
The Price is (Not) Right: Reflections on
Pricing for Transient Cloud Servers

David Irwin, Prashant Shenoy, Pradeep Ambati, Prateek Sharma†, and Supreeth Shastri‡

University of Massachusetts Amherst †Indiana University ‡University of Texas at Austin

Abstract—Amazon introduced spot instances in December
2009, enabling “customers to bid on unused Amazon EC2
capacity and run those instances for as long as their bid exceeds
the current Spot Price.” Amazon’s real-time computational spot
market was novel in multiple respects. For example, it was the
first (and to date only) large-scale public implementation of
market-based resource allocation based on dynamic pricing after
decades of research, and it provided users with useful informa-
tion, control knobs, and options for optimizing the cost of running
cloud applications. Spot instances also introduced the concept of
transient cloud servers derived from variable idle capacity that
cloud platforms could revoke at any time. Transient servers have
since become central to efficient resource management of modern
clusters and clouds. As a result, Amazon’s spot market was the
motivation for substantial research over the past decade.

Yet, in November 2017, Amazon effectively ended its real-time
spot market by announcing that users no longer needed to place
bids and that spot prices will “...adjust more gradually, based on
longer-term trends in supply and demand.” The changes made
spot instances more similar to the fixed-price transient servers
offered by other cloud platforms. Unfortunately, while these
changes made spot instances less complex, they eliminated many
benefits to sophisticated users in optimizing their applications.
This paper provides a retrospective on Amazon’s real-time spot
market, including its advantages and disadvantages for allocating
transient servers compared to current fixed-price approaches.
We also discuss some fundamental problems with Amazon’s spot
market, which we identified in prior work (from 2016), that
predicted its eventual end. We then discuss potential options
for allocating transient servers that combine the advantages
of Amazon’s real-time spot market, while also addressing the
problems that likely led to its elimination.

.

I. INTRODUCTION

Amazon’s Elastic Compute Cloud (EC2) introduced spot in-
stances [1] on December 14th, 2009 [2], enabling “...customers
to bid on unused Amazon EC2 capacity and run those in-
stances for as long as their bid exceeds the current Spot Price.”
Amazon’s real-time computational spot market was novel in
multiple respects: it was the first (and to date only) large-
scale public implementation of market-based allocation of
computing resources based on dynamic pricing after decades
of research [3], [4], [5], and it provided users with useful
information, control knobs, and options for optimizing the
cost of running cloud applications. Perhaps most importantly,
spot instances also first introduced the concept of transient
servers [6], [7], which are derived from variable idle capacity,
and that platforms may revoke at any time. Transient servers
have since become central to efficient resource management
in modern clusters and clouds [8], [9], [10].

Spot instances were (and still are) highly attractive to users
due to their low spot price, which is stems from their low
reliability and is typically 50-90% lower than the fixed price
of on-demand servers. As a result, EC2’s spot market was the
motivation for substantial research in multiple areas over the
past decade, e.g., on optimizing bidding strategies [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], gracefully handling
revocations [7], [21], [22], [23], pricing in risk when selecting
cloud servers [24], [25], etc.

Yet, in November 2017, Amazon effectively ended its real-
time computational spot market by announcing that users no
longer needed to place bids and that spot prices will “...adjust
more gradually, based on longer-term trends in supply and
demand [26].” In addition, EC2 replaced the “bid price” with
a “maximum price,” and made setting it optional, such that
the default “maximum price” is equal to the instance type’s
corresponding on-demand price [27]. The changes made spot
instances more similar to the fixed-price transient servers
offered by other cloud platforms. Unfortunately, while these
changes made spot instances less complex, they eliminated
many benefits to sophisticated users in optimizing their appli-
cations. The goal of this paper is to provide a retrospective
on Amazon’s real-time computational spot market, including
its advantages and disadvantages for allocating idle cloud
server capacity compared to current fixed-price approaches by
Google and Microsoft’s cloud platforms. We first provide a
brief overview of spot instances and their intended purpose.

Spot instances were originally designed for applications
that are tolerant to delays and performance degradation due
to periodic resource unavailability, and thus can make use
of EC2’s fluctuating amount of idle capacity as it becomes
available. EC2’s (and other cloud provider’s) idle capacity
is likely large on average, as they must provision their total
server capacity for expected peak loads that rarely occur, or
risk annoying their users by rejecting too many of their VM
requests. Thus, spot instances enabled EC2 to earn additional
revenue from their (otherwise idle) server capacity, which is a
sunk cost. Importantly, since its idle capacity fluctuates, EC2
may need to revoke (or shutdown) spot instances at any time
to satisfy new requests for on-demand (or reserved instances),
which effectively reduces the supply of idle capacity. In con-
trast, EC2 does not forcibly revoke on-demand (or reserved)
instances. Figure 1 depicts this relationship between reserved,
on-demand, and spot instance pools, where the spot pool
fluctuates dynamically based on the unused reserved and on-
demand instances. Anytime EC2 allocates a new reserved or

Reserved
Instance Pool

Spot
Instance Pool

On-demand
Instance Pool

Reserved
Running Instance

Reserved
Idle Instance

On-demand
Instance

Spot Instance

Idle Servers

Fig. 1. Relationship between reserved, on-demand, spot instance pools hosted
on same set of physical cloud servers.

on-demand request, it reduces the resources available in the
spot instance pool and may result in a revocation.

Due to the possibility of revocation and their lack of avail-
ability guarantees, spot instances are much less valuable than
on-demand or reserved instances, which is typically reflected
in a spot price that is 2-10× less than the on-demand price.
In this case, by “value” we mean the useful performance
derived from a spot instance after accounting for the overhead
of revocation, which may include re-executing work lost on
revocation or implementing fault-tolerance mechanisms, such
as checkpointing and replication, to mitigate the impact of
revocation [28], [29]. Spot instances’ low cost is especially
attractive if applications do not require availability guarantees
and can gracefully handle periodic server revocations.

Of course, the key defining characteristic of spot instances
from the outset was their dynamic spot price that varied over
time. While EC2’s documentation never explicitly stated the
pricing algorithm, it did say that the spot price “...fluctuate[d]
periodically depending on the supply and demand of Spot
instance capacity,” and strongly implied that the price was
set equal to the lowest winning bid in a continuous sealed-bid
multi-unit uniform price auction. EC2’s global spot market
was (and is) massive—encompassing thousands of instance
types with distinct spot price dynamics—since it operated a
different spot market for each type of VM in each Availability
Zone (AZ) of each geographic region. EC2 also publishes spot
prices in real-time and makes the previous 3 months of data
accessible for download. As we discuss, the real-time spot
price data provided important visibility into EC2’s spot market
and the demand for different instance types, as well as the
underlying load dynamics of EC2’s cloud data centers.

Analyses of spot price data showed that EC2 periodically
changed the pricing algorithm, and suggested it may have
sometimes deviated from a simple uniform price auction, e.g.,
by having a hidden reserve price [30], [31]. Importantly, we
note that, since EC2 was the sole supplier, spot instances
were never sold in a “real” market, i.e., where the spot
price is determined by matching supply and demand among
competing buyers and sellers, as EC2 could manipulate the
price by manipulating the supply. For example, EC2 could

reduce the resources available in the spot pool even if there
were no reserved or on-demand requests, which would drive
up the real-time spot price. That said, EC2 did ensure that
spot instances would run “...as long as their bid exceeds
the current Spot Price.” Importantly, enforcing this revocation
policy required EC2 to set the instantaneous real-time spot
price such that it matched the instantaneous supply (of idle
server capacity) and demand (set of user bids and values).

To understand why, consider the scenario in Figure 2(a) with
a spot price equal to the N th highest bid for N available spot
instances (such that each user bids for a single instance). In
this case, the N available spot instances are allocated to the
N highest bids (b). However, if a new user bids greater than
the highest current bid (bnew in (c)) and the price reflects the
instantaneous matching of supply and demand, then the spot
price should change to the (N − 1)th highest bid, causing the
user with the N th highest bid to be revoked.

The revoked user with the N th highest bid should observe
that the spot price has risen above their bid price, which is
consistent with the revocation policy. The new user should be
allocated the revoked instance, since their bid is greater than
the spot price. Similarly, if the supply of idle server capacity
decreases (d), the spot price also increases such that any users
of revoked spot instances observes that the spot price rises
above their bid price. In contrast, if EC2 did not change the
spot price in these cases, then spot instances would have to be
revoked without the spot price rising above the corresponding
bid price, which contradicts the revocation policy. Thus, even
though EC2’s spot market was not a “real market,” its original
revocation policy did necessitate that it faithfully alter the spot
price to reflect the instantaneous supply and demand, so that
all users observed a consistent revocation policy. This resulted
in periods of high spot price volatility characterized by sharp
price spikes and dips, as noted in prior work [24], [25], [32],
[33]. This volatility is undesirable from a user’s perspective.

Undesirable spot price volatility likely led to Amazon’s
November 2017 announcement that spot prices will “...adjust
more gradually, based on longer-term trends in supply and
demand.” However, since these more gradual price adjustments
likely do not derive from instantaneously matching supply and
demand, then EC2 cannot enforce their original revocation
policy above. That is, users may have spot instances revoked,
or may not be able to acquire spot instances, when their
“maximum price” is above the spot price. There is evidence of
such behavior in the EC2’s spot market after the change [34].

As we discuss, this has profound effects on optimizing
applications for spot instances. The gradual spot price changes
and decoupling of spot price from revocations make EC2 spot
instances similar to transient server offerings from Google
Cloud Platform (GCE) (called Preemptible VMs [35]) and
Microsoft Azure (called Low-priority Batch VMs). In both
cases, GCE and Azure simply charge a fixed price for transient
servers and reserve the right to revoke them at any time. To
illustrate, Figure 3 shows the spot price of a m4.4xlarge
over 3 months both before and after the announcement above;
the horizontal line in the figure represents the on-demand

Spot Bids
(M bids)

Spot Instance Pool (N idle servers) Spot Bids
b1
b2
b3

bn

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bn

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bnewbm

Idle Server Spot Instance

b) t=1, Spot Fulfilled: M > N c) t=2, Spot Revocation (spot price)a) t=0: Evaluating Spot bids

Spot price ($) = bn Spot price ($) = bn-1

Spot
Supply

1
2
3

n

Spot
Supply

1
2
3

n

Spot Bids
Spot

Supply
1
2
3

n

Spot Instance Pool (No idle servers)

b1 b4b3b2 b5

bn-1 bnew

d) t=3, Spot Revocation (supply)

Spot price ($) = bn-2
Spot Bids

Spot
Supply

1
2
3

n

Bid Accepted
(Resource Available)

Bid Rejected
(Resource NA)

X

bnew
b1
b2

bn

bm

bn-1bn-1

b1
b2
b3

bn

bm

bn-1

Fig. 2. Scenario a) and b) illustrate how spot requests are fulfilled, where the spot requests are sorted from highest to lowest based on the bid (top to bottom)
and are fulfilled based on the number of idle resources. Scenario c) represents arrival of a new spot bid (>spot price), which results in the revocation of
lowest bid request. Scenario d) depicts the spot revocation due to loss of the spot supply caused by on-demand and reserved requests.

 0.25

 0.5

 1

 2

 4

 8

 16

 32

P
ri
c
e
 (

c
e
n
ts

/E
C

U
-h

o
u
r)

Time

m4.4xlarge (Sep - Nov 2017) m4.4xlarge (Jan - Apr 2019)

Fig. 3. Comparison of m4.4xlarge spot VM price in us-west-1c over 3
months both before and after the EC2 spot pricing policy change.

price. The figure shows that before the change spot prices were
highly volatile, often spiking to well above the on-demand
price, while after the change, spot prices became largely fixed
with few variations over the entire 3 month period.

In this paper, we first outline both the advantages and
disadvantages of offering transient servers using a real-time
spot market (§II). We then discuss similar advantages and
disadvantages for the current, largely fixed-price, model that
resembles the one from GCE and Azure, and reasons EC2
likely adopted the simpler fixed-price approach (§III). We then
discuss possible avenues for addressing the problems with each
approach (§IV) before concluding (§V).

II. REAL-TIME SPOT MARKET PROS AND CONS

This section discusses the advantages and disadvantages of
selling transient servers in a real-time spot market where the
spot price is variable, and users bid on idle capacity and can
use it as long as their bid exceeds the spot price.

A. Advantages

Determines the Optimal Price.. The primary advantage of a
real-time spot market is that it automatically determines the
price necessary to sell the available supply, which varies over
time. If the demand is low or the supply is high, then the
price will drop, which, in theory, can attract additional demand
that can consume the available supply. In contrast, setting a
fixed price on a variable supply may result in periods where
demand is lower than supply (resulting in some idle capacity)
and where supply is lower than demand (requiring the cloud
platform to reject requests for VMs). Both cases reduce the
total revenue—-in the former by not selling all of the capacity,
and in the latter by selling the idle capacity for too low of
a price. The ability for markets to “automatically” set the
optimal price is the main reason that market-based allocation

of computing resources under constraint has been the subject
of research for more than 50 years [3], [4], [36], [5].
Reveals Important Information. EC2 always made the pre-
vious 3 months of spot price data available for each of the
thousands of spot instances it offered. In addition, there were
online archives that stored spot price data for many years. This
historical spot price data provided users important information
when making resource allocation decisions, as it enabled them
to estimate the frequency and distribution of both revocations
(at any bid level) and availability. Note that revocations and
availability are distinct metrics: revocations represent points
in time where the spot price rises above an instance’s bid
price, causing EC2 to revoke the instance, while availability
represents the percentage of time the spot price is below the
bid price. Thus, a spot instance can yield the same availability
across a wide range of revocation rates and characteristics.

Understanding revocations and availability characteristics is
important for applications, and can influence their choice of
spot instance and the value they derive from it. For example,
a stateless distributed web application that uses a frontend
load balancer to distribute requests across a large number
of active servers may not care much about the frequency of
revocations, since they have little impact on performance (as
the load balancer need only update its active server set when a
spot instance is revoked) [37], [38]. However, the application
would care about availability as it may require a certain target
capacity to be available for a certain percentage, e.g., 99.999%
available [38]. In contrast, a distributed machine learning
job that is iterating on volatile in-memory data may care
more about the revocation rate, since it influences the optimal
frequency for checkpointing volatile data to disk, i.e., that
balances the overhead of checkpointing with the expected time
required to re-generate volatile data lost on a revocation [23],
[25]. This application may care less about availability, either
because it is a background (rather than interactive) workload
without a strict deadline or because it always immediately
replaces a revoked spot instance with another one.

In both cases above, the applications use knowledge of each
spot instance’s volatility (or revocation rate) and availability
to better optimize their performance. In the case of the
stateless distributed web application, it may select different
spot instances with independent availability periods to ensure
that its aggregate capacity availability requirement is met [38].

In the case of a distributed machine learning job, it may select
the spot instance that offers the lowest cost when accounting
for the overhead of checkpointing and re-executing work on
revocations [39], [23], [25]. Analyzing spot instances prices
also enables applications to select different risk tolerances. For
example, prior work examines selecting different “portfolios”
of spot instances to adjust a distributed application’s risk
tolerance, since some spot instances offer a low price but
high volatility, while others may offer a high price but low
volatility [32]. The latter has the potential for lower cost on
average across many jobs, but may yield a higher variance in
cost for any one job, exposing the application to higher risk.

Prior work on optimizing applications for transient servers
generally generally uses information about volatility and avail-
ability to select transient servers with different characteristics
and to select and tune fault-tolerance mechanisms. For exam-
ple, Pado focuses on distributed batch jobs that are structured
as directed acyclic graphs (DAGs) of tasks, and only executes
tasks with few dependencies on transient servers, since a
revocation results in a low penalty [22]. SpotOn jointly selects
the optimal spot instance and fault-tolerance mechanism, e.g.,
replication or checkpointing, that offers the lowest cost to com-
plete a batch job based on an application’s resource usage. The
work shows that both the price characteristics and the resource
usage influence the optimal choice [24]. HotSpot chases low
prices by continuously migrating applications encapsulated to
the globally lowest price spot instance, and shows that doing
this also reduces the application’s revocation rate [40].

Numerous other works also optimize different applications
for spot instances (or transient servers) based on knowledge
of price, revocations, and availability. Since spot price data
reveals these characteristics, it is critically important for opti-
mizing applications for transient cloud servers.
Control of Revocation and Availability Characteristics. Not
only did the spot price reveal revocation rates and availability
of spot instances, it enabled applications to control the relative
frequency and availability of spot instances by raising or
lowering their bid. Thus, applications could “buy” a lower
revocation rate and higher availability by raising their bid
price. This ability to control revocation rates and availability
is important, as different applications may have different toler-
ances for revocations and availability. This control combined
with the ability to select from spot instances with different
price characteristics gave users a wide range of options when
compiling their “portfolio” of spot instances.
Control of Revocation and Availability Dependencies. The
real-time spot price and associated revocation policy also
enabled distributed applications useful control over the timing
of revocations. Distributed applications often synchronize their
state periodically as the application progresses. Many big
data frameworks, such as Hadoop and Spark, follow the
Bulk Synchronous Processing model [41] such that parallel
tasks periodically synchronize at barriers, where all tasks
must reach the barrier before the application proceeds. These
synchronization barriers degrade performance if progress is
non-uniform across tasks as the “fast” tasks end up waiting on

the “slow” (or straggler) tasks [39]. These types of distributed
batch jobs are attractive for spot instances as they involve bulk
data processing that is amenable to delays or performance
degradation due to revocations. However, if parallel tasks
experience different numbers of revocations, their performance
will be bottlenecked by the slowest task (i.e., the one with the
most revocations).

EC2’s real-time spot market enabled distributed applications
to indirectly control the timing of revocations across tasks.
Namely, any spot instance with the same bid would experience
revocations at the same time based on changes in the common
spot price. This control is powerful, as it enables distributed
applications to ensure that transient servers experience both
the same number of revocations and experience revocations at
exactly the same time. Thus, batch applications can maintain
uniform performance across parallel tasks even when execut-
ing on transient servers. This is not possible under the current
spot price model, as revocations are not necessarily correlated
with the spot price. Note that while existing models may bulk
revoke a single request of, say, N transient servers, there is
no way to add servers post facto with the same revocation
timings. This is simple in the real-time spot market, where you
simply make a new request for spot instances with the same
bid price. These new spot instances will have revocations at
exactly the same frequency and time as other spot instances
at this bid price. Thus, EC2’s spot market enables a kind of
coordinated elasticity for transient servers that enables users
to add transient servers with the same revocation pattern.

In addition to controlling the revocation dependencies, the
spot market also enables control of availability dependencies.
This is critical to running highly available interactive services
on spot instances via over-provisioning [38]. In particular,
spot instances of the same type requested with the same
bid will have exactly correlated periods of availability. In
addition, requesting a spot instance of the same type with a
higher bid will have availability periods that are a superset
of the the availability of the spot instances with a lower
bid. To understand why this control is important, consider
provisioning a multi-tier web application on spot instances
using a container manager, such as Kubernetes [8].

This generally requires specifying the resources for each
tier independently. However, if the availability periods are
independent for each tier, then the total availability of the
service will be the product of the availabilities of each tier.
Thus, if each tier is available with percentage p, then the total
availability will be pk for a k-tier service. For example, if
3-tier service has an availability of 99%, then the aggregate
availability of the service will only be only 99%3 = 97%. In
contrast, if we can specify each tier such that their availability
periods are entirely dependent and correlated, then the 3-
tier service availability would simply be the availability of
any given tier or 99%. This control enables such interactive
services to provide the same availability with many fewer
transient servers (at a lower cost).

EC2’s real-time spot market enabled sophisticated control
of availability and revocation dependency relationships across

server requests. As we discuss, the current fixed-price offerings
from Google and Microsoft do not.
Always Obtainable. Cloud platforms offer a wide range of
different purchasing options, as mentioned in §I, which gener-
ally specify a fixed price over some commitment duration. For
example, on-demand instances incur a fixed price per unit time
and, once allocated, allow users to relinquish them whenever
they are done. Similarly, reserved instances incur a fixed price
over the length of the reservation, which can vary from 1 to
3 years. EC2 also includes more esoteric purchasing options,
such as spot block and scheduled reserve. Spot block enables
users to reserve short blocks of time on demand, from 1 to 6
hours, such that the instance is always revoked at the end of
the block. Scheduled reserve enables users to reserve repeating
blocks of time at daily, weekly, or monthly intervals.

In general, since the price of these offerings does not adjust
dynamically to the demand, it is possible for EC2 to run out
of these resources. For example, prior work has shown that
the real-time price of spot instances (before the change in late
2017) is partially correlated with the availability of on-demand
instances [42]. The intuition was that the unavailability of on-
demand instances would drive up the price of spot instances,
since users could always obtain spot instances by bidding a
higher price. That is, the unavailability of on-demand servers
would increase the demand (and real-time price) of spot
instances. The work actively probed EC2 by requesting on-
demand instances during high spot price periods and observed
the rate at which the on-demand requests were rejected due
to “out of capacity” errors. This rate of on-demand rejection
correlated with high spot prices, such that the higher the spot
price the higher the on-demand rejection rate.

This insight reveals an important characteristic of spot
instances: since their price was dynamic, they were always
obtainable if users were willing to bid high enough for them.
This is not true for fixed price resources. Obtainability is
an important, yet often overlooked metric, in public cloud
platforms [43]. The metric is important for businesses, which
often want assurances that they can obtain cloud resources
to satisfy sudden increases in demand. Satisfying sudden
increases in demand (likely from new customers) is critical
for businesses. With the end of EC2’s real-time pricing, the
only way to ensure obtainability is on a long-term basis
by reserving instances for 1 to 3 year periods. Even then,
EC2 may reject requests for reservations to ensure they have
enough resources in their on-demand pool to satisfy requests.
This can be easily seen in the scheduled reserved option, as
some time periods “fill up” for scheduled reserved, such that
EC2 prevents additional users from reserving those times. In
general, though, users have little visibility into the obtainability
of different types of cloud servers.

B. Disadvantages

While EC2’s real-time spot market enabled numerous ad-
vantages, it also had a number of disadvantages that likely led
to its demise. We highlight the important disadvantages below.

Highly Complex. EC2’s spot market is highly complex with
thousands of server types, each with their own dynamic price.
Most users are likely not sophisticated enough to navigate this
complexity, and effectively use the information to optimize
their applications. While the advantages above are beneficial
for sophisticated users in optimizing their applications, most
of these advantages have been highlighted through research
and are likely not used in practice. Dynamic pricing may also
discourage enterprises from using spot instances despite their
low average price, as they typically have fixed IT budgets for
fixed resources that cannot accommodate variable pricing.

The volatility of the real-time spot market also often caused
the spot price to be significantly greater than the on-demand
price even if the average price was low. Initially, EC2 had no
limit on the bid value, and there were documented instances
of the spot price rising to greater than $1000 per hour for
instances with an on-demand price of $0.10 per hour (or
10k× higher price). This likely occurred due to convenience
bidding [44] where users bid excessively high prices to prevent
revocations from occurring under the assumption that the price
would never rise significantly above the on-demand price. Of
course, if everyone adopts this strategy, it will result in a
significant rise in the spot price. After these incidents, EC2
placed bid limits between 4-10× the on-demand price to limit
the negative impact of such convenience bidding strategies.

For enterprises that have already had difficulty adapting
from budgeting IT as capital costs to recurring cloud costs,
variable pricing may have discouraged the use of spot in-
stances. This may be one reason that Google and Microsoft
adopted fixed price models for their transient server offerings.
Requires Application Modifications. Using spot instances
typically requires application modifications to gracefully han-
dle revocations. While some applications may be designed to
handle rare failures, revocations differ from failures in that
they are an expected and frequent event, whereas failures are
rare and unexpected. Thus, designing applications to handle
revocations requires tuning fault-tolerance mechanisms to ac-
count for the costs of the mechanism, e.g., the frequency of
checkpointing or degree of replication. If users do not account
for these costs of revocations or fault-tolerance, then it is
possible for spot instances to result in an overall execution
cost that is actually higher than on-demand instances, even if
they have a lower price. The execution cost accounts for the
overhead due to revocation, while the price does not.

Recent work on resource deflation [45] proposes a different
model where resources are not simply revoked, but are just re-
duced to a minimal but still runnable state. This model is easier
for applications to handle since it does not subject them to
failure-like revocations, but only to performance degradation.
However, there are still issues here with handling non-uniform
performance, especially for synchronized applications [39].
For example, if resources are not uniformly deflated in a
distributed applications that periodically synchronizes its state,
it can result in “stragglers” that waste resources by waiting
for slow tasks to finish. In the cloud, these wasted resources
translate directly to wasted costs.

Ultimately, modifying applications to gracefully handle re-
vocations at low cost is often challenging and application-
specific, which may discourage use of spot instances. In-
terestingly, new serverless offerings which enable users to
execute time-limited stateless functions on-demand are similar
to transient servers in that they “revoke” the function after
some maximum running time, e.g., 300 seconds. However,
these offerings, unlike transient servers, require developers to
re-implement their applications with this usage model in mind.
Not Incentive Compatible. An incentive compatible auction
mechanism is one where every user is incentivized to bid
according to their true valuation. For example, a sealed-bid
Vickrey auction for a single item that charges the (highest)
winning bid the bid price of the second highest bid is known
to be incentive compatible and elicit truthful valuations from
bidders. That is, users gain no advantage from submitting a
bid that deviates from their actual truthful valuation. Vickrey-
Clarke-Groves (VCG) auctions extend this mechanism to mul-
tiple items. EC2 implied (although we do not know) that they
used a uniform price auction (possibly with a hidden reserve
price [30], [31] at certain times), which compared to VCG
auctions incentives bidders of multiple units to bid below their
truthful valuation. Of course, EC2’s auction was continuous
and revealed historical prices, which may also influence bids.

While EC2’s auction mechanism may not have been in-
centive compatible, the more significant problem with elic-
iting truthful bids is the presence of on-demand instances.
Sufficiently adaptive applications have a strong incentive to
always bid a value close to the on-demand price. If the
spot price exceeds the corresponding on-demand price, then
these applications can simply request on-demand instances and
switch to using them. Much prior work on optimizing for spot
instances adopted this simple bidding strategy [40], [25], [32],
[24], [20]. Thus, as applications that use spot instances become
more sophisticated, we would expect the real-time spot price to
rise to something close to the on-demand price. In fact, EC2
ingrained this bidding strategy into its tools for using spot
instances, such as Spot Fleet [46], which by default bids the
on-demand price. In addition, after the change in the pricing
algorithm that ended the real-time spot price, EC2 replaced
the bid with a “maximum price” that is set by default equal to
the corresponding on-demand price. Thus, the real-time spot
market likely never elicited truthful bids from users.

We highlighted this fact in prior work from 2016 argu-
ing that due to this EC2’s real-time spot market was not
sustainable [29]. In particular, as applications became more
sophisticated, the spot price would not only rise but become
more volatile, requiring applications to incur a higher revo-
cation overhead. The higher price and increased overhead
would eliminate nearly any benefit to using spot instances.
In addition, the presence of a risk-free on-demand price may
result in other ways to game the spot market. For example,
prior work points out that a low spot price relative to the
on-demand price actually implies that a spot instance has a
low risk of revocation, since it requires a larger change in
the supply/demand balance to trigger the revocation [40]. As

a result, the lowest priced spot instances are also the ones
with the lowest revocation risk. Thus, dynamically migrating
to the spot instance with the lowest price is highly attractive.
Of course, this strategy does not work if everyone does this.
We discuss these second-order effects on the market below.
Excessive Revocations. The frequency of revocations dictate
the inherent value of transient servers and spot instances. The
higher the revocation rate, the more overhead applications
incur from re-executing lost work or executing fault-tolerance
mechanisms. Thus, the revocation rate dictates the usable
resources of transient servers. Offering transient servers in a
real-time spot markets incurs strictly more revocations than
offering them for a fixed price. In the former case, revocations
can occur for two reasons: the underlying supply of spot
instances changes or the set of bids and values change. In
the latter case, revocations can only occur when the supply of
spot instances changes, as there are no user bids.

Thus, in a real-time spot market, even if the supply stays the
same, the spot price can be highly volatile due to competing
users out-bidding each other. As a result, a real-time spot
market will experience strictly more revocations than offering
transient servers for a fixed price, which decreases the usable
resources—not consumed by revocation overhead—and value
of the spot instance relative to selling them for a fixed price.
Thus, the more volatile the spot market, the less the resources
that are sold in the spot market are worth. This dynamic is
unlike the market for other commodities, and is another reason
why we previously argued that EC2’s real-time spot market
was not sustainable [29]. Note that these excessive revocations
are the “price” that is paid for enabling spot instances to be
always obtainable (an advantage from the previous section). To
have a resource that is always obtainable, the cloud platform
must be able to revoke that resource from other users in
response to a user request. Such user-induced revocations
cannot occur when using a fixed price.
Second-order Effects.. Many of the proposed cost reducing
optimizations for spot instances have potential second-order
effects that would likely increase real-time spot prices and
make them more volatile if widely adopted, which based on the
discuss above would result in more revocations and decrease
spot instances’ inherent value. For example, the HotSpot
system that continuously migrates to the lowest-priced spot
instance would increase volatility if everyone adopted it, as all
users would chase the same low prices, which would cause that
price to rise [40]. The rise would result in another migration
that would raise the price of another spot instance. Prior work
generally has not considered these second-order effects, since
most users of spot instances are currently unsophisticated. The
low real-time spot price is direct evidence of unsophisticated
users, since if all users were engaged in many of the optimiza-
tions mentioned above, the price of spot instances would be
closer to on-demand instances.

III. FIXED PRICE TRANSIENT SERVER PROS AND CONS

Since EC2’s late-2017 change in its spot pricing algorithm
to reflect only “longer-term trends in supply and demand,”

the spot price volatility has reduced significantly, as reflected
in Figure 3. Our analysis across thousands of spot instance
prices shows that, while there are some gradual increases and
decreases in spot prices over time, the vast majority of spot
instances now exhibit very little change in their spot price. In
effect, EC2’s spot market is now akin to GCE and Azure’s
fixed-price transient server offerings, as the price is largely
stable and does not reflect real-time supply and demand.

In some ways, the current EC2 approach represents the
worst of both worlds, as the spot price is technically still
dynamic and variable for users, so there is no assurance of
a stable price, even if the price is mostly fixed.. In addition,
allowing users to issue a default “maximum price” equal to the
on-demand price prevents EC2 from seeing users’ real value
function. While the previous approach did not necessarily elicit
truthful bids from all users, it did require users to place a
bid (there was no default), and likely provided some limited
visibility into user demand. It is likely that the large majority
of requests under the current approach just use the default
maximum price, regardless of their true valuation. As a result,
EC2 likely has less accurate information available to correctly
set the long-term spot price. In addition to the disadvantages
above, the fixed-price (or near fixed-price model in EC2’s case)
has advantages and disadvantages that roughly mirror those
from the previous section. We elaborate below.

A. Advantages

Less Complex. The fixed-price model is much easier for users
to understand and does not expose them to as much complexity
compared to real-time spot prices. The model is also easier to
budget for enterprises that are used to allocating fixed budgets.
This is likely the primary reason that EC2, as well as GCE
and Azure, have adopted this model. Less complex offerings
are more likely to be used and adopted by customers. Even
though the real-time spot price yields the “optimal” price in
theory, the price elasticity of demand for cloud servers may not
be high, since applications must typically be modified to use
transient servers. In general, if applications have been modified
and can gracefully use transient servers, they should use them,
since their price is less than the on-demand price. Thus, these
applications are not sensitive to the spot price. In contrast, if
applications have not been modified to use transient servers,
they cannot use them regardless of their price.

As a result, deriving the “optimal” price may not be a
significant advantage for a real-time spot market, especially
since the market does not necessarily elicit truthful bids.
Instead, encouraging users to spend the developer time to
modify their applications to run on transient servers may be
more effective at encouraging their use (and increasing revenue
from them). This is likely the primary reason Google and
Microsoft have adopted fixed-price transient server offerings.
Incentive Agnostic. The fixed-price model does not require
users to make bids, and so is agnostic to incentives and
gaming. However, as we discuss below, since users do not
know either revocation or availability information, there is less

opportunity to optimize applications to efficiently use fixed-
price transient servers.
Fewer Revocations. As mentioned in the previous section, in
a fixed-price model revocations only occur when the supply
of idle capacity changes. There are no revocations related to
changes in user demand, i.e., users outbidding other users. As
discussed above, fewer revocations is better for applications.
No Second Order Effects. There are no second order effects,
since applications have no revocation or availability informa-
tion to optimize for transient server characteristics. This is an
advantage in that users cannot game the market en masse in
a way that makes transient servers less useful, as can be done
with a real-time spot market.

B. Disadvantages

Non-optimal Pricing. The chosen fixed-price is guaranteed to
be non-optimal if demand. As a result, the approach may leave
excess resources available during periods of low demand, and
may require rejecting requests during periods of high demand.
However, this disadvantage may be offset due to increased use
from less complex pricing. Thus, while in theory, a fixed-price
reduces the potential revenue, in practice it may not have a
significant impact on the revenue from transient servers.
Requires Application Modifications. The fixed-price model
still includes revocations, and thus still requires application
modifications. Cloud providers likely view this as the largest
impediment to transient server adoption. Simplifying pricing,
may encourage developers to address the non-trivial applica-
tion modifications necessary to use transient servers.
Reveals No Information. The fixed-price model reveals no
information about transient server revocation and availability
characteristics. As a result, it is impossible to implement most
of the optimizations for transient servers proposed in prior
work on the fixed-price instances available from EC2, Google,
and Azure today. While this prevents gaming and second-
order effects, it also results in less efficient applications. For
example, a distributed machine learning job that iterates on
data stored in volatile memory may checkpoint this state too
frequently (or infrequently) resulting in a higher overhead than
necessary. Applications also will not be able to effectively
choose between different types of transient servers. In the real-
time pricing model, applications can see when demand for one
type of server rises, and then choose to select another server,
which represents a natural form of load balancing.

This lack of information is a major drawback. Prior work
has proposed methods for revealing some information about
availability and revocation rates [28] that could aid users in
optimizing their applications for transient servers. However,
unlike with spot instances, this information is not externally
verifiable by users. Defining service level objectives (SLOs)
that are not externally verifiable by users could potentially
lead to users accusing the platform of lying (or to the platform
actually lying). As a result, cloud providers often define SLOs
that are externally verifiable. In contrast, users can externally
verify that their revocation behavior conformed to the real-time

spot price by observing when their instances are allocated and
revoked relative to their bid and the spot price.
No Control of Revocation and Availability Characteris-
tics.. Not only do fixed-price transient servers not reveal any
information about revocation and availability characteristics,
they also do not enable any indirect control over them. This
eliminates an important dimension of optimization that is
available to applications in the real-time spot market.
No Control of Revocation and Availability Dependencies.
In EC2, GCE, and Azure there is no way to control the
dependency relationships between transient servers allocated
in different requests. These transient servers may be revoked
at different times and have independent availabilities. As men-
tioned earlier, many optimizations for distributed applications
rely on controlling these dependency relationships.
Not Always Obtainable. As mentioned earlier, fixed-price
resources are not always obtainable, as once demand exceeds
supply one user cannot take resources from another. Fixed-
price transient servers are essentially first-come-first-serve.

IV. MOVING FORWARD

The best way to offer transient cloud servers to users
remains an open research question. The spot price model has
significant advantages that enable sophisticated applications
to optimize their performance. However, the spot market
was not sustainable [29] for numerous reasons. In contrast,
offering transient servers for a fixed price is simpler (and
may encourage more usage), but prevent basic techniques to
optimize for transient servers, which decreases application
efficiency and transient server value. Thus, a key research
question is whether it is possible to combine the advantages of
both models. There are two basic approaches for addressing
this question: we can either start with the real-time spot price
model or the fixed price model and try to fix their respective
concerns. We discuss each approach below.
Fixing the Spot Market. The primary drawback of the spot
market is that it is highly complex for users. The drawback,
which likely motivated EC2 to alter their model, is easily ad-
dressed by having software services that allocate resources on
applications’ behalf. There is ample research into brokers [47],
derivative clouds [21], and virtual cloud service providers [48]
that mask the complexity of spot instances from applications.
Many of these approaches are transparent to applications and
implemented at the system [21] or middleware layer [24]. It is
also possible to embed market intelligence into applications,
so that they can respond to changing market conditions by
re-configuring themselves [25], [24], [32]. There are startup
companies as well focused on improving the efficiency of
cloud usage [49]. These companies are akin to “demand
response” companies for the energy sector, except they focus
on adjusting the resource usage of their clients’ applications
in response to changing cloud availability and prices.

Part of the challenge above also intersects the drawback
of requiring application modifications. As noted above, it is
possible to design approaches that are transparent to applica-
tions and implemented at the system layer. In addition, recent

work proposes using resource deflation rather than abrupt
shutdowns to revoke resources, which has less impact on
application correctness [45]. New execution models, such as
serverless, also require applications to be re-developed as a set
of stateless function executions of short duration, e.g., less than
300 seconds. Thus, serverless applications could likely execute
on transient servers with few modifications, as the maximum
function duration is nearly as small as the revocation warning.

Incentive compatibility is more difficult to fix, as the pres-
ence of fixed-price on-demand instances influences bid values.
This might require either abandoning the fixed-price model
and selling on-demand instances for a variable price, which
is highly unlikely for the foreseeable future. However, once
software systems are flexible enough to handle revocations,
price dynamics, elasticity, and dynamic adaptation, there may
be less reason to sell on-demand resources for a fixed price.
That said, it depends on the efficiency gains (and peak-to-
trough) ratio of cloud usage, which is currently not known.
If the peak-to-trough is high, then the gains from dynamic
pricing may be significant. Addressing incentive compatibility
would go a long way towards addressing both excessive
revocations and second-order effects, since these concerns are
primarily a function of the lack of incentive compatibility.
Fixing the Fixed-price Model. The fixed-price model can-
not address its non-optimal price and lack of obtainability,
as these are a function of the fixed price. However, cloud
platforms could reveal more information about revocation
and availability of different VM types, as proposed in prior
work [28]. The challenge here is doing so in a way that
is externally verifiable by cloud users without compromising
user privacy. The spot pricing model indirectly is able to do
this via the spot price. Enabling visibility into revocation and
availability characteristics is related to exposing information.
In this case, cloud platforms might consider selling different
classes of transient servers that have different characteristics
for different prices [28]. Finally, enabling control of depen-
dency relationships is more straightforward to address. Cloud
platforms could enable users to link requests for transient
servers together, such that their revocations or availability
periods were concurrent. Of course, these control mechanisms
should be designed so that users are not able to game them.

V. CONCLUSIONS

This paper discusses the implications of EC2’s change in
its spot pricing algorithm such that the spot price does not
track instantaneous supply and demand, similar to the fixed-
price approach of Google and Microsoft. We then compare
market-based versus fixed pricing when offering transient
cloud servers. The best way to offer transient servers is still
an open research question. As a result, we discuss different
approaches for fixing the problems with both the spot market
approach and the fixed-price approach.
Acknowledgements. This work is funded by NSF grants
#1802523, #1815412, #1763834, #1836752, and #1405826, as
well as DOD ARL grant W911NF-17-2-019 and the Amazon
AWS Cloud Credits for Research program.

REFERENCES

[1] “Spot Instance Product Details,” https://aws.amazon.com/ec2/spot/details/,
Accessed August 2017.

[2] “Amazon EC2 Beta,” https://aws.amazon.com/about-aws/whats-
new/2009/12/14/announcing-amazon-ec2-spot-instances/, December
14th 2009.

[3] I. Sutherland, “A Futures Market in Computer Time,” Communications
of the ACM, vol. 11, no. 6, June 1968.

[4] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and
W. S. Stornetta, “Spawn: A Distributed Computational Economy,” IEEE
Transactions on Software Engineering, vol. 18, no. 2, February 1992.

[5] J. Shneidman, C. Ng, D. Parkes, A. AuYoung, A. Snoeren, A. Vah-
dat, and B. Chun, “Why Markets Could (But Don’t Currently) Solve
Resource Allocation Problems in Systems,” in HotOS, June 2005.

[6] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan, “Here
Today, Gone Tomorrow: Exploiting Transient Servers in Datacenters,”
IEEE Internet Computing, vol. 18, no. 4, April 2014.

[7] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan, “Yank: Enabling
Green Data Centers to Pull the Plug,” in Symposium on Networked
Systems Design and Implementation (NSDI), April 2013.

[8] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” ACM Queue - Containers, vol. 14, no. 1,
January-February 2016.

[9] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale Cluster Management at Google with Borg,” in
European Conference on Computer Systems (EuroSys), April 2015.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center,” in NSDI, March 2011.

[11] W. Guo, K. Chen, Y. Wu, and W. Zheng, “Bidding for highly available
services with low price in spot instance market (hpdc),” in The Interna-
tional ACM Symposium on High-Performance Parallel and Distributed
Computing, June 2015.

[12] M. Mazzucco and M. Dumas, “Achieving Performance and Availabil-
ity Guarantees with Spot Instances,” in International Conference on
High Performance Computing and Communications (HPCC), September
2011.

[13] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot, or Both:
Dynamic Resource Allocation for Executing Batch Jobs in the Cloud,”
in International Conference on Autonomic Computing (ICAC), 2014.

[14] S. Zaman and D. Grosu, “Efficient Bidding for Virtual Machine In-
stances in Clouds,” in International Conference on Cloud Computing
(CLOUD), July 2011.

[15] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao, “Dynamic Resource
Allocation for Spot Markets in Clouds,” in Workshop on Hot Topics in
Management of Internet, CLoud, and Enterprise Networks and Services
(HotICE), March 2011.

[16] B. Javadi, R. Thulasiram, and R. Buyya, “Statistical Modeling of Spot
Instance Prices in Public Cloud Environments,” in UCC, December
2011.

[17] Y. Song, M. Zafer, and K. Lee, “Optimal Bidding in Spot Instance
Market,” in Infocom, March 2012.

[18] ——, “Optimal Bidding in Spot Instance Market,” in International
Conference on Computer Communications (Infocom), March 2012.

[19] L. Zheng, C. Joe-Wong, C. Tan, M. Chiang, and X. Wang, “How to
Bid the Cloud,” in ACM SIGCOMM Conference (SIGCOMM), August
2015.

[20] P. Sharma, D. Irwin, and P. Shenoy, “How Not to Bid the Cloud,” in
Workshop on Hot Topics in Cloud Computing (HotCloud), June 2016.

[21] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, “SpotCheck:
Designing a Derivative IaaS Cloud on the Spot Market,” in European
Conference on Computer Systems (EuroSys), April 2015.

[22] Y. Yang, G. Kim, W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and
B. Chun, “Pado: A Data Processing Engine for Harnessing Transient Re-
sources in Datacenters,” in European Conference on Computer Systems
(EuroSys), April 2017.

[23] Y. Yan, Y. Gao, Z. Guo, B. Chen, and T. Moscibroda, “TR-Spark:
Transient Computing for Big Data Analytics,” in Symposium on Cloud
Computing (SoCC), October 2016.

[24] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “SpotOn: A
Batch Computing Service for the Spot Market,” in Symposium on Cloud
Computing (SoCC), August 2015.

[25] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy, “Flint: Batch-
Interactive Data-Intensive Processing on Transient Servers,” in European
Conference on Computer Systems (EuroSys), April 2016.

[26] J. Barr, “Amazon EC2 Update Streamlined Access to Spot
Capacity, Smooth Price Changes, Instance Hibernation,”
https://aws.amazon.com/blogs/aws/amazon-ec2-update-streamlined-
access-to-spot-capacity-smooth-price-changes-instance-hibernation/,
November 28th 2017.

[27] D. Chelupati and R. Pary, “New Amazon EC2 Spot pric-
ing model: Simplified purchasing without bidding and fewer
interruptions,” https://aws.amazon.com/blogs/compute/new-amazon-ec2-
spot-pricing/, March 13th 2018.

[28] S. Subramanya, A. Rizk, and D. Irwin, “Cloud Spot Markets are Not
Sustainable: The Case for Transient Guarantees,” in HotCloud, June
2016.

[29] ——, “Cloud Spot Markets are Not Sustainable: The Case for Transient
Guarantees,” in HotCloud, June 2016.

[30] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Decon-
structing Amazon EC2 Spot Instance Pricing,” ACM Transactions on
Economics and Computation (TEAC), vol. 1, no. 3, 2013.

[31] ——, “Deconstructing Amazon EC2 Spot Instance Pricing,” in In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom), November 2011.

[32] P. Sharma, D. Irwin, and P. Shenoy, “Portfolio-driven Resource Man-
agement for Transient Cloud Servers,” in International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS), June
2017.

[33] S. Shastri and D. Irwin, “Towards Index-based Global Trading in Cloud
Markets,” in Workshop on Hot Topics in Cloud Computing (HotCloud),
June 2017.

[34] S. Fox, “New AWS Spot Pricing Model: The Good, the Bad,
and the Ugly,” https://autoscalr.com/2018/01/04/new-aws-spot-pricing-
model-good-bad-ugly/, January 4th 2018.

[35] “Google Cloud Platform: Preemptible Virtual Machines,”
https://cloud.google.com/preemptible-vms/, September 21st 2016.

[36] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A microeconomic scheduler
for parallel computers,” in Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), April 1995.

[37] A. Ali-Eldin, J. Westin, B. Wang, P. Sharma, and P. Shenoy, “SpotWeb:
Running Latency-sensitive Distributed Web Services on Transient Cloud
Servers,” in HPDC, June 2019.

[38] P. Ambati and D. Irwin, “Optimizing the Cost of Executing Mixed
Interactive and Batch Workloads on Transient VMs,” in International
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS), June 2019.

[39] P. Ambati, D. irwin, P. Shenoy, L. Gao, A. Ali-Eldin, and J. Albrecht,
“Understanding the Synchronization Costs of Distributed ML on Tran-
sient Cloud Resources,” in IC2E, June 2019.

[40] S. Shastri and D. Irwin, “HotSpot: Automated Server Hopping in Cloud
Spot Markets,” in SoCC, September 2017.

[41] L. Valiant, “A Bridging Model for Parallel Computation,” CACM,
vol. 33, no. 8, August 1990.

[42] X. Ouyang, D. Irwin, and P. Shenoy, “SpotLight: An Information Service
for the Cloud,” in International Conference on Distributed Computing
Systems (ICDCS), June 2016.

[43] M. Carvalho, W. Cirne, F. Brasileiro, and J. Wilkes, “Long-term SLOs
for Reclaimed Cloud Computing Resources,” in SoCC, 2014.

[44] J. Boutelle, “What to do when Amazon’s spot prices spike, in Gigaom,”
December 27th 2011.

[45] P. Sharma, A. Ali-Eldin, and P. Shenoy, “Resource Deflation: A New
Approach for Transient Resource Reclamation,” in European Conference
on Computer Systems (EuroSys), March 2019.

[46] J. Barr, “New Spot Fleet Option - Distribute Your Fleet Across Multiple
Capacity Pools,” AWS Blog, https://aws.amazon.com/blogs/aws/new-
spot-fleet-option-distribute-your-fleet-across-multiple-capacity-pools/,
September 15th 2015.

[47] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. Yocum,
“Sharing Networked Resources with Brokered Leases,” in USENIX, June
2006.

[48] L. Zheng, C. Joe-Wong, C. Brinton, C. Tan, S. Ha, and M. Chiang, “On
the Viability of a Cloud Virtual Service Provider,” in SIGMETRICS,
June 2016.

[49] F. Lardinois, “Spotinst, which helps you buy AWS Spot Instances, raises
$2M Series A, in TechCrunch,” March 8th 2016.

