
Instance-Sensitive Algorithms for Pure Exploration in Multinomial Logit Bandit*

Nikolai Karpov, 1 Qin Zhang 1

1Indiana University Bloomington
Luddy Hall, RM 3044

700 North Woodlawn Avenue
Bloomington, IN 47408-3901, USA

nkarpov@iu.edu, qzhangcs@indiana.edu

Abstract

Motivated by real-world applications such as fast fashion re-
tailing and online advertising, the Multinomial Logit Bandit
(MNL-bandit) is a popular model in online learning and oper-
ations research, and has attracted much attention in the past
decade. In this paper, we give efficient algorithms for pure
exploration in MNL-bandit. Our algorithms achieve instance-
sensitive pull complexities. We also complement the upper
bounds by an almost matching lower bound.

1 Introduction
We study a model in online learning called multinomial logit
bandit (MNL-bandit for short), where we have N substi-
tutable items {1, 2, . . . , N}, each of which is associated with
a known reward ri ∈ (0, 1] and an unknown preference pa-
rameter vi ∈ (0, 1]. We further introduce a null item 0 with
reward r0 = 0, which stands for the case of “no-purchase”.
We set v0 = 1, that is, we assume that the no-purchase de-
cision is the most frequent case, which is a convention in
the MNL-bandit literature and can be justified by many real-
world applications to be mentioned shortly.

Denote [n] , {1, 2, . . . , n}. Given a subset (called an
assortment) S ⊆ [N], the probability that one chooses i ∈
S ∪ {0} is given by

pi(S) =
vi

v0 +
∑
j∈S vj

=
vi

1 +
∑
j∈S vj

.

Intuitively, the probability of choosing the item i in S is pro-
portional to its preference vi. This choice model is called the
MNL choice model, introduced independently by Luce [24]
and Plackett [26]. We are interested in finding an assortment
S ⊆ [N] such that the following expected reward is maxi-
mized.
Definition 1 (expected reward). Given an assortment S ⊆
[N] and a vector of item preferences v = (v1, . . . , vN), the
expected reward of S with respect to v is defined to be

R(S,v) =
∑
i∈S

ripi(S) =
∑
i∈S

rivi
1 +

∑
j∈S vj

.

*Nikolai Karpov and Qin Zhang are supported in part by NSF
CCF-1844234 and CCF-2006591.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The MNL-bandit problem was initially motivated by fast
fashion retailing and online advertising, and finds many ap-
plications in online learning, recommendation systems, and
operations research (see [6] for an overview). For instance,
in fast fashion retailing, each item corresponds to a product
and its reward is simply the revenue generated by selling the
product. The assumption that v0 ≥ max{v1, . . . , vN} can be
justified by the fact that most customers do not buy anything
in a shop visit. A similar phenomenon is also observed in
online advertising where it is most likely that a user does not
click any of the ads on a webpage when browsing. We natu-
rally want to select a set of products/ads S ⊆ [N] to display
in the shop/webpage so that R(S,v), which corresponds to
revenue generated by customer/user per visit, is maximized.

We further pose a capacity constraint K on the cardinality
of S, since in most applications the size of the assortment
cannot exceed a certain size. For example, the number of
products presented at a retail shop is capped due to shelf
space constraints, and the number of ads placed on a webpage
cannot exceed a certain threshold.

In the MNL-bandit model, we need to simultaneously learn
the item preference vector v and find the assortment with
the maximum expected reward under v. We approach this
by repeatedly selecting an assortment to present to the user,
observing the user’s choice, and then trying to update the
assortment selection policy. We call each observation of the
user choice given an assortment a pull. We are interested in
minimizing the number of pulls, which is the most expensive
part of the learning process.

In bandit theory we are interested in two objectives. The
first is called regret minimization: given a pull budget T ,
try to minimize the accumulated difference (called regret)
between the sum of expected rewards of the optimal strategy
in the T pulls and that of the proposed learning algorithm; in
the optimal strategy we always present the best assortment
(i.e., the assortment with the maximum expected reward) to
the user at each pull. The second is called pure exploration,
where the goal is simply to identify the best assortment.

Regret minimization in MNL-bandit has been studied ex-
tensively in the literature [27, 30, 12, 2, 3, 11]. The algorithms
proposed in [27, 30] for the regret minimization problem
make use of an “exploration then exploitation” strategy, that
is, they first try to find the best assortment and then stick to it.

However, they need the prior knowledge of the gap between
the expected reward of the optimal assortment and that of the
second-best assortment, which, in our opinion, is unrealistic
in practice since the preference vector v is unknown at the
beginning. We will give a more detailed discussion on these
works in Section 1.1.

In this paper we focus on pure exploration. Pure explo-
ration is useful in many applications. For example, the re-
tailer may want to perform a set of customer preference tests
(e.g., crowdsourcing) to select a good assortment before the
actual store deployment. We propose algorithms for pure
exploration in MNL-bandit without any prior knowledge of
preference vector. Our algorithms achieve instance-sensitive
pull complexities which we elaborate next.

Instance Complexity. Before presenting our results, we
give a few definitions and introduce instance complexities for
pure exploration in MNL-bandit.
Definition 2 (best assortment Sv and optimal expected re-
ward θv). Given a capacity parameter K and a vector of
item preferences v, let

Sv , arg max
S⊆[N]:|S|≤K

R(S,v)

denote the best assortment with respect to v. If the solution
is not unique then we choose the one with the smallest car-
dinality which is unique (see the discussion after Lemma 2).
Let θv , R(Sv,v) be the optimal expected reward.

Denote ηi , (ri − θv)vi; we call ηi the advantage of item
i. Suppose we have sorted the N items according to ηi, let
η(j) be the j-th largest value in the sorted list.
Definition 3 (reward gap ∆i). For any item i ∈ [N]\Sv, we
define its reward gap to be

∆i ,

{
η(K) − ηi, if |Sv| = K,
−ηi, if |Sv| < K.

and for any item i ∈ Sv, we define

∆i , ∆̄ = min

{(
η(K) − η(K+1)

)
, min
j∈Sv

{rj − θv}
}
.

(1)
Definition 3 may look a bit cumbersome. The extra term

minj∈Sv{rj−θv} in (1) is added for a technical reason when
handling the case that |Sv| < K; we will discuss this in more
detail in Remark 10. If |Sv| = K, then the task of finding
the best assortment is equivalent to the task of identifying the
K items with the largest advantage values ηi, and the reward
gap in Definition 3 can be simplified as

∆i =

{
η(K) − ηi, ∀i ∈ [N]\Sv,
η(K) − η(K+1), ∀i ∈ Sv.

We now give two instance complexities for pure explo-
ration in MNL-bandit. The second can be viewed as a refine-
ment of the first.
Definition 4 (instance complexity H1). We define the first
instance complexity for pure exploration in MNL-bandit to
be

H1 ,
∑

i∈[N]

1

∆2
i

.

In this paper we assume that ∀i ∈ [N],∆i 6= 0, since
otherwise the complexityH1 will be infinity. This assumption
implies that the best assortment is unique, which is also
an essential assumption for works of literature whose pull
complexities are based on “assortment-level” gaps, as we will
discuss in Section 1.1.

Definition 4 bears some similarity to the instance complex-
ity defined for pure exploration in the multi-armed bandits
(MAB) model, where we have N items each of which is asso-
ciated with an unknown distribution, and the goal is to iden-
tify the item whose distribution has the largest mean. In MAB
the instance complexity is defined to be HMAB =

∑N
i=2 1/∆2

i ,
where ∆i = µ(1)−µ(i) where µ(1) is the largest mean of the
N items and µ(i) is the i-th largest mean of the N items [5].
Our definition of ∆i is more involved due to the more com-
plicated combinatorial structure of the MNL-bandit model.

Definition 5 (instance complexity H2).

H2 ,
∑

i∈[N]

vi + 1/K

∆2
i

+ max
i∈[N]

1

∆2
i

.

It is easy to see that H2 = O(H1) (more precisely, H1

K ≤
H2 ≤ 3H1). We comment that the maxi∈[N]

1
∆2
i

term is
needed only when |Sv| < K.

Our Results. We propose two fixed-confidence algo-
rithms for pure exploration in MNL-bandit. The first
one (Algorithm 3 in Section 3) gives a pull complex-
ity of O

(
K2H1 ln

(
N
δ ln(KH1)

))
where δ is the con-

fidence parameter. We then modify the algorithm us-
ing a more efficient preference exploration procedure at
each pull, and improve the asymptotic pull complexity to
O
(
K2H2 ln

(
N
δ ln(KH2)

))
. The second algorithm is pre-

sented in Algorithm 5 in Section 4.
Both algorithms can be implemented efficiently: the time

complexity of Algorithm 3 is bounded by Õ(T +N2) where
T is the pull complexity and ‘Õ()’ hides some logarithmic
factors. That of Algorithm 5 is bounded by Õ(TN +N2).1

As we shall discuss in Remark 12, though having a larger
pull complexity, Algorithm 3 still has the advantage that it
better fits the batched model where we try to minimize the
number of changes of the learning policy.

To complement our upper bounds, we prove that
Ω(H2/K

2) pulls is needed in order to identify the best as-
sortment with probability at least 0.6. This is presented in
Section 5. Note that when K is a constant, our upper and
lower bounds match up to a logarithmic factor.

1.1 Related Work.
Regret minimization in MNL-bandit was first studied by
Rusmevichientong et al. [27] in the setting of dynamic assort-
ment selection under the MNL choice model. Since then
there have been a number of follow-ups that further im-
prove the regret bound and/or remove some artificial assump-

1When we talk about time complexity, we only count the running
time of the algorithm itself, and do not include the time for obtaining
the pull results which depends on users’ response time.

tions [30, 12, 2, 3, 11]. Agarwal et al. [1] studied choice
bandits which can be seen as a generalization of MNL-bandit.

As mentioned previously, the algorithms in [27, 30] also
have a component of identifying the best assortment. In [27,
30], the following “assortment-level” gap was introduced:

∆asso = θv − max
S⊆[N],|S|≤K,S 6=Sv

R(S,v),

that is, the difference between the reward of the best as-
sortment and that of the second-best assortment. The pull
complexity of the component in [30] for finding the best as-
sortment can be written as Õ(KN/∆2

asso), where‘Õ()’ hides
some logarithmic factors. This result is better than that in
[27]. There are two critical differences between these results
and our results: (1) More critically, in [27, 30] it is assumed
that the “assortment-level” gap ∆asso is known at the begin-
ning, which is not practical since the fact that the preference
vector is unknown at the beginning is a key feature of the
MNL-bandit problem. (2) Our reward gaps ∆i are defined at
the “item-level”; the instance complexity H1 (or H2) is de-
fined as the sum of the inverse square of these item-level gaps
and the total pull complexity is Õ(K2H1) (or Õ(K2H2)).
Though the two complexities are not directly comparable, the
following example shows that for certain input instances, our
pull complexity is significantly better.

Example 1. K = 1, r1 = . . . = rN = 1, v1 = 1, v2 = 1−
1/
√
N, v3 = . . . = vN = 1/

√
N . We have KN/∆asso =

Ω(N2), while K2H1 = O(N). Thus, the pull complexity of
the algorithm in [27] is quadratic of ours (up to logarithmic
factors).

The best assortment identification problem has also been
studied in the static setting (e.g., [31, 13]), where the user
preference vector v is known as a priori and our task is to
conduct an offline computation to find the assortment that
maximizes the expected reward. We refer readers to [23] for
an overview of this setting.

Chen et al.[10] studied the problem of top-k ranking un-
der the MNL choice model (but without the “no purchase”
option). Their problem is different from ours: They aimed to
find the k items in [N] with the largest preference vi (instead
of the advantage ηi = (ri − θv)vi). In some sense, their
problem can be thought of as a special case of ours, where
r1 = r2 = . . . = rN (that is, the rewards of all items are
the same); but in their model, there is no null item. It seems
difficult to extend their approach to our setting. We would
also like to mention the work on battling-bandits by Saha and
Gopalan [29], who considered the problem of using the MNL
choice model as one of the natural models to draw a winner
from a set of items. But their problem settings and the notion
of the optimal solution are again different from the problem
we consider here.

Pure exploration has been studied extensively in the model
of MAB [14, 25, 5, 16, 15, 21, 18, 22, 17, 28, 9]. MNL-bandit
can be viewed as an MAB-type model with

∑
j∈[K]

(
N
j

)
items, each corresponding to an assortment S ⊆ [N] with
|S| ≤ K. However, these items may “intersect” with each
other since assortments may contain the same items. Due
to such dependencies, the algorithms designed for pure

exploration in the MAB model cannot be adopted to the
MNL-bandit model. Audibert et al. [5] designed an instance-
sensitive algorithm for the pure exploration problem in the
MAB model. The result in [5] was later improved by Karnin
et al. [21] and Chen et al.[9], and extended into the problem
of identifying multiple items [7, 33, 8].

Finally, we note that recently, concurrent and indepen-
dent of our work, Yang [32] has also studied pure explo-
ration in MNL-bandit. But the definition of instance com-
plexity in [32] is again at the “assortment-level” (and thus
the results are not directly comparable), and the algorith-
mic approaches in [32] are also different from ours. The
pull complexity of [32] can be written as Õ(Hyang) where
Hyang =

∑
i∈[N]

1
(∆′i)

2 , where ∆′i is defined to be the differ-
ence between the best reward among assortments that include
item i and that among assortments that exclude item i. The
following example shows that for certain input instances, our
pull complexity based on item-level gaps is better.

Example 2. r1 = . . . = rN = 1, v1 = . . . = vK =
1, vK+1 = . . . = vN = ε. For ε ∈ (0, 1/K) and
ω(1) ≤ K ≤ o(N), we have Hyang = Θ(NK4), while
our K2H2 = Θ(K5 +NK3) = o(Hyang).

2 Preliminaries
Before presenting our algorithms, we would like to introduce
some tools in probability theory and give some basic proper-
ties of the MNL-bandit model. Due to space constraints, we
leave the tools in probability theory (including Hoeffding’s
inequality, concentration results for the sum of geometric
random variables, etc.) to Appendix A.1.

The following (folklore) observation gives an effective
way to check whether the expected reward of S with respect
to v is at least θ for a given value θ. The proof can be found
in Appendix A.2.

Observation 1. For any θ ∈ [0, 1], R(S,v) ≥ θ if and only
if
∑
i∈S(ri − θ)vi ≥ θ.

With Observation 1, to check whether the maximum ex-
pected reward is at least θ for a given value θ, we only need
to check whether the expected reward of the particular set
S ⊆ [N] containing the up to K items with the largest posi-
tive values (ri − θ)vi is at least θ.

To facilitate the future discussion we introduce the follow-
ing definition.

Definition 6 (Top(I,v, θ)). Given a set of items I where the
i-th item has reward ri and preference vi, and a value θ, let
T be the set of min{K, |I|} items with the largest values
(ri−θ)vi. Define Top(I,v, θ) , T \{i ∈ I | (ri−θ) ≤ 0},
where v stands for (v1, . . . , v|I|).

The following lemma shows that Top(I,v, θv) is exactly
the best assortment. Its proof can be found in Appendix A.3.

Lemma 2. Top(I,v, θv) = Sv.

Note that the set Top(I,v, θv) is unique by its definition.
Therefore by Lemma 2 the set Sv is also uniquely defined.

We next show a monotonicity property of the expected
reward function R(·, ·). Given two vectors v,w of the same

Algorithm 1: EXPLORE(i)

Input: Item i.
Output: 0/1 (choose or not choose i).

1 Offer a singleton set Si ← {i} and observe a feedback
a;

2 if a = 0 then return 1;
3 return 0

Algorithm 2: PRUNE(I,K,a,b)

Input: a set of items I = {1, . . . , N}, capacity
parameter K, two vectors
a = (a1, . . . , aN),b = (b1, . . . , bN) such that
for any i ∈ [N] it holds that ai ≤ vi ≤ bi,
where v = (v1, . . . , vN) is the (unknown)
preference vector of the N items.

Output: a set of candidate items for constructing the
best assortment.

1 θa ← max
S⊆I:|S|≤K

R(S,a), θb ← max
S⊆I:|S|≤K

R(S,b);

2 C ← ∅;
3 foreach i ∈ I do
4 form a vector g = (g1, . . . , gN) s.t. gj = aj for

j 6= i, and gi = bi;
5 if ∃θ ∈ [θa, θb] s.t. i ∈ Top(I,g, θ) then add i to

C;
6 return C

dimension, we write v � w if ∀i, vi ≤ wi. We comment that
similar properties appeared in [2, 3], but were formulated a
bit differently from ours. The proof of Lemma 3 can be found
in Appendix A.4.
Lemma 3. If v � w, then (θv =)R(Sv,v) ≤ (θw =
)R(Sw,w), and for any S ⊆ I it holds that

R(S,w)−R(S,v) ≤
∑
i∈S

(wi − vi).

The following is an immediate corollary of Lemma 3.
Corollary 4. If ∀i : vi ≤ wi ≤ vi + ε

K , then θv ≤ θw ≤
θv + ε.

3 The Basic Algorithm
In this section, we present our first algorithm for pure explo-
ration in MNL-bandit. The main algorithm is described in Al-
gorithm 3, which calls PRUNE (Algorithm 2) and EXPLORE
(Algorithm 1) as subroutines. EXPLORE describes a pull of
the assortment consisting of a single item.

Let us describe the Algorithm 2 and 3 in more detail. Algo-
rithm 3 proceeds in rounds. In round τ , each “surviving” item
in the set Iτ has been pulled by Tτ times in total. We try to
construct two vectors a and b based on the empirical means
of the items in Iτ such that the (unknown) true preference
vector v of Iτ is tightly sandwiched by a and b (Line 7-8).
We then feed Iτ , a, and b to the PRUNE subroutine which
reduces the size of Iτ by removing items that have no chance

Algorithm 3: The Fixed Confidence Algorithm for
MNL-Bandit

Input: a set of items I = {1, . . . , N}, a capacity
parameter K, a confidence parameter δ.

Output: the best assortment.
1 I0 ← I , set ετ = 2−τ−3 for τ ≥ 0;

2 set T−1 ← 0 and Tτ ←
⌈

32
ε2τ

ln 16N(τ+1)2

δ

⌉
for τ ≥ 0;

3 for τ = 0, 1, . . . do
4 foreach i ∈ Iτ do call EXPLORE(i) for

(Tτ − Tτ−1) times;
5 let x(τ)

i be the mean of the outputs of the Tτ calls
of EXPLORE(i);

6 foreach i ∈ Iτ do
7 set v(τ)

i ← min{ 1

x
(τ)
i

− 1, 1},

a
(τ)
i ← max{v(τ)

i − ετ , 0}, and
b
(τ)
i ← min{v(τ)

i + ετ , 1};
8 let a(τ) be the vector containing the |Iτ | estimated

preferences a(τ)
i , and b(τ) be the vector

containing the |Iτ | estimated preferences b(τ)
i ;

9 C ← PRUNE(Iτ ,a
(τ),b(τ));

10 if (|C| ≤ K) ∧
(∧
i∈C

(
ri > R

(
C,b(τ)

)))
then

11 return C ;
12 Iτ+1 ← C;

to be included in the best assortment (Line 9). Finally, we test
whether the output of PRUNE is indeed the best assortment
(Line 10). If not we proceed to the next round, otherwise we
return the solution.

Now we turn to the PRUNE subroutine (Algorithm 2),
which is the most interesting part of the algorithm. Recall that
the two vectors a and b are constructed such that a � v � b.
We try to prune items in I by the following test: For each
i ∈ I , we form another vector g such that g = a in all coor-
dinates except the i-th coordinate where gi = bi (Line 4). We
then check whether there exists a value θ ∈ [θa, θb] such that
i ∈ Top(I,g, θ), where θa, θb are the maximum expected
rewards with a and b as the item preference vectors respec-
tively; if the answer is Yes then item i survives, otherwise it
is pruned (Line 5). Note that our test is fairly conservative:
we try to put item i in a more favorable position by using the
upper bound bi as its preference, while for other items we use
the lower bounds aj as their preferences. Such a conserva-
tive pruning step makes sure that the output C of the PRUNE
subroutine is always a superset of the best assortment Sv.

Theorem 5. For any confidence parameter δ > 0, Al-
gorithm 3 returns the best assortment with probability
(1 − δ) using at most Γ = O

(
K2H1 ln

(
N
δ ln(KH1)

))
pulls. The running time of Algorithm 3 is bounded by
O
(
NΓ +N2 lnN ln

(
K

mini∈I ∆i

))
.

In the rest of this section we prove Theorem 5.

Correctness. We start by introducing the following event
which we will condition on in the rest of the proof. The event
states that in any round τ , the estimated preference v(τ)

i for
each item i (computed at Line 7 of Algorithm 3) is at most
ετ = 2−τ−3 away from the true preference vi.

E1 , {∀τ ≥ 0,∀i ∈ Iτ :
∣∣∣v(τ)
i − vi

∣∣∣ < ετ}.

The proof of the following lemma can be found in Ap-
pendix B. This lemma states that event E1 holds with high
probability.
Lemma 6. Pr[E1] ≥ 1− δ.

It is easy to see from Line 7 of Algorithm 3 that condi-
tioned on E1, we have

∀τ ≥ 0 : a(τ) � v(τ) � b(τ), (2)

where v(τ) is the preference vector of items in Iτ .
The following lemma shows that if (2) holds, then the

PRUNE subroutine (Algorithm 2) always produces a set of
candidate items C which is a superset of the best assortment.
Lemma 7. If the preference vector v of I satisfies a � v �
b, then PRUNE(I,K,a,b) (Algorithm 2) returns a set C
such that Sv ⊆ C.

Proof. First, if a � v � b, then by Lemma 3 we have
θv ∈ [θa, θb].

Consider any item i ∈ Sv, by the construction of g (Line 4
of Algorithm 2) we have for every j ∈ I:

• if j 6= i, then (rj − θv)gj ≤ max{(rj − θv)vj , 0};
• if j = i, then (rj − θv)gj ≥ (rj − θv)vj .

By these two facts and the definition of Top(I,v, θv), we
know that if i ∈ Top(I,v, θv), then i ∈ Top(I,g, θv). There-
fore for the particular value θ = θv ∈ [θa, θb] we have
i ∈ Top(I,g, θ), and consequently i will be added to the
candidate set C at Line 5, implying that Sv ⊆ C.

Now suppose Algorithm 3 stops after round τ and outputs
a set C ⊇ Sv of size at most K (Line 10-11), then for any
i ∈ C, we have ri > θb. By Lemma 3 we also have θb ≥ θv
(since v � b). We thus have ri > θv. Consequently, it holds
that for every i ∈ C, (ri − θv) > 0. We thus have C = Sv.

Up to this point we have shown that conditioned on E1, if
Algorithm 3 stops, then it outputs the best assortment Sv. We
next bound the number of pulls the algorithm uses.

Pull Complexity. We again conditioned on event E1. The
next lemma essentially states that an item i ∈ I\Sv will be
pruned if its reward gap ∆i is much larger than K times its
preference estimation error max{bi − vi, vi − ai}.
Lemma 8. In PRUNE(I,K,a,b) (Algorithm 2), if a � v �
b, and ∀i ∈ I : max{bi − vi, vi − ai} ≤ ε/K for any
ε ∈ (0, 1), then any item i ∈ I\Sv satisfying ∆i > 8ε will
not be added to set C.

Proof. By Corollary 4, if a � v � b, and ∀i ∈ I : max{bi−
vi, vi − ai} ≤ ε/K, then we have

θv − ε ≤ θa ≤ θv ≤ θb ≤ θv + ε. (3)

Consider any item i ∈ I\Sv with ∆i > 8ε. We analyze in
two cases.

Case 1: θv − ri > 8ε. By (3) we have θa − ri > 7ε.
Therefore, for any θ ∈ [θa, θb] we have ri < θa ≤ θ, and
consequently i 6∈ Top(I,g, θ) for any θ ∈ [θa, θb] by the
definition of Top().

Case 2: θv − ri ≤ 8ε. First, note that if |Sv| < K, then
we have

∆i = −(ri − θv)vi = (θv − ri)vi ≤ θv − ri ≤ 8ε,

contradicting our assumption that ∆i > 8ε. We thus focus
on the case that |Sv| = K. We analyze two subcases.

1. θ ∈ (ri, 1]. In this case, by the definition of Top() and the
fact that ri − θ < 0, we have i 6∈ Top(I,g, θ).

2. θ ∈ [θa, θb] ∩ [0, ri]. For any j ∈ Sv, we have

(ri − θ)gi − (rj − θ)gj
= (ri − θ)bi − (rj − θ)aj
≤ (ri − θ)(vi + ε)− (rj − θ)aj (since ri ≥ θ)
≤ (ri − θ)vi − (rj − θ)aj + ε

≤ (ri − θv)vi − (rj − θv)aj + (1 + aj + vi)ε (by (3))
≤ (ri − θv)vi − (rj − θv)(vj − ε) + 3ε (since rj > θv)

≤ (ri − θv)vi − (rj − θv)vj + 4ε

≤ −∆i + 4ε

< −4ε. (by the assumption ∆i > 8ε)

We thus have that for any θ ∈ [θa, θb]∩[0, ri], (ri−θ)gi <
(rj − θ)gj for any j ∈ Sv, therefore i 6∈ Top(I,g, θ) for
any θ ∈ [θa, θb], and consequently i 6∈ C.

For any i ∈ I , we define

τ(i) , min

{
τ ≥ 0 : ετ ≤

∆i

32K

}
. (4)

The next lemma shows that item i will not appear in any
set Iτ with τ > τ(i), and thus will not be pulled further after
round τ(i).

Lemma 9. In Algorithm 3, for any item i ∈ I , we have
i 6∈ Iτ for any τ > τ(i).

Proof. For any i ∈ I\Sv, setting ε = ∆i/16. By (4) we have
that for any j ∈ Iτ(i) it holds that

max
{
vj − a(τ(i))

j , b
(τ(i))
j − vj

}
≤ ∆i

16K
=

ε

K
. (5)

Moreover, we have,

∆i = 16ε > 8ε. (6)

By (5), (6) and Lemma 8, we have i 6∈ Iτ(i)+1.
We next consider items in Sv. Note that by Definition 3,

all i ∈ Sv have the same reward gap:

∆i = ∆̄ , min{ min
j∈I\Sv

{∆j}, min
j∈Sv

{rj−θv}} ≤ min
j∈I\Sv

{∆j}.

Let

τ̄ , min

{
τ ≥ 0 : ετ ≤

∆̄

32K

}
. (7)

We thus have τ̄ = τ(i) for all i ∈ Sv, and τ̄ ≥ τ(j) for any
j ∈ I\Sv. Therefore, at the end of round τ̄ , all items in I\Sv

have already been pruned, and consequently,

|C| ≤ K. (8)

By (4) and Corollary 4 we have θb(τ̄) ≤ θv + ∆̄/16. Con-
sequently we have

ri −R(C,b(τ̄)) = ri − θb(τ̄) = (ri − θv)− (θb(τ̄) − θv)

≥ ∆̄− ∆̄

16
> 0 . (9)

By (8) and (9), we know that Algorithm 3 will stop after
round τ̄ and return C = Sv.

With Lemma 9 we can easily bound the total number
of pulls made by Algorithm 3. By (4) we have τ(i) =

O
(

ln
(
K
∆i

))
. By the definition of Tτ (Line 2 of Algo-

rithm 3), the total number of pulls is at most

∑
i∈I

Tτ(i) ≤ O

(∑
i∈I

K2

∆2
i

ln
Nτ2(i)

δ

)

= O

(
K2H1 ln

(
N

δ
ln(KH1)

))
.

Remark 10. The reason that we introduce an extra term
minj∈Sv{rj − θv} in the definition of reward gap ∆i for all
i ∈ Sv (Definition 3) is for handling the case when |Sv| < K.
More precisely, in the case |Sv| < K we have to make sure
that for all items i ∈ I that we are going to add into the
best assortment Sv, it holds that ri > θv. In our proof this
is guaranteed by (9). On the other hand, if we are given
the promise that |Sv| = K (or |Sv| = K ′ for a fixed value
K ′ ≤ K), then we do not need this extra term: we know
when to stop simply by monitoring the size of Iτ , since at the
end all items i ∈ I/Sv will be pruned.

Running Time. Finally, we analyze the time complexity of
Algorithm 3. Although the time complexity of the algorithm
is not the first consideration in the MNL-bandit model, we
believe it is important for the algorithm to finish in a reason-
able amount of time for real-time decision making. Observe
that the running time of Algorithm 3 is dominated by the
sum of the total number of pulls and the running time of the
PRUNE subroutine, which is the main object that we shall
bound next.

Let us analyze the running time of PRUNE. Let n , |I|.
First, θa and θb can be computed in O(n2) time by an al-
gorithm proposed by Rusmevichientong et al. [27]. We next
show that Line 5 of Algorithm 2 can be implemented in
O(n lnn) time, with which the total running time of PRUNE
is bounded by O(n2 lnn).

Consider any item i ∈ I . We can restrict our search of
possible θ in the range of Θi = [θa, θb] ∩ [0, ri), since if

i ∈ Top(I,g, θ), then by the definition of Top() we have
θ < ri. For each j 6= i, j ∈ I , define

Θj = {θ ∈ Θi | (rj − θ)gj > (ri − θ)gi}.

Intuitively speaking, Θj contains all θ values for which item
j is “preferred to” item i for Top(I,g, θ). Consequently, for
any θ ∈ Θi, if the number of Θj that contain θ is at least K,
then we have i 6∈ Top(I,g, θ); otherwise if the number of
such Θj is less than K, then we have i ∈ Top(I,g, θ). Note
that each set Θj can be computed in O(1) time.

Now think each set Θj as an interval. The problem of
testing whether there exists a θ ∈ [θa, θb] ∩ [0, ri) such that
i ∈ Top(I,g, θ) can be reduced to the problem of checking
whether there is a θ ∈ [θa, θb]∩[0, ri) such that θ is contained
in fewer than K intervals Θj (j 6= i). The later problem can
be solved by the standard sweep line algorithm in O(n lnn)
time.

Recall that the total number of rounds can be bounded by
τmax = maxi∈I τ(i) = O

(
ln
(

K
mini∈I ∆i

))
. Therefore the

total running time of Algorithm 3 can be bounded by

O

(
Γ +

τmax∑
τ=0

|Iτ |2 ln |Iτ |

)
= O

(
Γ + N2 lnN ln

(
K

mini∈I ∆i

))
,

where Γ = O
(
K2H1 ln

(
N
δ ln(KH1)

))
is the total number

of pulls made by the algorithm.

4 The Improved Algorithm
In this section we try to improve our basic algorithm pre-
sented in Section 3. We design an algorithm whose pull
complexity depends on H2 which is asymptotically at most
H1. The improved algorithm is described in Algorithm 5.

The structure of Algorithm 5 is very similar to that of
Algorithm 3. The main difference is that instead of using
EXPLORE to pull a singleton assortment at each time, we
use a new procedure EXPLORESET (Algorithm 4) which
pulls an assortment of size up to K (Line 6 of Algorithm 5).
We construct the assortments by partitioning the whole set
of items Iτ into subsets of size up to K (Line 4-5). In the
EXPLORESET procedure, we keep pulling the assortment S
until the output is 0 (i.e., a no-purchase decision is made).
We then estimate the preference of item i using the average
number of times that item i is chosen in those EXPLORESET
calls that involve item i (Line 8).

Intuitively, EXPLORESET has the advantage over
EXPLORE in that at each pull, the probability for
EXPLORESET to return an item instead of a no-purchase
decision is higher, and consequently EXPLORESET extracts
more information about the item preferences. We note that
the EXPLORESET procedure was first introduced in [4] in
the setting of regret minimization.

Theorem 11. For any confidence parameter δ > 0, Al-
gorithm 5 returns the best assortment with probability
(1 − δ) using at most Γ = O

(
K2H2 ln

(
N
δ ln(KH2)

))
pulls. The running time of Algorithm 5 is bounded by
O
(
NΓ +N2 lnN ln

(
K

mini∈I ∆i

))
.

Algorithm 4: EXPLORESET(S)

Input: a set of items S of size at most K.
Output: a set of empirical preferences {fi}i∈S .

1 Initialize fi ← 0 for i ∈ S;
2 repeat
3 offer assortment S and observe a feedback a;
4 if a ∈ S then fa ← fa + 1 ;
5 until a = 0;
6 return {fi}i∈S

Compared with Theorem 5, the only difference in the pull
complexity of Theorem 11 is that we have used H2 instead
of H1. Since H2 = O(H1), the asymptotic pull complexity
of Algorithm 5 is at least as good as that of Algorithm 3.
Remark 12. Though having a higher pull complexity, Al-
gorithm 3 still has an advantage against Algorithm 5 in
that Algorithm 3 can be implemented in the batched set-
ting with maxi∈I τ(i) = O

(
ln K

mini∈I ∆i

)
policy changes,

which cannot be achieved by Algorithm 5 since the subroutine
EXPLORESET is inherently sequential.

Compared with the proof for Theorem 5, the challenge
for proving Theorem 11 is that the number of pulls in each
EXPLORESET is a random variable. We thus need slightly
more sophisticated mathematical tools to bound the sum of
these random variables. Due to the space constraints, we
leave the technical proof of Theorem 11 to Appendix C.

5 Lower Bound
We manage to show the following lower bound to comple-
ment our algorithmic results.
Theorem 13. For any algorithm A for pure exploration in
multinomial logit bandit, there exists an input instance such
thatA needs Ω(H2/K

2) pulls to identify the best assortment
with probability at least 0.6.

Note that Algorithm 5 identifies the best assortment with
probability 0.99 using at most Õ(K2H2) pulls (setting δ =
0.01). Therefore our upper and lower bounds match up to a
logarithmic factor if K = O(1).

The proof of Theorem 13 bears some similarity with the
lower bound proof of the paper by Chen et al. [10], but there
are some notable differences. As mentioned in the introduc-
tion, Chen et al. [10] considered the problem of top-k ranking
under the MNL choice model, which differs from the best
assortment searching problem in the following aspects:
1. The top-k ranking problem can be thought as a special

case of the best assortment searching problem where the
rewards of all items are equal to 1. While to prove Theo-
rem 13 we need to choose hard instances in which items
have different rewards.

2. There is no null item (i.e., the option of “no purchase”) in
the top-k ranking problem. Note that we cannot treat the
null item as the (N + 1)-th item with reward 0 since the
null item will appear implicitly in every selected assort-
ment.

Algorithm 5: Improved Fixed Confidence Algorithm
for MNL-bandit

Input: a set of items I = {1, . . . , N}, a capacity
parameter K, and a confidence parameter δ.

Output: the best assortment.
1 set I0 ← I , and ετ = 2−τ−3 for τ ≥ 0;

2 set T−1 ← 0, and Tτ ←
⌈

8
ε2τ

ln 16N(τ+1)2

δ

⌉
for

τ ≥ 0;
3 for τ = 0, 1, . . . do
4 mτ ← d|Iτ | /Ke;
5 let Sτ1] . . .] Sτmτ be an arbitrary partition of Iτ

into subsets of size at most K;
6 foreach j ∈ [mτ] do call EXPLORESET(Sτj) for

(Tτ − Tτ−1) times ;
7 foreach i ∈ Iτ do
8 let v(τ)

i be the average of fi’s returned by the
multiset of calls {EXPLORESET(Sρj) | ρ ≤
τ, j ∈ [mρ], i ∈ Sρj };

9 foreach i ∈ Iτ do set a(τ)
i ← max{0, v(τ)

i − ετ}
and b(τ)

i ← min{v(τ)
i + ετ , 1} ;

10 let a(τ) be the vector containing the |Iτ | estimated
preferences a(τ)

i , and b(τ) be the vector
containing the |Iτ | estimated preferences b(τ)

i ;
11 C ← PRUNE(Iτ ,a

(τ),b(τ));

12 if (|C| ≤ K) ∧
(∧
i∈C

(
ri > R

(
C,b(τ)

)))
then

13 return C ;
14 Iτ+1 ← C ;

These two aspects prevent us to use the lower bound result in
Chen et al. [10] as a blackbox. Due to the space constraints,
we leave the technical proof to Appendix D.

6 Concluding Remarks
We would like to conclude the paper by making two remarks.
First, our upper and lower bounds match only for constant K.
For general K, there is a factor of K4 discrepancy. Part of it
is because when we estimate the preference of each arm with
an accuracy ε, we can only estimate the expected reward of
an assortment with an accuracy εK; this increases the pull
complexity by a factor of K2. Obtaining tight bounds for
general K is an interesting open question.

Second, our algorithms for pure exploration fall into the
category of fixed-confidence algorithms, that is, for a fixed
confidence parameter δ, we want to identify the best assort-
ment with probability at least (1 − δ) using the smallest
number of pulls. Another variant of pure exploration is called
fixed-budget algorithms, where given a fixed pull budget T ,
we try to identify the best assortment with the highest proba-
bility. We leave this variant as future work.

References
[1] Agarwal, A.; Johnson, N.; and Agarwal, S. 2020.

Choice Bandits. In Larochelle, H.; Ranzato, M.; Had-
sell, R.; Balcan, M.; and Lin, H., eds., NeurIPS.

[2] Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A.
2016. A Near-Optimal Exploration-Exploitation Ap-
proach for Assortment Selection. In EC, 599–600.

[3] Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A.
2017. Thompson Sampling for the MNL-Bandit. In
COLT, 76–78.

[4] Agrawal, S.; Avadhanula, V.; Goyal, V.; and Zeevi, A.
2019. MNL-bandit: A dynamic learning approach to
assortment selection. Operations Research, 67(5): 1453–
1485.

[5] Audibert, J.; Bubeck, S.; and Munos, R. 2010. Best
Arm Identification in Multi-Armed Bandits. In COLT,
41–53.

[6] Avadhanula, V. 2019. The MNL-Bandit Problem: The-
ory and Applications. Ph.D. thesis, Columbia Univer-
sity.

[7] Bubeck, S.; Wang, T.; and Viswanathan, N. 2013. Mul-
tiple Identifications in Multi-Armed Bandits. In ICML,
258–265.

[8] Chen, J.; Chen, X.; Zhang, Q.; and Zhou, Y. 2017. Adap-
tive multiple-arm identification. In ICML, 722–730.

[9] Chen, L.; Li, J.; and Qiao, M. 2017. Towards Instance
Optimal Bounds for Best Arm Identification. In COLT,
volume 65, 535–592.

[10] Chen, X.; Li, Y.; and Mao, J. 2018. A Nearly Instance
Optimal Algorithm for Top-k Ranking under the Multi-
nomial Logit Model. In Czumaj, A., ed., SODA, 2504–
2522.

[11] Chen, X.; and Wang, Y. 2018. A note on a tight lower
bound for capacitated MNL-bandit assortment selection
models. Oper. Res. Lett., 46(5): 534–537.

[12] Davis, J.; Gallego, G.; and Topaloglu, H. 2013. As-
sortment planning under the multinomial logit model
with totally unimodular constraint structures. Technical
Report.

[13] Désir, A.; Goyal, V.; and Zhang, J. 2014. Near-optimal
algorithms for capacity constrained assortment opti-
mization. Available at SSRN 2543309.

[14] Even-Dar, E.; Mannor, S.; and Mansour, Y. 2002. PAC
Bounds for Multi-armed Bandit and Markov Decision
Processes. In COLT, 255–270.

[15] Gabillon, V.; Ghavamzadeh, M.; and Lazaric, A. 2012.
Best Arm Identification: A Unified Approach to Fixed
Budget and Fixed Confidence. In NIPS, 3221–3229.

[16] Gabillon, V.; Ghavamzadeh, M.; Lazaric, A.; and
Bubeck, S. 2011. Multi-Bandit Best Arm Identifica-
tion. In NIPS, 2222–2230.

[17] Garivier, A.; and Kaufmann, E. 2016. Optimal Best
Arm Identification with Fixed Confidence. In COLT,
998–1027.

[18] Jamieson, K.; Malloy, M.; Nowak, R.; and Bubeck, S.
2014. lil’ucb: An optimal exploration algorithm for
multi-armed bandits. In COLT, 423–439.

[19] Janson, S. 2018. Tail bounds for sums of geometric and
exponential variables. Statistics & Probability Letters,
135: 1–6.

[20] Jin, Y.; Li, Y.; Wang, Y.; and Zhou, Y. 2019. On
Asymptotically Tight Tail Bounds for Sums of Ge-
ometric and Exponential Random Variables. CoRR,
abs/1902.02852.

[21] Karnin, Z.; Koren, T.; and Somekh, O. 2013. Almost
optimal exploration in multi-armed bandits. In ICML,
1238–1246.

[22] Kaufmann, E.; Cappé, O.; and Garivier, A. 2016. On the
Complexity of Best-Arm Identification in Multi-Armed
Bandit Models. J. Mach. Learn. Res., 17: 1:1–1:42.

[23] Kök, A. G.; and Fisher, M. L. 2007. Demand Estima-
tion and Assortment Optimization Under Substitution:
Methodology and Application. Operations Research,
55(6): 1001–1021.

[24] Luce, R. D. 1959. Individual choice behavior: a theo-
retical analysis. Wiley.

[25] Mannor, S.; and Tsitsiklis, J. N. 2004. The Sample
Complexity of Exploration in the Multi-Armed Bandit
Problem. J. Mach. Learn. Res., 5: 623–648.

[26] Plackett, R. 1975. The analysis of permutations. Ap-
plied Statistics, 24: 193–302.

[27] Rusmevichientong, P.; Shen, Z. M.; and Shmoys, D. B.
2010. Dynamic Assortment Optimization with a Multi-
nomial Logit Choice Model and Capacity Constraint.
Operations Research, 58(6): 1666–1680.

[28] Russo, D. 2016. Simple Bayesian Algorithms for Best
Arm Identification. In COLT, volume 49, 1417–1418.
JMLR.org.

[29] Saha, A.; and Gopalan, A. 2018. Battle of Bandits. In
Globerson, A.; and Silva, R., eds., UAI, 805–814.

[30] Sauré, D.; and Zeevi, A. 2013. Optimal Dynamic As-
sortment Planning with Demand Learning. Manufac-
turing & Service Operations Management, 15(3): 387–
404.

[31] Talluri, K. T.; and van Ryzin, G. J. 2004. Revenue
Management Under a General Discrete Choice Model
of Consumer Behavior. Management Science, 50(1):
15–33.

[32] Yang, J. 2021. Fully Gap-Dependent Bounds for Multi-
nomial Logit Bandit. In AISTATS, volume 130 of Pro-
ceedings of Machine Learning Research, 199–207.

[33] Zhou, Y.; Chen, X.; and Li, J. 2014. Optimal PAC
multiple arm identification with applications to crowd-
sourcing. In ICML, 217–225.

Appendix for Instance-Sensitive Algorithms for
Pure Exploration in Multinomial Logit Bandit

A More Preliminaries
A.1 Tools in Probability Theory
We make use of the following standard concentration inequal-
ities.
Lemma 14 (Hoeffding’s inequality). Let X1, . . . , Xn ∈
[0, 1] be independent random variables and X =

n∑
i=1

Xi.

Then
Pr[X > E[X] + t] ≤ exp

(
−2t2/n

)
and

Pr[X < E[X]− t] ≤ exp
(
−2t2/n

)
.

Lemma 15 (Azuma’s inequality). Let the sequence
Z0, . . . , Zn be a submartingale and

∀t ∈ [n] : |Zt − Zt−1| ≤ d .
Then

Pr[Zn − Z0 ≤ −ε] ≤ exp

(
−ε2

2d2n

)
.

Definition 7 (geometric random variable; the failure model).
Let p ∈ [0, 1]. If a random variable X with support Z+

satisfies Pr[X = k] = (1− p)kp for any integer k ≥ 0, then
we sayX follows the geometrical distribution with parameter
p, denoted by X ∼ Geo(p).

The following lemma gives the concentration result for
sum of geometric random variables with a multiplicative
error term.
Lemma 16 ([19]). Let p ≥ 0, λ ≥ 1, and X1, . . . , Xn be
i.i.d. random variables from distribution Geo(1/(1 +p)). We
have

Pr

[
n∑
i=1

(Xi + 1) ≥ λn(1 + p)

]
≤ exp(−n(λ−1− lnλ)) .

(10)
In our analysis we need the following concentration result

for sum of geometric random variables with an additive error
term.
Lemma 17. Let p ∈ [0, 1], t ∈ [0, 1], and X1, . . . , Xn be
i.i.d. random variables from distribution Geo(1/(1 +p)). We
have

Pr

[∣∣∣∣∣ 1n
n∑
i=1

(Xi − p)

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−nt

2

8

)
. (11)

Proof. We use the following lemma to derive Lemma 17.

Lemma 18 ([20]). Let p > 0 and X1, . . . , Xn be i.i.d. ran-
dom variables from Geo(1/(1 + p)), then for λ ∈ (0, 1] we
have

Pr

[
1

n

n∑
i=1

Xi ≤ λp

]
≤ exp

(
−n · p(λ− 1)2

2(1 + p)

)
(12)

for λ ∈ [1, 2)

Pr

[
1

n

n∑
i=1

Xi ≥ λp

]
≤ exp

(
−n · p(λ− 1)2

4(1 + p)

)
(13)

and for λ ≥ 2

Pr

[
1

n

n∑
i=1

Xi ≥ λp

]
≤ exp

(
−n · p(λ− 1)

4(1 + p)

)
. (14)

Note that the lemma holds trivially for p = 0. We thus
focus on the case p > 0. We first show

Pr

[
1

n

n∑
i=1

(Xi − p) ≤ −t

]
≤ exp

(
−nt

2

8

)
. (15)

We analyze in two cases.

1. If 1 ≥ t ≥ p, then we have

Pr

[
1

n

n∑
i=1

(Xi − p) ≤ −t

]

≤ Pr

[
n∑
t=1

Xi = 0

]
=

n∏
i=1

Pr[Xi = 0]

=

(
p

1 + p

)n
≤ 2−n ≤ exp

(
−nt

2

8

)
.

2. If t < p ≤ 1, then by (12), setting λ = 1− t
p , we have

Pr

[
1

n

n∑
i=1

(Xi − p) ≤ −t

]
≤ exp

(
−np · (t/p)

2

2(1 + p)

)
≤ exp

(
−nt

2

8

)
.

We next show

Pr

[
1

n

n∑
i=1

(Xi − p) ≥ t

]
≤ exp

(
−nt

2

8

)
. (16)

We analyze in two cases.

1. If t ≤ p, then by (13), setting λ = 1 + t
p , we have

Pr

[
1

n

n∑
i=1

(Xi − p) ≥ t

]
≤ exp

(
−np · (t/p)

2

4(1 + p)

)
≤ exp

(
−nt

2

8

)
.

2. If p < t ≤ 1, then by (14), setting λ = 1 + t
p , we have

Pr

[
1

n

n∑
i=1

(Xi − p) ≥ t

]
≤ exp

(
−np · (t/p)

2

4(1 + p)

)
≤ exp

(
−nt

2

8

)
.

A.2 Proof of Observation 1
Proof. The observation follows directly from the definition
of expected reward (Definition 1). That is, R(S,v) ≥ θ

means
∑
i∈S rivi

1+
∑
i∈S vi

≥ θ, which implies
∑
i∈S(ri − θ)vi ≥ θ.

The other direction can be shown similarly.

A.3 Proof of Lemma 2
The following is an easy observation by the definition of
Top(I,v, θ).

Observation 19. For any S ⊆ I of size at most K and any
θ ∈ [0, 1], it holds that∑

i∈S
(ri − θ)vi ≤

∑
i∈Top(I,v,θ)

(ri − θ)vi .

The following claim gives a crucial property of
Top(I,v, θ). Lemma 2 follows immediately from this claim.

Claim 20. For any θ ∈ [0, 1], θ ≤ θv if and only if∑
i∈Top(I,v,θ)

(ri − θ)vi ≥ θ.

Proof. First consider the case θ ≤ θv. By Observation 1,
R(Sv,v) = θv ≥ θ implies

∑
i∈Sv

(ri − θ)vi ≥ θ. Then
by Observation 19 we have

∑
i∈Top(I,v,θ)(ri − θ)vi ≥∑

i∈Sv
(ri − θ)vi ≥ θ.

Next consider the case θ > θv. For any S ⊆ I with
|S| ≤ K, by the definition of θv we have R(S,v) ≤ θv.
Then by Observation 1 we have

∑
i∈S(ri − θ)vi ≤ θv <

θ for any S ⊆ I with |S| ≤ K. Consequently, we have∑
i∈Top(I,v,θ)(ri − θ)vi < θ.

A.4 Proof of Lemma 3
Proof. If v � w, then by definition of Sw we have
R(Sw,w) ≥ R(Sv,w), and

∑
i∈Sv

(ri − θv)wi ≥
∑
i∈Sv

(ri − θv)vi (v � w)

≥ θv (R(Sv,v) ≥ θv and Observation 1)
= R(Sv,v).

We thus have R(Sw,w) ≥ R(Sv,w) ≥ R(Sv,v).
The second part of the lemma is due to the following

simple calculation. Recall that ri ∈ (0, 1] for any i ∈ S.

R(S,w)−R(S,v) ≤
∑
i∈S ri(wi − vi)
1 +

∑
i∈S vi

≤
∑
i∈S

(wi − vi) .

B Proof of Lemma 6
Proof. The output of EXPLORE(i) is a Bernoulli random
variable with mean xi = 1

1+vi
. By Hoeffding’s inequality

(Lemma 14) we have

Pr
[∣∣∣x(τ)

i − xi
∣∣∣ ≥ ετ

8

]
≤ 2 exp

(
−ε

2
τTτ
32

)
≤ δ

8N(τ + 1)2
.

By a union bound we have

Pr
[
∀τ ≥ 0,∀i ∈ Iτ :

∣∣∣x(τ)
i − xi

∣∣∣ < ετ
8

]
≥ 1−

∞∑
τ=0

∑
i∈Iτ

δ

8N(τ + 1)2
≥ 1− δ. (17)

Since at Line 7 of Algorithm 3 we have set v(τ)
i = 1

x
(τ)
i

− 1,

with probability (1− δ) we have∣∣∣v(τ)
i − vi

∣∣∣ =

∣∣∣∣∣ 1

x
(τ)
i

− 1

xi

∣∣∣∣∣ =

∣∣∣∣∣xi − x(τ)
i

x
(τ)
i xi

∣∣∣∣∣
≤ ετ/8

x
(τ)
i xi

(holds with prob. (1− δ) by (17))

≤ ετ/8

1/2 · 3/8
< ετ ,

where the second inequality holds since (i) xi = 1
1+vi

≥ 1/2

given vi ∈ [0, 1], and (ii) x(τ)
i ≥ 3/8 given

∣∣∣x(τ)
i − xi

∣∣∣ <
ετ/8 < 1/8.

C Proof of Theorem 11
First, we have the following two observations for the proce-
dure EXPLORESET.
Observation 21 ([4]). For any i ∈ S, fi ∼ Geo(1/(1+vi)).
Observation 22. The number of pulls made
in EXPLORESET(S) is (X + 1) where X ∼
Geo(1/(1 +

∑
i∈S vi)).

Correctness. We define the following event which we will
condition on in the rest of the proof.

E2 , {∀τ ≥ 0, i ∈ Iτ :
∣∣∣v(τ)
i − vi

∣∣∣ < ετ} (18)

We have the following lemma regarding E2.
Lemma 23. Pr[E2] ≥ 1− δ/2.

Proof. By Observation 21 and Lemma 17, we have that for
any τ ≥ 0 and i ∈ Iτ , it holds that

Pr
[∣∣∣v(τ)

i − vi
∣∣∣ ≥ ετ] ≤ 2 exp

(
−ε

2
τTτ
8

)
≤ δ

8N(τ + 1)2
.

(19)
By a union bound we have

Pr[Ē2] ≤
∞∑
τ=0

Pr
[∣∣∣v(τ)

i − vi
∣∣∣ ≥ ετ]

≤
∞∑
τ=0

∑
i∈Iτ

δ

8N(τ + 1)2
≤ δ

2
.

By the same arguments as that for Theorem 5, we can show
that Algorithm 5 returns the correct answer given that event
E2 holds. Then by Lemma 23, Algorithm 5 succeeds with
probability at least 1− δ/2.

Pull Complexity. Now we turn to the number of pulls that
Algorithm 5 makes. For any i ∈ I we again define

τ(i) , min

{
τ ≥ 0 : ετ ≤

∆i

32K

}
. (20)

The following lemma is identical to Lemma 9 in the proof
for Theorem 5.
Lemma 24. In Algorithm 5, for any item i ∈ I , we have
i 6∈ Iτ for any τ > τ(i).

We next show that Algorithm 5 will not make too many
pulls in each round.

The following lemma is a direct consequence of Observa-
tion 22 and Lemma 16 (setting λ = 5).
Lemma 25. For any T > 0, let random variables Xt (t =
1, . . . , T) be the number of pulls made at the t-th call
EXPLORESET(S). We have

Pr

[
T∑
t=1

Xt ≥ 5

(
1 +

∑
i∈S

vi

)
T

]
≤ exp(−2T) .

For each round τ , applying Lemma 25 with T = Tτ−Tτ−1

for each S ∈ {Sτ1 , . . . , Sτmτ } we get

Pr

Tτ−Tτ−1∑
t=1

Xt ≥ 5

(
1 +

∑
i∈S

vi

)
(Tτ − Tτ−1)


≤ exp(−2(Tτ − Tτ−1))

≤ exp (−Tτ) ≤ δ

8N(τ + 1)2
,

where in the second inequality we have used the fact Tτ −
Tτ−1 ≥ Tτ/2 (by the definition of Tτ).

By a union bound over S ∈ {Sτ1 , . . . , Sτmτ } and τ ≥ 0,
with probability

1−
∑
τ≥0

(
mτ ·

δ

8N(τ + 1)2

)
≥ 1− δ

2
, (21)

the total number of pulls made by Algorithm 5 is bounded by

5
∑

τ≥0,Iτ 6=∅

(⌈
|Iτ |
K

⌉
+
∑
i∈Iτ

vi

)
(Tτ − Tτ−1) (22)

≤ 5
∑

τ≥0,Iτ 6=∅

(
|Iτ |
K

+ 1 +
∑
i∈Iτ

vi

)
(Tτ − Tτ−1)

= 5
∑

τ≥0,Iτ 6=∅

(Tτ − Tτ−1) (23)

+5
∑

τ≥0,Iτ 6=∅

(∑
i∈Iτ

(
vi +

1

K

))
(Tτ − Tτ−1) .(24)

By Lemma 24 we know that for any τ > τ̄ , maxi∈I{τ(i)},
it holds that Iτ = ∅. We thus have∑

τ≥0,Iτ 6=∅

(Tτ − Tτ−1) ≤ Tτ̄ . (25)

Again by Lemma24 we have∑
τ≥0

(∑
i∈Iτ

(
vi +

1

K

))
(Tτ−Tτ−1) ≤

∑
i∈I

(
vi +

1

K

)
Tτ(i).

(26)
Combining (21), (24), (25), (26) and Lemma 23, we have

that with probability 1 − (δ/2 + δ/2) = 1 − δ, the total
number of pulls made by Algorithm 5 is bounded by

O

(
Tτ̄ +

∑
i∈Iτ

(
vi +

1

K

)
Tτ(i)

)
. (27)

By the definitions of τ(i) and Tτ we have

Tτ(i) = O

(
K2

∆2
i

· ln
(
N

δ
τ(i)

))
,

where τ(i) = O(ln(K/∆i)) = O(ln(KH2)). Plugging
these values to (27) we can bound the total number of pulls
by = O

(
K2H2 ln

(
N
δ ln(KH2)

))
.

Running Time. The analysis of the running time of Algo-
rithm 5 is very similar as that for Algorithm 3. The main dif-
ference is that the time complexity for each call of EXPLORE-
SET is bounded O(Nβ) (instead of O(β) for EXPLORE) in
the worst case, where β is the number of pulls in the call.
This is why the first term in the time complexity in Theo-
rem 11 is NT instead of T as that in Theorem 5. The second
term concerning the PRUNE subroutine is the same as that in
Theorem 5.

D Proof of Theorem 13 (The Lower Bound)
We consider the following two input instances. Let δ ∈(
0, 1

4K

)
be a parameter.

• Instance I1. I1 contains N = K items with rewards r1 =
. . . = rK−1 = 1, rK = 1−δ

2−δ , and preferences v1 = . . . =

vK−1 = 1
K−1 , vK = 1.

• Instance I2. I2 contains N = K items with rewards r1 =
. . . = rK−1 = 1, rK = 1−δ

2−δ , and preferences v1 =
1

K−1 − 2δ, v2 = . . . = vK−1 = 1
K−1 , vK = 1.

Before proving Theorem 13, we first bound the instance
complexities of I1 and I2.

Instance complexity of I1. The optimal expected reward
of I1 is 1/2, achieved on the set [K − 1]. Indeed, all items
from [K − 1] should be included in the best assortment since
their rewards are all 1, and this already gives an expected
reward of ∑

i∈[K−1]

1 · vi
1 +

∑
j∈[K−1] vj

=
1

2
.

While the reward of Item K is 1−δ
2−δ <

1
2 , and thus Item K

should be excluded in the best assortment.
By Definition 3, we have

∆K =
1

2
− 1− δ

2− δ
=

2− δ − 2 + 2δ

2(2− δ)
≥ δ

4
.

For every i ∈ [K − 1], we have

∆i = min

{
1− 1

2
,∆K

}
= ∆K .

We can thus bound

H2(I1) =
∑
i∈[K]

vi + 1/K

∆2
i

+ max
i∈[K−1]

{
1

∆2
i

}
≤ 4

∆2
K

≤ 64

δ2
.

(28)

Instance complexity of I2. The optimal expected reward
of I2 is at least that of the assortment [K], which can be
bounded as ∑

i∈[K−1]

1 · vi
1 +

∑
j∈[K] vj

+
1−δ
2−δ · vK

1 +
∑
j∈[K] vj

≥ 1− 2δ

2− 2δ
.

Thus, for every i ∈ [K], we have

∆K ≥
1− δ
2− δ

− 1− 2δ

2− 2δ
≥ δ

4
.

We can again bound

H2(I2) =
∑
i∈[K]

vi + 1/K

∆2
i

+ max
i∈[K]

{
1

∆2
i

}
≤ 4

∆2
K

≤ 64

δ2
.

(29)
By (28) and (29), to prove Theorem 13 it suffices to show

the following.

Lemma 26. Any algorithm that uses less than c
4δ2K2 pulls

for c < 10−4 outputs the wrong answer on at least one
instance among I1 and I2 with the probability at least 0.4.

In the rest of this section we prove Lemma 26. We can
focus on deterministic algorithms, since for any randomized
algorithm we can always fix its randomness and obtain the
deterministic algorithm with the smallest error on the input.

Let Tt = (U1, o1), . . . , (Ut, ot) be the transcript of algo-
rithm up to the t-th pull. We use g1(Tt) and g2(Tt) to denote
the probabilities of observing the transcript Tt on instances
I1 and I2 respectively. The following lemma is the key for
proving Lemma 26.

Lemma 27. Let c > 0 and T = c
4δ2K2 . For all ε > 0, we

have

Pr
TT∼g1

[
ln
g2(TT)

g1(TT)
≤ −(ε+ c)

]
≤ exp

(
−ε2

9c

)
.

To see Lemma 27 implies Lemma 26, we set ε = 1
5 , c =

1
2250 , and define event Q as

Q ,

{
ln
g2(TT)

g1(TT)
> −(ε+ c)

}
. (30)

By Lemma 27, it holds that PrTT∼g1
[Q̄] ≤ e−10. Let B be

the event that algorithm A outputs the set [K − 1]. We have

Pr
TT∼g1

[B] = Pr
TT∼g1

[
B ∧ Q̄

]
+ Pr
TT∼g1

[B ∧ Q]

≤ Pr
TT∼g1

[
Q̄
]

+ Pr
TT∼g1

[B ∧ Q]

≤ e−10 + Pr
TT∼g1

[B ∧ Q]

= e−10 +
∑
TT :B∧Q

g1(TT)

(30)
≤ e−10 + eε+c

∑
TT :B∧Q

g2(TT)

≤ e−10 + eε+c Pr
TT∼g2

[B]

= e−10 + eε+c − eε+c Pr
TT∼g2

[
B̄
]
.

Therefore, we have

Pr
TT∼g1

[B] + eε+c Pr
TT∼g2

[
B̄
]
≤ e−10 + eε+c,

and consequently,

min

{
Pr
TT∼g1

[B], Pr
TT∼g2

[
B̄
]}
≤ e−10 + eε+c

1 + eε+c
≤ 0.6.

(31)
(31) indicates that one of the followings hold: (1) Event

B holds with probability at most 0.6 when TT ∼ g1, and (2)
Event B̄ holds with probability at most 0.6 when TT ∼ g2.
In the first case, it indicates that algorithm A errors on input
instance I1 with probability at least 0.4. In the second case,
it indicates that algorithm A errors on input instance I2 with
probability at least 0.4.

We now prove Lemma 27.

Proof. (of Lemma 27) We define a sequence of random vari-
ables Z0, Z1, . . . , ZT when the transcript Tt (0 ≤ t ≤ T) is
produced by applying algorithm A on the input instance I1:

Zt = ln
g2(Tt)
g1(Tt)

.

Let Vt =
∑
i∈Ut vi. Zi has the following properties.

• If 1 6∈ Ut, then Zt − Zt−1 = 0, and E[Zt − Zt−1 |
Zt−1] = 0.

• If 1 ∈ Ut, then with probability 1+Vt−v1

1+Vt
,

Zt − Zt−1 = − ln

(
1− 2δ

1 + Vt

)
,

and with probability v1

1+Vt
,

Zt − Zt−1 = − ln

(
1− 2δ

1 + Vt

)
+ ln

(
1− 2δ

v1

)
.

We thus have

E[Zt − Zt−1 | Zt−1] = − ln

(
1− 2δ

1 + Vt

)
+

v1

1 + Vt
ln

(
1− 2δ

v1

)
.(32)

Using inequalities ln(1 + x) ≤ x and ln(1− x) ≥ −x− x2

for x ∈ [0, 0.5], and noting that 2δ/v1 = 2δ(K − 1) ≤ 0.5,
we have

(32) ≥ 2δ

1 + Vt
− 2δ

1 + Vt
− 4δ2

(1 + Vt)v1
≥ −4δ2(K − 1)

1 + Vt

≥ −4δ2K2 . (33)

Note that in the case that 1 6∈ Ut, the inequality E[Zt−Zt−1 |
Zt−1] = 0 ≥ −4δ2K2 holds trivially.

We can also bound the difference of two adjacent variables
in the sequence {Z0, Z1, . . . , ZT }.

|Zt − Zt−1| ≤
∣∣∣∣ln(1− 2δ

1 + Vt

)∣∣∣∣+∣∣∣∣ln(1− 2δ

v1

)∣∣∣∣ ≤ 2δK .

(34)
Define Z ′t , Zt + 4δ2K2t. By (33) it follows that Z ′t is a

submartingale and satisfies

E[Z ′t+1 | Z ′t] ≥ Z ′t . (35)

By (34) and the fact that δ < 1
4K , we have∣∣Z ′t − Z ′t−1

∣∣ ≤ 4δ2K2 + 2δK ≤ 3δK . (36)

By (36) and Azuma’s inequality (Lemma 15), for T = c
4δ2K2 ,

we get

Pr
TT∼g1

[ZT ≤ −(ε+ c)] = Pr
TT∼g1

[Z ′T ≤ −ε]

< exp

(
−ε2

18Tδ2K2

)
≤ exp

(
−2ε2

9c

)
.

The lemma follows from (15) and (16).

	Introduction
	Related Work.

	Preliminaries
	The Basic Algorithm
	The Improved Algorithm
	Lower Bound
	Concluding Remarks
	More Preliminaries
	Tools in Probability Theory
	Proof of Observation 1
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Lemma 6
	Proof of Theorem 11
	Proof of Theorem 13 (The Lower Bound)

