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Abstract

We study the problem of coarse ranking in the multi-armed bandits (MAB) setting,
where we have a set of arms each of which is associated with an unknown distribu-
tion. The task is to partition the arms into clusters of predefined sizes, such that the
mean of any arm in the i-th cluster is larger than that of any arm in the j-th cluster
for any j > i. Coarse ranking generalizes a number of basic problems in MAB
(e.g., best arm identification) and has many real-world applications. We initiate the
study of the problem in the batched model where we can only have a small number
of policy changes. We study both the fixed budget and fixed confidence variants in
MAB, and propose algorithms and prove impossibility results which together give
almost tight tradeoffs between the total number of arms pulls and the number of
policy changes. We have tested our algorithms in both real and synthetic data; our
experimental results have demonstrated the efficiency of the proposed methods.

1 Introduction

We study the coarse ranking problem in multi-armed bandits (MAB). In this problem we are given
a set of n arms, each of which is associated with an unknown distribution Di on support [0, 1]; let
θi be the (unknown) mean of Di. We are also given a vector m = (m0,m1, . . . ,mk), where k is a
predefined parameter and 0 = m0 < m1 < . . . < mk = n. Our goal is to partition the n arms into
k clusters such that the means of arms between those clusters are sorted. That is, the first cluster
contains the (m1 −m0) arms with the largest means, the second cluster contains the (m2 −m1)
arms with the largest means in the remaining arms, and so on. We perform the clustering by pulling
the n arms; by pulling the i-th arm we mean to obtain a sample from the distribution Di. The goal is
to learn the correct clustering using as few pulls as possible.

The coarse ranking problem naturally arises in many real-world applications, including recommen-
dation systems for movies and books [3], peer grading for ranking students in massive open online
courses (MOOC) [33, 35], and ranking experts in paid crowdsourcing platforms. In these applications
we try to partition entities (movies, books, experts, etc.) into clusters and give different ratings/credits
to different clusters. The problem also generalizes a number of basic problems in MAB including
best arm identification (k = 2, m1 = 1), top-m arm identifications (k = 2, m1 = m), and arm
sorting (k = n, mi = i for 1 ≤ i ≤ n).

The coarse ranking problem is closely related to the problem of ranking from pairwise comparison,
where we want to sort n elements by noisy pairwise comparisons. For each comparison on the pair
of elements (i, j), the algorithm gets a feedback that the i-th element is better than the j-th element
with (unknown) probability pi,j (or equivalently, the j-th element is better than the i-th element
with probability pj,i = 1− pi,j). The order of the n elements can be defined using the Borda score
θi , 1

n−1

∑
j 6=i pi,j for i ∈ {1, . . . , n}, which corresponds to the probability that the i-th element is

better than an element chosen uniformly at random among the other (n− 1) elements. This reduction,
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named Borda reduction [21], allows us to consider the problem of ranking from pairwise comparison
in the MAB setting.

In this paper we study the coarse ranking problem in the batched model: Instead of pulling the arms
one by one adaptively, we pull them in batches (or, rounds). The set of arms to be pulled in each
round needs to be determined at the beginning of the round. Our goal is to characterize the tradeoffs
between the total number of pulls and the number of rounds used in the learning process. A small
number of rounds corresponds to a small number of learning policy changes, which is desirable in
practice since it enables parallelism and reduces the total running time of the learning process. For
example, in crowdsourcing, there could be a significant waiting time to get the answer from the crowd.
In medical trials, it can take a few days to observe the effects of the drugs. In these scenarios, a fully
adaptive policy simply does not work.

Our Contributions. In this paper we give the first study of the coarse ranking problem in the
batched model, and characterize the tradeoffs between the total number of arm pulls and the number
of rounds of the learning process.

We study two variants of the problem which are standard in the literature of MAB. The first is called
fixed budget [15, 28], where the goal is to minimize the error probability given a fixed amount of
pulls. The second is called fixed confidence [6], where the goal is to minimize the number of pulls to
achieve a predefined error probability. Before presenting our results, we first introduce the following
concepts. Let [n] = {1, 2, . . . , n}. Assume all logarithms are of base 2.

Definition 1 (Mean Gap). Given an input set of arms I = {1, 2, . . . , n} and a parameter vector
m = (m0,m1, . . . ,mk) with 0 = m0 < m1 < . . . < mk = n, let θ[i](I) be the i-th largest mean of
arms in I . For convenience define θ[0](I) = +∞ and θ[n+1](I) = −∞. For any i ∈ I , let j ∈ [k] be
the index such that θ[mj ](I) ≤ θi ≤ θ[mj−1+1](I). Define the gap for the i-th arm to be

∆
〈m〉
i (I) , min{θ[mj−1](I)− θi, θi − θ[mj+1](I)}.

We propose the following quantity to characterize the complexity of an input instance for the coarse
ranking problem.

Definition 2 (Instance Complexity). Given an input instance (I,m) of the coarse ranking problem,
define

H〈m〉(I) ,
∑
i∈I

(
∆
〈m〉
i (I)

)−2

.

We note that this definition of instance complexity for coarse ranking generalizes the one defined for
best arm identification [4] and that for top-m arm identifications [6].

We have the following property for the instance complexity H〈m〉(I). The proof of the proposition is
deferred to Appendix B.1 (see the supplementary material).

Proposition 1. Let π : {1, . . . , n} → I be the bijection such that ∆
〈m〉
π(1)(I) ≤ . . . ≤ ∆

〈m〉
π(n)(I). We

have max
i∈I

{
i ·
(

∆
〈m〉
π(i)(I)

)−2
}
≤ H〈m〉(I) ≤ log (2n) ·max

i∈I

{
i ·
(

∆
〈m〉
π(i)(I)

)−2
}
.

The main results of this paper are summarized as follows:

1. In the fixed budget case with pull budget T , we give the first algorithm for the
batched coarse ranking problem that uses R rounds and succeeds with probability
1 − exp

(
−Ω̃

(
T

n1/R·R·H〈m〉(I)

))
, where ‘Ω̃(·)’ hides logarithmic factors which will be

spelled out in Section 2. In particular, we show that log n rounds and Õ(H〈m〉(I)) pulls are
enough to achieve a 0.99 success probability. We also complement this upper bound with an
almost matching lower bound (Section 4). We note that the coarse ranking problem has not
been studied in the fixed budget setting even for fully adaptive algorithms.

2. In the fixed confidence case with error probability δ, we give the first algorithm which solves
the batched coarse ranking problem successfully with probability at least (1 − δ) using
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O

(
log max

i∈I

{
1/∆

〈m〉
i (I)

})
rounds and Õ

(
H〈m〉(I)

)
arm pulls (Section 3). We again

complement our upper bound with an almost matching lower bound (Section 4).

Related Work. The coarse ranking problem has recently been studied in the MAB model [30],
but the algorithm proposed in [30] is fully adaptive (UCB-based) and is thus not applicable to the
batched setting. In general, it seems difficult to adapt UCB-type algorithms to the batched setting,
since the arm pulls in UCB-type algorithms are inherently sequential. The complexity measure
(instance complexity) in [30] is different from ours, and thus the sample complexities of the two
algorithms are not directly comparable. The problem is also investigated in noisy comparison
model [19, 18, 34] where the algorithms are again inherently adaptive. As mentioned, the coarse
ranking problem is a generalization of several basic problems in the MAB setting including best arm
identification and top-m arm identifications, which have been studied extensively in the literature in
the fully adaptive model [14, 26, 4, 27, 15, 22, 6, 28, 20, 32, 9, 31, 25, 10]. Best arm and top-m arms
identifications have also been studied in the noisy comparison model in the non-adaptive or fully
adaptive settings [7, 36, 23, 18, 11, 2].

In recent years, a number of fundamental problems in MAB, reinforcement learning and online
learning have been studied in the batched model, including best/top-k arm identifications [25, 1, 24],
regret minimization [32, 16, 13], Q-learning [5], convex optimization [12], and online learning [8].
The best arm identification is also studied in a model named collaborative learning [20, 37], where
multiple agents try to learn a target function together by pulling the arms in rounds. As we shall
explain in more detail in Section 4 and Appendix B.4, algorithms designed for the batched model can
be easily translated to non-adaptive algorithms in the collaborative learning model.

Notations. Table 1 summarizes a set of notations that we will use in the rest of this paper.

n number of arms in the input
T time budget
θi mean of the i-th arm

θ[i](I) the i-th largest mean among arms in I
m the cluster boundary vector

∆
〈m〉
i (I) mean gap of the i-th arm of input I; see Definition 1

H〈m〉(I) instance complexity of input I; see Definition 2
Table 1: Summary of Notations

2 The Fixed Budget Case

We present our algorithm for the fixed budget case, named SRank, in Algorithm 1. The algorithm
proceeds in R rounds. In each round r (0 ≤ r ≤ R − 1) we pull each arm for a number of times
and record their empirical means (Line 5-7). We then identify the set of arms that have the largest
empirical mean gaps (Line 8-10) and assign them to the respective clusters (Line 11-15). We then
work with the remaining arms in the next round.

Intuitively, Algorithm 1 always maintains a set of arm Ir that remain to be clustered. Arms in I \ Ir
have already been partitioned into clusters C(r)

1 , . . . , C
(r)
k . Now, if we cluster Ir according to the

vector m(r) to D(r)
1 , . . . , D

(r)
k , then C(r)

j ∪D
(r)
j forms the j-th cluster in the desired clustering of

I (determined by the input vector m). At each iteration, the algorithm identifies a subset of arms
Er and extends clusters C(r)

j to C(r+1)
j by adding each arm from Er to the cluster to which the arm

should belong to.

Algorithm 1 is inspired by the successive accepts and rejects (SAR) algorithm [6], but it is non-trivial
to extend SAR which was designed for top-m arm identifications to coarse ranking. In particular,
we have to redesign the algorithm in order to achieve the newly proposed instance complexity
(Definition 2) for coarse ranking; the subsequent analysis also needs significant new ideas. Moreover,
we need to augment the algorithm to handle batched pulls.
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Algorithm 1: SRank(I,m, T,R)

Input: a set of n arms I , cluster boundary vector m = (m0,m1, . . . ,mk) with
0 = m0 < m1 < . . . < mk = n, and time horizon T

Output: the coarse ranking (k-clustering) of arms in I
1 Initialize I0 ← I , m(0) ←m, and for j ∈ {1, . . . , k} set C(0)

j ← ∅ ;

2 set T0 ← 0, Tr ←
⌊

nr/R·T
n1+1/R·R

⌋
for r = 1, . . . , R ;

3 nr ←
⌊

n
nr/R

⌋
for r = 0, . . . , R− 1 and nR ← 0 ;

4 for r = 0, 1, . . . , R− 1 do
5 pull each arm in Ir for Tr+1 − Tr times ;
6 let θ̂(r)

i for i ∈ Ir be the empirical mean of the i-th arm after Tr pulls ;
7 let σr : {1, . . . , nr} → Ir be the bijection such that θ̂(r)

σr(1) ≥ θ̂
(r)
σr(2) ≥ . . . ≥ θ̂

(r)
σr(nr), and for

convenience θ̂(r)
σr(0) = +∞, θ̂(r)

σr(nr+1) = −∞ ;

8 let {Ĉ(r)
1 , . . . , Ĉ

(r)
k } be the partition of Ir into k parts where Ĉ(r)

j ← {σr(i)}
m

(r)
j

i=m
(r)
j−1+1

;

9 for j ∈ {1, . . . , k} and i ∈ Ĉ(r)
j define the empirical gap as

∆
(r)
i ← min

{
θ̂

(r)

σr
(
m

(r)
j−1

) − θ̂(r)
i , θ̂

(r)
i − θ̂

(r)

σr
(
m

(r)
j +1

)} ;

10 let Er ⊂ Ir be the set of (nr − nr+1) arms with largest empirical gaps ∆
(r)
i ;

11 for j = 1, . . . , k do
12 C

(r+1)
j ← C

(r)
j ∪

(
Ĉ

(r)
j ∩ Er

)
13 set Ir+1 ← Ir \ Er ;
14 for j = 0, . . . , k do
15 m

(r+1)
j ← mj −

∑
i∈[j]

∣∣∣C(r+1)
i

∣∣∣
16 return {C(R)

1 , . . . , C
(R)
k }.

In this section we show the following theorem.
Theorem 2. For any R ≥ 1, SRank(I,m, T,R) (Algorithm 1) solves the coarse ranking problem

with probability at least 1− 2nR · exp
(
− T

256·n1/R·R·H〈m〉(I)

)
using at most T pulls and R rounds.

Proof. The R round cost is clear from the algorithm description. The total number of pulls can be

bounded by
R−1∑
r=0

nr · Tr+1 ≤
R−1∑
r=0

n
nr/R

· n
r/R·T
nR ≤ T.

We next prove the correctness of the algorithm and bound the error probability. We first define an
event which we will condition on in the rest of the proof.

Let π : {1, . . . , n} → I be the bijection such that ∆
〈m〉
π(1)(I) ≤ ∆

〈m〉
π(2)(I) ≤ . . . ≤ ∆

〈m〉
π(n)(I) . Define

event
E ,

{
∀r ∈ {0, . . . , R− 1},∀i ∈ Ir,

∣∣∣θ̂(r)
i − θi

∣∣∣ < ∆
〈m〉
π(nr+1+1)(I)/8

}
.

The following claim is a simple application of the Chernoff-Hoeffding inequality (Lemma 8). The
proof can be found in Appendix B.2.

Claim 3. Pr[E ] ≥ 1− 2n ·R · exp
(
− T

256·n1/R·R·H〈m〉(I)

)
.

Let C?1 , . . . , C
?
k be the correct k-clustering defined by the input vector m. We show that if E

holds, then C(R)
j = C?j . We prove this by induction on round index r with the following induction

hypothesis:
∀j ∈ {1, . . . , k}, C

(r)
j ⊆ C?j . (1)
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Note that (1) holds trivially for r = 0. Assuming that (1) holds for r, we show it also holds for r + 1.

The following fact follows immediately from the induction hypothesis.

Fact 4. If the induction hypothesis (1) holds for the r-th round, then

(i) For any i ∈ Ir, ∆
〈m(r)〉
i (Ir) ≥ ∆

〈m〉
i (I).

(ii) Let πr : {1, . . . , nr} → Ir be the bijection such that ∆
〈m〉
πr(1)(I) ≥ . . . ≥ ∆

〈m〉
πr(nr)(I) . We

have that for any i ∈ {1, . . . , nr}, ∆
〈m〉
π(i)(I) ≤ ∆

〈m〉
πr(i)(I).

Let ρr : {1, . . . , nr} → Ir be the bijection such that θρr(1) ≥ θρr(2) ≥ . . . ≥ θρr(nr). Recall that
conditioned on E , we have for any i ∈ {1, . . . , nr},

θρr(i) −
∆
〈m〉
π(nr+1+1)(I)

8
≤ θ̂(r)

ρr(i) ≤ θρr(i) +
∆
〈m〉
π(nr+1+1)(I)

8
. (2)

The second inequality of (2) implies that θ̂(r)
σr(i) ≤ θρr(i) +

∆
〈m〉
π(nr+1+1)

(I)

8 , since there are at least

i arms with estimated means at most θρr(i) +
∆
〈m〉
π(nr+1+1)

(I)

8 . Similarly, the first inequality of (2)

implies that θρr(i) −
∆
〈m〉
π(nr+1+1)

(I)

8 ≤ θ̂(r)
σr(i). We thus have

θρr(i) −
∆
〈m〉
π(nr+1+1)(I)

8
≤ θ̂(r)

σr(i) ≤ θρr(i) +
∆
〈m〉
π(nr+1+1)(I)

8
. (3)

Inequality (3) establishes the relationship between the empirical order statistics with the real order
statistics. As an immediate consequence, we have the following inequality concerning the differences
between order statistics.

∆
〈m(r)〉
i (Ir)−

∆
〈m〉
π(nr+1+1)(I)

4
≤ ∆

(r)
i ≤ ∆

〈m(r)〉
i (Ir) +

∆
〈m〉
π(nr+1+1)(I)

4
. (4)

Note that the error term
∆
〈m〉
π(nr+1+1)

(I)

8 in (3) is doubled in (4) since we are now considering the
difference of two estimates.

Let E∗r be the set of (nr − nr+1) arms in Ir with the largest gaps ∆
〈m〉
i (I). By Fact 4 we have that

for any i ∈ E∗r ,

∆
〈m(r)〉
i (Ir)

by Item (i)
≥ ∆

〈m〉
i (I)

by def. ofE∗r
≥ ∆

〈m〉
πr(nr+1+1)(I)

by Item (ii)
≥ ∆

〈m〉
π(nr+1+1)(I). (5)

By the first inequality of (4) and (5) we have that for any i ∈ E∗r ,

∆
(r)
i ≥

3∆
〈m〉
π(nr+1+1)(I)

4
. (6)

By the construction of Er (Line 10 of Algorithm 1) and (6), we have for any i ∈ Er, ∆
(r)
i ≥

minj∈E?r ∆
(r)
j ≥

3∆
〈m〉
π(nr+1+1)

(I)

4 , which, combined with the second inequality of (4), gives that for
any i ∈ Er,

∆
〈m(r)〉
i (Ir) ≥ ∆

(r)
i −

∆
〈m〉
π(nr+1+1)(I)

4
≥

∆
〈m〉
π(nr+1+1)(I)

2
. (7)

After these preparation steps we are ready for the induction. We only need to show that for any
j ∈ [k], each arm i ∈ C∗j ∩ Er is assigned correctly in the r-th round. We prove by contradiction.

Suppose that an arm i ∈ C∗j ∩ Er is assigned to a cluster Ĉ(r)
j′ (j′ 6= j). We consider two cases: (1)

j′ < j; and (2) j′ > j. The two cases are symmetric, and thus we only consider the case j′ < j.
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By (7) we have

θ̂
(r)
i ≥ θ̂

(r)

σr(m
(r)
j−1+1)

+
∆
〈m〉
π(nr+1+1)(I)

2
. (8)

On the other hand, by the assumption that the i-th arm was assigned to a cluster Ĉ(r)
j′ with j′ < j, we

have θi ≤ θρr(m
(r)
j−1+1)

, which, conditioned on event E , gives

θ̂
(r)
i ≤ θi +

∆
〈m〉
π(nr+1+1)(I)

8
≤ θ

ρr(m
(r)
j−1+1)

+
∆
〈m〉
π(nr+1+1)(I)

8
. (9)

By (3) we have

θ̂
(r)

σr(m
(r)
j−1+1)

≥ θ
ρr(m

(r)
j−1+1)

−
∆
〈m〉
π(nr+1+1)(I)

8
. (10)

Combining (9) and (10), we have θ̂(r)
i − θ̂

(r)

σr(m
(r)
j−1+1)

≤
∆
〈m〉
π(nr+1+1)

(I)

4 , which contradicts (8).

Now we have that for any r ∈ {0, 1, . . . , R} and for any j ∈ [k], it holds that C(r)
j ⊆ C∗j . Note

that IR = ∅ since nR = 0. This means that each input arm has been assigned to some cluster
C ∈ {C(R)

1 , . . . , C
(R)
k } at the end of the R-th round. We thus have C(R)

j = C∗j for any j ∈ [k].

3 The Fixed Confidence Case

We now consider the fixed confidence case. Our algorithm is presented in Algorithm 2. The algorithm
also follows the SAR framework, but is tailored for the fixed confidence setting. We note that the
algorithm for the fixed confidence case is conceptually simpler than the fixed budget case: we do not
need to compute the empirical mean gaps of the arms and select those with the maximum gaps to
add to the current partially built clusters. We instead gradually build up the clustering by carefully
controlling the mean estimation error εr at each round r and including those arms whose empirical
means are within εr of that of closest boundary arm (Line 7-8) to ensure the correctness of the
algorithm.

The following theorem summarizes the performance of Algorithm 2. Due to space constraints we
delay the proof to Appendix B.3.
Theorem 5. For any error parameter δ > 0, BRank(I,m, δ) (Algorithm 2) solves the coarse
ranking problem with probability (1 − δ) using O

(
H〈m〉(I) · log

(
n
δ logH〈m〉(I)

))
pulls and

O

(
log max

i∈I

{
1/∆

〈m〉
i

})
rounds.

4 Lower Bounds

We now show that our algorithmic results in Theorem 5 and Theorem 2 are almost tight. In the fixed
budget case, we have the following theorem.

Theorem 6. For any R ≤ logn
log logn , letting m = (0, 1, n) and T = ncT /RH〈m〉(I) for a sufficiently

small universal constant cT , any algorithm that solves the coarse ranking problem in the batched
model with input (I,m, T ) with probability at least 0.99 needs at least R rounds.

Recall that Algorithm 1 is able to achieve a success probability of 0.99 usingR rounds and Õ(n1/RR ·
H〈m〉(I)) pulls (Theorem 2). Theorem 6 thus indicates that Algorithm 1 is almost tight.

In the fixed confidence case, we obtain the following theorem.

Theorem 7. Let m = (0, 1, n) and ∆min = min
i∈I

∆
〈m〉
i (I). Any algorithm that solves the coarse

ranking problem in the batched model with input (I,m, 0.01) using at most H〈m〉(I) logO(1) n pulls

needs at least Ω
(

log(1/∆min)
log log(1/∆min)+log logn

)
rounds.
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Algorithm 2: BRank(I,m, δ)

Input: a set of arms I , cluster boundary vector m = (m0,m1, . . . ,mk) with
0 = m0 < m1 < . . . < mk = n, and an error parameter δ

Output: the coarse ranking (k-clustering) of arms in I
1 Initialize I0 ← I , m(0) ←m, C(0)

j ← ∅, r ← 0, and T−1 ← 0 ;
2 for r = 0, 1, . . . , set εr ← 2−(r+1) and Tr ← 8 · log

(
4n(r + 1)2δ−1

)
/ε2r ;

3 while Ir 6= ∅ do
4 pull each arm in Ir for Tr − Tr−1 times ;
5 for each i ∈ Ir, let θ̂(r)

i be the empirical mean of the i-th arm after Tr pulls ;
6 let σr : {1, . . . , |Ir|} → Ir be the bijection such that θ̂(r)

σr(1) ≥ . . . ≥ θ̂
(r)
σr(|Ir|), for

convenience define θ̂(r)
σr(0) = +∞, and θ̂(r)

σr(|Ir|+1) = −∞;
7 for j = 1, . . . , k do

8 C
(r+1)
j ← C

(r)
j

⋃{
i ∈ Ir : θ̂

(r)
i < θ̂

(r)

σr
(
m

(r)
j−1

) − εr ∧ θ̂(r)
i > θ̂

(r)

σr
(
m

(r)
j +1

) + εr

}
;

9 for j = 0, . . . , k do

10 m
(r+1)
j ← mj −

j∑
i=1

∣∣∣C(r+1)
i

∣∣∣ ;

11 Ir+1 ← I \

(
k⋃
j=1

C
(r+1)
j

)
;

12 r ← r + 1 ;

13 return {C(r)
1 , . . . , C

(r)
k }

Recall that Algorithm 2 is able to achieve a success probability of 0.99 usingO(log(1/∆min)) rounds
and Õ(H〈m〉(I)) pulls (Theorem 5). Theorem 7 thus indicates that Algorithm 2 is almost tight.

Our proofs for Theorem 6 and Theorem 7 make use of the connection between batched algorithms
and non-adaptive algorithms in the collaborative learning model, which has recently been proposed
for studying multi-agent reinforcement learning [37, 29]. Due to space constraints, we leave the
detail of the proofs in Appendix B.4.

5 Experiments

In this section, we present the experimental study for our proposed algorithms.

Algorithms. As mentioned, our algorithm SRank (Algorithm 1) is the first algorithm for the coarse
ranking problem in the fixed budget setting and the batched setting. Since top-m arm identifications
is a special case of coarse ranking, we first compare SRank with the SAR algorithm [6] for top-m arm
identifications. Note that SAR is a fully adaptive algorithm. One would expect it to be a “lower bound”
of SRank in terms of the number of pulls. We also use a naive algorithm UNIF for comparison; UNIF
just pulls each arm for an equal number of times using one round. One can view UNIF as an “upper
bound” of SRank in terms of the number of pulls. We also compare SRank and UNIF in the general
coarse ranking setting.

For the fixed confidence case, we compare BRank with the algorithm LUCBRank proposed in [30].
LUCBRank is also a fully adaptive algorithm and can thus be viewed as a lower bound of SRank. We
again use UNIF as an upper bound for comparison.

Datasets. We test and compare the algorithms on both synthetic and real-world datasets. For synthetic
datasets we set the number of arms equal to n = 500. In all datasets we assign the i-th arm as the
Bernoulli distribution with mean θi.

• UNIFORM: We have n = 500 arms; the mean of the i-th arm is set to be θi = 1− i
n .

• NORMAL: We have n = 500 arms; the mean of each arm is sampled from a truncated
normal distribution with mean 0.5 and standard deviation 0.01, truncated to the range [0, 1].
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Figure 1: Performance of fixed budget algorithms for top-10 arm identifications

Figure 2: Performance of fixed budget algorithms for coarse ranking

• MOVIE: The MovieLens dataset from [17].1 We select movies scored by at least 20, 000
users; there are n = 588 such movies. For the i-th movie we set θi to be the average rating
divided by 5 to obtain a value in [0, 1].

Measurements. Slightly different from the theoretical guarantees of Theorem 2 and Theorem 5 in
which we concern the probability of solving the coarse ranking problem under certain number of pulls
and rounds, in our experiments we use the number of misclassified arms as the error measurement
for all algorithms. That is, for each arm i ∈ [n], let Xi = 1 if the i-th arm is classified into a wrong
cluster. For top-m arm identifications, we can think of the set of top-m arms as one cluster and the
rest as the other cluster. The error of an algorithm is defined to be

∑
i∈[n]Xi. We use the number of

misclassified arms instead of a Yes/No (correct/incorrect coarse ranking) output due to the following
reasons: (1) The number of misclassified arms is a more general measurement than a Yes/No output; it
also shows how the algorithms behave under small pull budgets. And (2) the number of misclassified
arms is a more stable measurement than a Yes/No output.

All results take an average of 100 runs.

Computational Environments. All algorithms are implemented in Kotlin. All experiments are
conducted in a PowerEdge R730 server equipped with 2x Intel Xeon CPU E5-2667 v4 3.20GHz.
This server has 8-core/16-thread per CPU, and 252GB RAM.

Results of Fixed Budget Algorithms. We first compare UNIF, SAR, and SRank(with R = 2, 5, 10
rounds respectively) for top-m arm identifications with m = 10. The results are presented in Figure 1.
Note that under our error measurements, the maximum number of misclassified arms is 20.

We observe that the experimental results are consistent with our theoretical predictions: For SRank
in all datasets, there are smooth tradeoffs between the error and the number of rounds of adaptivity.
When allowing two rounds (R = 2) SRank already outperforms UNIF. When setting R = 5 the
performance of SRank is almost the same as that of SAR.

We further compare SRank(with R = 2, 5, 10) with UNIF on the general coarse ranking problem. We
set the number of clusters k = 5 and m = (m0,m2, . . . ,m5) with mi = bin/5c. The results are
presented in Figure 2. It is clear that using a few more rounds, SRank significantly outperforms UNIF.

1https://grouplens.org/datasets/movielens/25m/
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Results of Fixed Confidence Algorithms. We compare BRank with LUCBRank in the fixed con-
fidence setting. We again set the number of clusters k = 5 and m = (m0,m2, . . . ,m5) with
mi = bin/5c. We set the error parameter as δ = 0.01.

Our results are presented in Figure 3. Recall that LUCBRank is a fully adaptive algorithm; given a
pull budget T it needs at least T/10 policy changes (rounds) which is huge. It is thus not surprising
that LUCBRank slightly outperforms BRank given the same number of pulls. But one can see that the
gap between LUCBRank and BRank is small and BRank only needs a few rounds (less than 10 in all
cases). We note that some points for LUCBRank are not plotted because LUCBRank is computational
expensive; it cannot return any result within 48 hours in our computational environments.

Figure 3: Performance of BRank and LUCBRank for coarse ranking. The numbers on the curve for
BRank denote the average number of rounds that BRank use, while for LUCBRank the number of
rounds is at least T/10 where T is the pull budget.

6 Conclusion

In this paper we have studied the problem of coarse ranking in multi-armed bandit settings, and
provided almost optimal algorithms in the batched model. A remaining question in this line of
research is to prove almost matching lower bounds for a general boundary vector m; our current
lower bounds only hold for a specific vector m = (0, 1, n).

Broader Impact

This work can help with ranking objects in various settings such as recommendation systems, peer
grading in massive open online courses and paid crowdsourcing platforms. Our ranking algorithms
are based on unbiased mathematical mechanisms, and is fair to everyone in this regards.
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Batched Coarse Ranking in Multi-Armed Bandits
Appendix

A Probability Tools

Lemma 8 (Chernoff-Hoeffding Inequality). Let X1, . . . , Xn ∈ [0, d] be independent random vari-

ables and X =
n∑
i=1

Xi. Then

Pr[X > E[X] + t] ≤ exp

(
− 2t2

nd2

)
and Pr[X < E[X]− t] ≤ exp

(
− 2t2

nd2

)
.

Moreover, if X1, . . . , Xn ∈ [0, 1] and µL ≤ E[X] ≤ µH , then we also have for every δ ∈ [0, 1],

Pr [X ≥ (1 + δ)µH ] ≤ exp

(
−δ

2µH
3

)
and Pr [X ≤ (1− δ)µL] ≤ exp

(
−δ

2µL
3

)
.

B Missing Proofs

B.1 Proof for Proposition 1

Let a1, . . . , an be a sequence of numbers such that a1 ≥ a2 ≥ . . . ≥ an > 0. The first inequality
follows from the simple observation that

i · ai ≤
∑
j∈[i]

aj ≤
∑
j∈[n]

aj .

The second inequality is due to the fact that∑
i∈[n]

ai =
∑
i∈[n]

(
1

i
· i · ai

)
≤
∑
i∈[n]

(
1

i
·max
i∈[n]
{i · ai}

)
≤ log(2n) ·max

i∈[n]
{i · ai}.

B.2 Proof for Claim 3

By Chernoff-Hoeffding inequality (Lemma 8) and a union bound we have

Pr[Ē ] ≤
∑
i∈I

R−1∑
r=0

Pr
[
|θ̂(r)
i − θi| > ∆

〈m〉
π(nr+1+1)(I)/8

]

≤
∑
i∈I

R−1∑
r=0

2 exp

(
−Tr+1 ·

(
∆
〈m〉
π(nr+1+1)(I)/8

)2
)

≤ 2n ·R · exp

(
− T

256 · n1/R ·R ·H〈m〉(I)

)
,

where the last inequality follows from Proposition 1.

B.3 Proof of Theorem 5

We first define the following event which we will condition on in the rest of the proof.

G,
{
∀r = 0, 1, . . . ,∀i ∈ Ir,

∣∣∣θ̂(r)
i − θi

∣∣∣ ≤ εr/4} .
Claim 9. Pr[G] ≥ 1− δ.
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Proof of Claim 9. By Chernoff-Hoeffding inequality and a union bound we have

Pr[Ḡ] ≤
∞∑
r=0

∑
i∈Ir

Pr
[∣∣∣θ̂(r)

i − θi
∣∣∣ > εr

4

]
≤

∞∑
r=0

∑
i∈Ir

2 exp

(
−ε

2
r

8
· Tr
)

≤
∞∑
r=0

n · δ

2n(r + 1)2
≤ δπ2

12
≤ δ.

Let ρ : [n] → I be the bijection such that θρ(1) ≥ θρ(2) ≥ . . . ≥ θρ(n), and for convenience
θρ(0) = +∞, θρ(n+1) = −∞. Let {C∗1 , . . . , C∗k} be the correct k-clustering of I . We prove
the correctness of the algorithm by induction on the round index r using the following induction
hypothesis:

1. ∀j ∈ {1, . . . , k},
∣∣C?j ∩ Ir∣∣ = m

(r)
j −m

(r)
j−1;

2. ∀j ∈ {1, . . . , k}, C(r)
j ⊆ C?j ;

3. {i ∈ I | ∆〈m〉i (I) ≥ 4εr} ∩ Ir+1 = ∅.

It is easy to see that all items hold trivially for r = 0. Assuming that they hold for r, we will show
that they also hold for r + 1.

Let ρr : {1, . . . , nr} → Ir be the bijection such that θρr(1) ≥ θρr(2) ≥ . . . ≥ θρr(nr), and for
convenience θρr(0) = +∞, θρr(nr+1) = −∞. The first and second items of the induction hypothesis
imply the following:

∀j ∈ [k], θ
ρr

(
m

(r)
j

) ≥ θρ(mj) and θ
ρr

(
m

(r)
j−1+1

) ≤ θρ(mj−1+1) . (11)

We have the following relationship between the empirical order statistics with the real order statistics.
Claim 10.

∀i ∈ [nr], θρr(i) −
εr
4
≤ θ̂(r)

σr(i) ≤ θρr(i) +
εr
4
. (12)

Proof of Claim 10. Conditioned on event G we have that for any i ∈ [nr] and j ≤ i,

θ̂
(r)
ρr(j) ≥ θρr(j) −

εr
4
≥ θρr(i) −

εr
4
, (13)

which means that there are at least i arms with estimated means more than θρr(i) − εr
4 . Consequently

we have θρr(i) − εr
4 ≤ θ̂

(r)
σr(i). The other half of (12) can be proved symmetrically.

We now show that each i ∈ C(r+1)
j \ C(r)

j belongs to C?j , which implies the first two items in the
induction hypothesis.

For each i ∈ C(r+1)
j \ C(r)

j , we have

θ̂
(r)

σr
(
m

(r)
j−1

) − εr ≥ θ̂(r)
i ≥ θ̂

(r)

σr
(
m

(r)
j +1

) + εr . (14)

Combining (14), (12), and event G we have

θi ≥ θ̂(r)
i −

εr
4
≥ θ̂(r)

σr
(
m

(r)
j +1

) +
3εr
4
≥ θ

ρr
(
m

(r)
j +1

) +
εr
2
, (15)

and

θi ≤ θ̂(r)
i +

εr
4
≤ θ̂(r)

σr
(
m

(r)
j−1

) − 3εr
4
≤ θ

ρr
(
m

(r)
j−1

) − εr
2
. (16)
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By (15) and (16), we have θi ∈
[
θ
ρr

(
m

(r)
j +1

) + εr
2 , θρr

(
m

(r)
j−1

) − εr
2

]
, which implies

θi ∈
[
θ
ρr

(
m

(r)
j

), θ
ρr

(
m

(r)
j−1+1

)] . (17)

Combing (17) and (11) we have θi ∈
[
θρ(mj), θρ(mj−1+1)

]
, which means that i ∈ C∗j . We thus have

C
(r+1)
j \ C(r)

j ⊆ C∗j , which, combined with induction hypothesis C(r)
j ⊆ C∗j , gives C(r+1)

j ⊆ C∗j .

We next handle the third item in the induction hypothesis.

For any arm i ∈ C∗j , if i ∈ Ir and ∆
〈m〉
i (I) ≥ 4εr then we have

θ̂
(r)
i

G
≥ θi −

εr
4

≥ ∆
〈m〉
i (I) + θρ(mj+1) −

εr
4

(since i ∈ C∗j )

(11)
≥ ∆

〈m〉
i (I) + θ

ρr(m
(r)
j +1)

− εr
4

(14)
≥ ∆

〈m〉
i (I) + θ̂

(r)

σr
(
m

(r)
j +1

) − εr
2

≥ θ̂
(r)

σr
(
m

(r)
j +1

) + 2εr .

Symmetrically,

θ̂
(r)
i ≤ θi +

εr
4
≤ −∆

〈m〉
i (I) + θρ(mj−1) +

εr
4

≤ −∆
〈m〉
i (I) + θ

ρr
(
m

(r)
j−1

) +
εr
4

≤ −∆
〈m〉
i (I) + θ̂

(r)

σr
(
m

(r)
j−1

) +
εr
2

≤ θ̂
(r)

σr
(
m

(r)
j−1

) − 2εr .

Hence, the i-th arm should be added to the set C(r+1)
j in the r-th iteration and will not occur in Ir+1.

Now we are ready to prove the correctness of Algorithm 2 and analyze the number of pulls and
rounds. By the definition of εr and the third item of the induction hypothesis we have that Ir = ∅ for
all

r > r0 =

⌈
log

(
4/min

i∈I

{
∆
〈m〉
i (I)

})⌉
.

Therefore the round complexity of the algorithm is bounded by r0. By the second item of the
induction hypothesis we have that after r0 rounds the algorithm returns the correct k-clustering.

Let r(i) , min{r | εr ≤ ∆
〈m〉
i /4}. By the third item of the induction hypothesis we know

that the i-th arm does not occur in any set Ir for any r > r(i), which indicates that the number
of pulls of the i-th arm is bounded by Tr(i). From the definitions of r(i) and εr, it is clear that
εr(i) ∈ [∆

〈m〉
i (I)/8,∆

〈m〉
i (I)/4], which gives

Tr(i) ≤
512(

∆
〈m〉
i (I)

)2 · log

(
16n · r2

0

δ

)
.

Consequently, the total number of pulls is bounded by∑
i∈I

Tr(i) = O
(
H〈m〉(I) log

(n
δ

logH〈m〉(I)
))

.
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B.4 Proofs of Theorem 6 and Theorem 7

We start by introducing the collaborative learning model [37, 29] and establishing its connection
with the batched model. In the collaborative learning model, we have K agents who want to solve a
MAB problem together. The learning process is partitioned into rounds. In each round, each of the
K agents pulls a (multi)set of arms sequentially. The agents communicate (only) at the end of each
round. At the end of the final round (before any communication), all agents should agree on the same
output. We assume that for each agent, each pull takes unit time. In this model, we want to minimize
the number of rounds R and the total running time T =

∑R
r=1 tr, where tr is the maximum number

of pulls made among agents in the r-th round.

The non-adaptive algorithms for the collaborative learning model is a restricted class of algorithms
for which at the beginning of each round, each agent needs to determine the number and the set of
arms that it will pull in this round.

It is not hard to see that any algorithm in the batched model can be transformed into a non-adaptive
algorithm in the collaborative learning model in the following manner: we can evenly distribute the
Tr arm pulls in the r-th round in the batched model to the K agents in the collaborative learning
model. The running time of the r-th round in the collaborative learning model is bounded by
dTr/Ke ≤ Tr/K + 1. We have the following observation. We say an algorithm is δ-error if it
succeeds with probability at least 1− δ.
Observation 11. Any δ-error algorithm for coarse ranking in the batched model that uses T pulls
and R rounds can be transformed to a δ-error non-adaptive algorithm for coarse ranking in the
collaborative learning model that uses at most R+ 1 rounds and T

K +R time.

Proof of Theorem 6. In [37] the following theorem is shown for the best arm identification problem
in MAB in the fixed budget case. Recall that best arm identification is a special case of coarse ranking
in which we set m = (0, 1, n).

Theorem 12 ([37]). For any α ∈ [1, n0.2], letting m = (0, 1, n) and T = cT · αH
〈m〉(I)
K for

a sufficiently small universal constant cT , any non-adaptive 0.01-error algorithm for the coarse
ranking problem with input parameter (I,m, T ) in the collaborative learning model with K agents
needs at least Ω

(
logn

log logn+logα

)
rounds.

Theorem 6 is a direct consequence of Theorem 12 and Observation 11.

Proof of Theorem 7. In [37] the following theorem is shown for best arm identification in MAB in
the fixed confidence case.
Theorem 13 ([37]). Let m = (0, 1, n) and ∆min = min

i∈I
∆
〈m〉
i . Any non-adaptive algo-

rithm that solves the coarse ranking problem with input parameter (I,m, 0.01) using at most
H〈m〉(I) logO(1) n arm pulls in the collaborative learning model with K agents needs at least

Ω
(

log(1/∆min)
log log(1/∆min)+log logn

)
rounds.

Theorem 7 is a direct consequence of Theorem 13 and Observation 11.
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