics

— Data accumulated from experiments based on naive structural
decompositions are simply the first iteration!

» Search for Global Patterns and Juxtaposed Functional Modes
— E.g. studying global patterns of antigens rather than specific molecular
interactions [Coutinho et al]
— PCA-like, Fourrier Analysis approaches
» Build IntegrativeTechnology to Disseminate and Utilize Structural
Data — for a diverse group of scientists
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Biolnformatics and Computational Biology

Integrative Link for bridging Experimental and Systems Biology

= Genome Informatics initially as enabling technology for the
genome projects
» Support for experimental projects
» Genome projects as the ultimate reductionism: search and
characterization of the function of information building blocks (genes)
m Post-genome informatics [Kanehisa 2000] aims at the
synthesis of biological knowledge from genomic information

» Towards an understanding of basic principles of life (while developing
biomedical applications) via the search and characterization of
networks of building blocks (genes and molecules)

— The genome contains information about building blocks but, given the
knowledge of Systems Biology, it is naive to assume that it also contains
the information on how the building blocks relate, develop, and evolve.

» Interdisciplinary: biology, computer science, mathematics, and physics

Luis ﬁécha
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Post-Genome informatics
Enabling a Systems Approach to Biology

= Not just support technology but involvement in the
systematic, iterative design and analysis of experiments

» Functional genomics: analysis of gene expression patterns at the
MRNA and protein levels, as well as analysis of polymorphism,
mutation patterns and evolutionary considerations.

» Where, when, how, and why of gene expression

» Aims to understand biology at the molecular network level using all
sources of data: sequence, expression, diversity, etc.

= Grand Challenge: Given a complete genome sequence,
reconstruct in a computer the functioning of a biological
organism
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Post-Genome Informatics or
the “New” Systems Biology

m Systems biology is a unique approach to the study of genes and
proteins which has only recently been made possible by rapid
advances in computer technology. Unlike traditional science which
examines single genes or proteins, systems biology studies the
complex interaction of all levels of biological information: genomic
DNA, mRNA, proteins, functional proteins, informational pathways
and informational networks to understand how they work together.
Systems biology embraces the view that most interesting human
organism traits such as immunity, development and even diseases
such as cancer arise from the operation of complex biological systems
or networks.

» Institute for Systems Biology: http://www.systemsbiology.org
» Kitano Symbiotic Systems Project: http://www.symbio.jst.go.jp/

= The “New” Systems Biology is not novel per se, it is rather a result of
new enabling technology for doing “Old” Systems Biology
» But it is finally allowing experimentalists to work with theorists.

Luis Rocha
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Needs of Systems Biology

= Experimental Side

» Improving cellular measurement methods

— High-throughput identification of the components of protein complexes; Parallel,
comparative, high-throughput identificationof DNA fragments among microbial
communities and for community characterization; Whole-cell imaging including in
Vivo measurements; Better Separtion techniques.

» Measurements Based on Functional Decompositions

— Functional assays? Flexible, fast, novel experimental design based on informatics
results.

= Computational Side

» Integrative Technology
— Standardized formats, databases, and visualization methods
— Automated collection, integration and analysis of biological data
— Algorithms for genome assembly and annotation and measurement of protein
expression and interactions;
» Simulation Technology
— Improved methods for distributed simulation, analysis, and visualization of complex
biological pathways;
— Prediction of emergent functional capabilities of microbial communities

Luis Rocha L
os Alamos
. 2001 http://www.c3.lanl.gov/~rocha




Needs of Systems Biology

Continuation

= Modeling Side

» Algorithms for Discovery of Global Patterns and Juxtaposed
Functional Modes
— Pattern Recognition, data-mining, “Spectral” methods.

» Network Models and Analysis
— Predictive Models based on biochemical pathways of observed

networks

— Simplification Strategies for Network Modeling
— Reduction of possible cell-behaviors from steady-state models of

metabolic network models
— High-Perforemance Algorithms to allow whole-system Kinetic models
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Systems Biology
On-going work at LANL (Complex Systems Modeling)

» Data-mining of Functional Global Patterns

» Discovery of Juxtaposed temporal patterns in GE data (cell-cycle)

— Comparison between clustering, SVD (PCA), and Gene Shaving. Mapped
weaknesses of gene shaving with artificial and real data. Testing better
methods for characterization of temporal processes such as Fourier analysis.
(Michael Wall, Andreas Rechtsteiner, Deborah Rocha)

— Association Rules for GE data: Generalized AR into an exhaustive search of
itemsets, and inclusion of uncertainty. (Deborah Rocha)

— Prediction of temporal processes using Klir's Mask Analysis (CIiff, Joslyn,
Andreas Rechtsteiner, Deborah Rocha)

= BioKnowledge Systems

Representations of Biological Data

Latent Databases

Collaborative and Recommendation Systems

Automated Analysis of Whole Databases of Publications and data-sets

v
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Data-Mining of Global Patterns

Discovery of Juxtaposed Functional Modes

» Gene Expression Modes

» Cluster analysis provides little insight into inter-relationships among
groups of co-regulated genes. Tends to demand separated grupings.

» Component ( “spectral”’) analysis yields a description of superposed
behavior of gene expression networks, rather than a partition.

— PCA, SVD, etc.

— Holter et al [2000] compares the superposed components to the
characteristic vibration modes of a violin string which entirely specify the
tone produced

» Holter et al [2000] compared SVD analysis of yeast cdcl15 cell-cycle
[Spellman et al 1998] and sporulation [Chu et al, 1998] data sets, as
well as the data set from serum-treated human fibroblasts [lyer et al,
1999].

— Essential temporal behavior is captured by first 2 modes (sine and cosine)
— Large group of genes with same sinosoidal period but dephased

Luis Rocha
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Holter et al SVD Analysys

cdc 15 (yeast cell cycle)

= 800 genes by 15 (12)
time measurements
m 2 dominant modes

» Approximately sinusoidal
and out of phase

» Less synchronized as cell
enters 3rd cycle

» If only 12 points are used,
third SV loses relevance,
but 2 first components
remain largely unchanged

characteristic modes
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Eigenarray Coefficient Plot

Plot of the coeﬁ|C|ents of the first 2 modes for all

m Clusters of genes by other
methods cluster in these plots,
but the temporal progression in
the cell cycle and in the course
of sporulation is more evident
in the SVD analysis

= Holter et al conclude that
genes are not activated in
discrete groups or blocks, as
historically implied by the
division of the cell cycle into
phases or the sporulation
response into tempotal
groups.There is a continuity in
expression change
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SVD and Functional Decomposition

m Sorting GE data according to the coefficients of genes and
arrays in eigengenes and eigenarrays gives a global picture
of expression dynamics

» Genes and arrays are classified into groups of similar regulation and
function or similar cellular state and biological phenotype respectively

» Wall et al [2001], clusters eigenarray coefficients. Better than
traditional clustering since genes affected by the same regulator are
clustered together irrespective of up or down regulation

m Spectral approaches allow us to filter out the effects of
particular eigengenes/eigenarrays
» Selective discovery of functional patterns
= Aid to the functional simplification necessary for a Systems
Biology

Luis Rocha
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Discovering Hidden Functional
Expression Modes

Comparison of SVD Methods with Artificial and Real Data
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SVD of Artificial Data Set
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SVD Mode Plot

Need for More Iterative Spectral Methods
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m Gene Shaving and Clustering do not even find the full
sinusoisal component

= Exploring Iterative Variations to Extract Weaker Signals
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1. Representations of Biological Data
Data Objects and Object Architectures /

® Objects capable of grouping data
sets, reports, code, etc.

» Networked, proactive containers

» Nelson’s Buckets: Intelligent Data
Agents

» Object Management Group
m Specify specific needs of
biological data

» Genomic, Immunological,
Epidemiological, etc.

Luis Rocha
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Representations Of Biological Data

Semantic Markup and Exchange Protocols

m To facilitate retrieval, linking, and intelligent behavior of
data objects there Is a need to characterize data
according to the needs of users.

» Standards based on XML and UML
— GEML (Gene Expression Markup Language)
— GeneX (NCGR)
— SBML (Systems Biology Markup Language)
» Domains can be conceptualized as ontologies
— Bio-ontologies Consortium
— BioPathways Consortium
» Exchange protocols
— Based on RDF(S) (Resource Description Format Schema)
— Ontology Interchange Layer (OIL)
— For biological data: EcoCyc and TAMBIS.

= Aim Is to select and develop appropriate representations
for biological data data.

Luis Rocha
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GEML

Example of a Pattern File

<?xml version="1.0" standalone="no"?>
<IDOCTYPE project SYSTEM "GEMLPattern.dtd">

<pattern name="Hsapiens-421205160837" >
<reporter name="XV186450" systematic_name="XV186450"
active_sequence="TCTCACTGGTCAGGGGTCTTCTCCC" start_coord="159">
<feature number="6878">
<position x="0.3333" y="0.508374" units="inches" />
<[feature>
<gene primary_name="XV186450" systematic_name="XV186450" >
<accession database="n/a" id="XV186520" />
</gene>
</reporter>
<reporter name="T89593" systematic_name="T89593"
active_sequence="TACAGTGTCAGAATTAACTGTAGTC" start_coord="201" >
<feature number="6879">
<position x="0.340707" y="0.508374" units="inches" />
</feature>
<gene primary_name="T89593" systematic_name="T89593" >
<accession database="n/a" id="T89593" />
</gene>
</reporter>
<!-- Total Number of Reporters: 2 -->
</pattern>
<printing date="07-12-1999 12:43:48" printer="1JS 3" type="INKJET"
pattern_name="Hsapiens- 421205160837" >
<chip barcode="325123456781" />
<chip barcode="125123456782" />

<project name="Hsapiens-421205160837" date="07-12-1999 12:43:48" by="jzsmith" company="JZSmith Technologies" >

<chip barcode="JZ2S123456783" />
<chip barcode="JZ2S123456784" />
</printing
</project>
Luis Rocha L
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2. Latent Databases of Biological Data

» | atent databases discover implicit, higher-order
associations among stored objects
» Latent Semantic Analysis
» Analysis of Graph Structure

— Links, Distance Functions and Metrics
» Clustering

» Works at several levels
— Within objects, groups of objects, and the entire corpus
® |n Information Retrieval latent associations are
extracted from the relation between documents
and keyterms

Luis Rocha
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Latent Databases

Using Singular Value Decomposition

Term
Vectors

Document
Vectors

Ag

Columns of V are the
right singular values

k Columns of U are the
left singular values
mxn m XT rXrT r Xn

SVD allows us to obtain the lower rank approximations that
best approximate the original matrix. What is lost by losing
weaker singular values, is unnecessary noise. The underlying,

essential structure of associations between keyterms and
records Is kept

Luis Rocha
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Latent Databases

Keyword x Documents
Relation is stored as a
lower k SVD
representation

Example: Small
database from 17
books reviewed by
SIAM Review

Underlied words are
keyterms

Luis Récha
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Label Titles

Bl | A Course on Integral Equations

B2 | Attractors for Semigroups and Evolution Equations

B3 Automatic Differentiation of Algorithms: Theory, Implementation,
and Application

B4 Geometrical Aspects of Partial Differential Equations

B5 | Ideals, Varieties, and Algorithms — An Introduction to
Computational Algebraic Geometry and Commutative Algebra

B6 Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem

B7 | Knapsack Problems: Algorithms and Computer Implementations

B8 | Methods of Solving Singular Systems of Ordinary
Differential Equations

B9 Nonlinear Systems

B10 | Ordinary Differential Equations

B11 | Oscillation Theory for Neutral Differential
Equations with Delay

B12 | Oscillation Theory of Delay Differential Equations

B13 | Pseudodifferential Operators and Nonlinear Partial Differential
Equations

B14 | Sinc Methods for Quadrature and Differential Equations

B15 | Stability of Stochastic Differential Equations with Respect
to Semi-Martingales

B16 | The Boundary Integral Approach to Static and Dynamic
Contact Problems

B17 | The Double Mellin-Barnes Type Integrals and Their Applications

to Convolution Theory

Los Alamos
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16x17 Keyterm x Document Matrix
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addition to documents), indexed by relevant genes (instead

Think of a database of GEA data sets (instead of or in
or in addition to keyterms)
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Term x Document SVD

m=17, n=16
k _
. 3
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k| %,
Ak U b3
mxn mXr rXr rxn
p Columns are Columns of U are Rows of V' are
e L (CTMS and rows eigenterms (rows are eigendocuments
"l | are documents documents) (columns are terms)
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0.2 5

AB8
SVD Aprox for k=2 o aBI0*BI3
eordinary AB4 edifferential ‘
0.1 { epartial BIS aABl4 ecquations

Document and terms are enonlinear
plotted according to Ag9 *Systems
coefficients in the derived 2 : : : : : : : ,
eigenterms and o° w ™ 06 08
eigendocuments 36 B2

.Pintroduction

aBI6 eoscillation
02 aB5 eodelay \BI1

X seems to be about leproblent™ -
“differential equations” while
y about more general
algorithms and applications

e hcaon "

| "B7
ABI17

ealgorithms
Again think of the .
gene/dataset analogy .
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Retrieval

Can also retrieve
documents close to a
set of other documents

For a database of
datasets, this would
mean that we would
retrieve those data
sets most relevant to
study the genes in a

query

Luis Figcha
2001 http://www.c3.lanl.gov/~rocha
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Keyterm Query

AB8
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BI0
emethods® “B4

eordinary
®partial aBIS

enonlinear

®systems

AB9

edifferential

ABI4 ecquations

02
AB]
AB2

eoscillation

eimplementation
eapplication
AB7

ABl7
®algorithms

AB3
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Publication Databases

Are Networks of Documents, datasets, software, etc.

m Associative Networks can be constructed for Publications, People,
Keywords:
» e.g. gene networks

m Associative weights (proximity) between chosen items are derived from

» Co-occurrence, Co-citation, and other relations between documents containing
chosen items

Luis Rocha L
os Alamos
. 2001 http://www.c3.lanl.gov/~rocha



Distance Functions

From Selected Relations in Document Databases

= Document x Document
» Document Distance according to Co-Citation or Hyperlink

= Document x Keyterms
» Keyterm Distance

= Document/Dataset x Gene Expression
» Gene Distance

= Document x Author
» Author Distance (Collaboration Network)

i(a,kAa,-,k)_ Nk k)

kSp(K’k')=§( ) Nolk.k) ol ik
a,va ! -
a (Keyword Semantic Distance)

(Keyword Semantic Proximity)

Luis Rocha
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Measuring Semi-Metric Behavior

Semi-metric ratios

-1

d k)=
ksp (kl ) ksp (kl , kj )
(Keyword Semantic Distance)

Ks Evolution

3.89  _——=~_
\ 27 6.89 T~

K, K, [ggg‘t%tg’g = Cognition|

d(ky, k) < d(ky, kg) + d(ks, k) Semi-metric ratio: 6.3861
Metric

d(k, k) > d(k,, k) + d(k,, k)

Semi-metric

Luis ﬁgcha
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Measuring Semi-Metric Behavior

Semi-metric Measures

® Semi-metric ratio ddirect (ki ' kj )
> Absolute measure of S(ki , kj ) =
indirect distance reduction dindirect (ki \ kj )

= Relative Semi-
metric ratio

k)= O ireat (Ki K )~ Gingireat (K1 ) i airet (K11 K; ) ~Dingreet (K k)

» Distance reduction

: : d —d .. d
against maximum max min max
contraction

a
indirect (ki ) kj )

® Below Average Ratio b(

» Captures semi-metric distance reductions which contract to
below the average distance for a given node. Captures
some of the cases of initial « distance

ki,kj):d
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transcript
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mutat
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equat
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Extracting Networks from Publications

Literature

= Masys, D.R. et al [2001]."Use of keywords hierarchies to interpret gene
expression patterns.” Bioinformatics. Vol. 17, no. 4, pp. 319-326
» Derived a measure of conceptual similarity between genes based on co-

occuring keywords (in the Medical Subject Headings Index) associated to
documents detailing gene expression patterns in MEDLINE.

m Jenssen, T.K. et al [2001]. “A literature network of human genes for high-
throughput analysis of gene expression”. Nature Genetics, Vol. 28, pp.
21-28.

» Similar to above, but produced a web tool to navigate to conceptual gene
space: http://www.PubGene.org.

m Stapley, B.J. and G. Benoit [2000]. “Biobibliometrics: Information retrieval
and visualization from co-occurrence of gene names in Medline
abstracts”. Pac. Symp. Biocomput. Vol. 5, pp. 529-540.

» Defined measures of similarity used by work above.

® Andrade, M.A. and P. Bork. “Automated extraction of information in

molecular biology”. FEBS Letters, Vol. 476, pp. 12-17.

» Review of data mining, Information Retrieval, and Text mining techniques for
molecular biology databases.

Luis Rocha L
os Alamos
2001 http://www.c3.lanl.gov/~rocha




Gene Networks From Publications

m Strength of these techniques

» Since much of the publication records discuss clinical data, the
derived gene networks offer a global picture of gene associations in
an integrated clinical observation space. This can supplement gene
networks derived from biochemical observations.

» At Worst: powerful tool for biologists to navigate new literature
knowledge about the subsets of genes they are interested in.

» At Best: such conceptual gene networks identify actual empirical
associations

m Current literature uses the simplest similarity analysis of
derived networks

» We are utilizing more sophisticated Information Retrieval and
Recommendation technology as well as graph-theoretical analysis of
associative networks extracted from publication databases.

— E.g. Latent database architectures and metric analysis of derived distance
functions
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3. Collaborative and
Recommendation Systems

Adaptive and Collective Behavior

® Tasks of complex biological problems are
tackled by large teams and communities.

» The behavior of these communities can itself be
harvested to discover associations between data-
sets, hypothesis, etc.

® Recommendation systems use the collective
behavior of users (plus latent relations) to
discover, categorize, and recommend
resources and fellow researchers.

http://www.c3.lanl.gov/~rocha
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4. Automated Discovery of Associations

Analysis of New Associations

m All 3 previous subcomponents aim at building the
cabability of automatic generation of associations:

» 1. Produces intelligent data containers that keep both
author-supplied and automatic associations

» 2. Produces databases that discover latent associations,
distance functions, and reduce dimensionality

» 3. From collective behavior, associations are produced at
all levels.
® However, this automatic generation of associations
should be itself harvested
» For generating hypothesis about biological processes to
help design new experiments (new decompositions)
» Discovery of communities of interest

» DKS as research tools in addition to information retrieval
and recommendation systems.
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