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Abstract—Scientific computing applications have benefited
greatly from high performance computing infrastructure such
as supercomputers. However, we are seeing a paradigm shift in
the computational structure, design, and requirements of these
applications. Increasingly, data-driven and machine learning
approaches are being used to support, speed-up, and enhance
scientific computing applications, especially molecular dynam-
ics simulations. Concurrently, cloud computing platforms are
increasingly appealing for scientific computing, providing “infi-
nite” computing powers, easier programming and deployment
models, and access to computing accelerators such as TPUs
(Tensor Processing Units). This confluence of machine learning
(ML) and cloud computing represents exciting opportunities for
cloud and systems researchers. ML-assisted molecular dynamics
simulations are a new class of workload, and exhibit unique
computational patterns. These simulations present new challenges
for low-cost and high-performance execution. We argue that
transient cloud resources, such as low-cost preemptible cloud
VMs, can be a viable platform for this new workload. Finally,
we present some low-hanging fruits and long-term challenges in
cloud resource management, and the integration of molecular
dynamics simulations into ML platforms (such as TensorFlow).

I. INTRODUCTION

Scientific computing applications play an important role in
the analysis and understanding of a wide variety of natural
and synthetic processes. These applications are typically im-
plemented as large-scale parallel programs that use commu-
nication frameworks such as MPI, and are largely deployed
on high performance computing (HPC) infrastructure such as
supercomputers. Molecular dynamics (MD) simulations are
among the most ubiquitous scientific computing applications.
These simulations have been used extensively by materials
scientists, chemical engineers, and physicists to investigate
the microscopic origins of the macroscopic behavior of ma-
terials such as self-assembled nanoparticles, viral capsids,
electrolytes, lubricants, and polymers [1]–[4].

A key goal for MD simulations is to explore the design
space associated with the material attributes, and establish the
links between the design parameters and the material response
(generally, encoded in the structural and dynamical properties).
To this end, simulations are deployed as a collection or
“bag” of jobs. Collectively, a bag of jobs “sweeps” a multi-
dimensional design space and furnishes the links between the
material design parameters (inputs) and the material response
(outputs). These links provide a reliable guide to experiments

for a rational discovery of regions of the material design space
exhibiting interesting structural and dynamical properties.

The bags of jobs approach is also central to the rapidly de-
veloping area of using machine learning (ML) to enhance MD
simulations and expedite the exploration of the material design
space [5]–[14]. Large collections of jobs with independent
parameter sets are launched in order to train and test the ML
models designed to enhance the predictive power or reduce the
computational costs of MD simulations. For example, artificial
neural network based regression models, trained on data from
MD simulations of soft materials, can successfully predict the
relationships between the input parameters and the simulation
outcomes [12], [15]. These ML surrogates accurately predicted
the distributions of ions for a variety of confined electrolyte
systems with 95% accuracy and an inference time 10000× less
than the corresponding MD simulation runtime [12], [15]. As
the utility of MD simulations and their ML-enhanced versions
in the rational design of materials is further demonstrated,
it will be necessary for accurate and fast simulations to be
performed for larger sets of parameters in order to efficiently
explore the material design space. To this end, it is important
to leverage diverse advanced cyberinfrastructure platforms to
perform low-cost simulations.

II. MOLECULAR DYNAMICS ON CLOUD PLATFORMS

Increasingly, cloud computing platforms have begun to
supplement and complement conventional HPC infrastruc-
ture to meet the large computing and storage requirements
of simulations [16]. Public clouds offer many benefits: on-
demand resource allocation, convenient pay-as-you-go pricing
models, and ease of deployment on an “infinite” resource
pool. An important objective in cloud deployments is to
optimize for cost in addition to performance. Costs can be
reduced through the use of transient computing resources
that can be unilaterally revoked and preempted by the cloud
provider, but their preemptible nature results in frequent job
failures. The considerations of cost, frequent job failures,
and server configuration heterogeneity intrinsic to the system
present multiple challenges in deploying applications on cloud
platforms. These challenges are fundamentally different from
those that appear in using HPC clusters as the execution
environment for simulations.

Systems such as SciSpot [17], [18], a framework that
uses a new reliability model for constrained preemptions of



Google Preemptible Virtual Machines (VMs), can optimize the
deployment of scientific computing applications on transient
cloud servers and enable low-cost MD simulations. SciSpot
uses an empirical and analytical model of transient server
availability to predict expected running times and costs asso-
ciated with jobs of different types and durations. Considering
an entire bag of jobs as an execution unit enables simple and
powerful policies for optimizing cost, makespan, and ease of
deployment. SciSpot’s cost-minimizing server selection and
job scheduling policies reduce costs by up to 5× compared to
conventional cloud deployments.

III. MOLECULAR DYNAMICS ON ML SYSTEMS

The use of ML systems such as TensorFlow and PyTorch
has been largely limited for designing ML-based enhance-
ments (e.g., surrogates, integrators, force fields) for MD sim-
ulations [6], [12], [13]. Some recent studies have explored
the utilization of ML platforms for “non-ML” tasks related to
MD simulations [19]–[23]. However, the use of ML systems
to develop and execute MD simulations and integrate them
with ML-based enhancements is unexplored. In the following,
we outline advantages of ML systems as environments for ex-
ecuting MD simulations and integrating them with data-driven
models. We also discuss the associated systems challenges.

MD simulations are typically coded in C/C++ and paral-
lelized using OpenMP and MPI [24]. However, more modern
MD software packages such as HOOMD-Blue [25] have
demonstrated that MD simulations can be easily written in
high-level languages such as Python. ML platforms such as
TensorFlow are based on Python and the associated high-
level data-flow abstraction can enable rapid prototyping of MD
simulations. We highlight a few key advantages of utilizing
ML systems for executing MD simulations:

• High-performance simulations: ML systems offer auto-
matic parallelization of simulations and enable seamless
use of next-generation cloud and HPC hardware such as
GPUs and TPUs.

• One-stop platform: ML systems offer extensive support
for debugging, data analytics, and post-processing tasks
that can be leveraged to perform all simulation-related
tasks at a single platform.

• Large ecosystem: Developers have access to a much
bigger data science and ML community.

• Better software engineering: Associated tools are richer
and are actively developed and improved (compared to,
for example, MPI).

• Reproducibility and ease of sharing: Users and developers
can easily share all simulation models and methods in one
notebook that can be run on ML system backends such
as Google Colab (compared to cumbersome configuring
of simulations on different HPC systems).

• Integration with data-driven approaches: Data operations
in ML systems are first-class operations, instead of being
a separate stage of the simulation workflow aimed at
exploring the material design space.

The seamless integration of simulations and data-driven
models on a single platform offers many opportunities for
a rational and expedited exploration of the material design
space. We now illustrate a set of these opportunities using ML
surrogates as an example. An ML surrogate is a model trained
on data from MD simulations that is used to approximate the
relationships between the input parameters and the simulation
outcomes, bypassing part or all of the explicit evolution of
the simulated components. For instance, the ML surrogate
in [12] can reduce the inference time from 30 minutes to
0.2 seconds—a 10, 000× speedup! This surrogate model was
trained using a bag of jobs of size N = 6, 000, each job
representing a unique set of parameters discretizing the high-
dimensional input design space.

In the conventional, un-integrated approach, the bag of jobs
(of size N ) is run sequentially on HPC systems, with a long
wait time until a surrogate is trained. N is chosen a priori
(usually informed by domain expertise) such that the generated
data is sufficient to train an ML model (typically a deep neural
network). In contrast, an integrated approach utilizing ML
systems for simulation facilitates a rapid transition from simu-
lation to surrogate. The surrogate training can now begin with
a smaller number n of simulations and the training progress
can be monitored in a seamless fashion. When surrogates are
designed in an integrated manner on ML systems, a number
of new opportunities emerge:

• A unified approach to executing simulations and training
ML models to approximate input-output relationships
enables the development of the surrogate during the
exploration of the material design space with a bag of
n < N jobs. ML systems can facilitate the automation of
the switch to deriving outputs using surrogates when the
training and testing errors become small and surrogate
accuracy reaches a high value.

• On-the-fly development of the surrogates enables a prin-
cipled approach to quantify the completion of the material
design space exploration.

• Surrogate accuracy and inferences times can be readily
improved with minimal overhead associated with the one-
stop platform that enables a seamless accumulation of
training data resulting from more simulation executions.

• The ease of designing surrogates in parallel with the
simulation-driven exploration of the material design space
enables efficient new simulation code development (e.g.,
writing new pair interaction potentials). The trained sur-
rogates can be used as benchmarks of existing under-
standing that can guide code updates.

IV. OPEN QUESTIONS AND FUTURE DIRECTIONS

The confluence of ML, MD simulations, and cloud com-
puting presents the broader cloud and HPC research commu-
nities with several exciting challenges, and also provides a
unique opportunity to bring these communities together. ML-
assisted MD simulations impose a unique set of computational
requirements which will require advances in cloud resource
allocation, such as:



• Abstractions: Our bags-of-jobs abstraction is the first
step towards a “cloud-native” abstraction for ML-assisted
MD workloads. Easier ways to deploy such applications
on the cloud will lower costs and will make it easier for
domain scientists to rapidly iterate.

• Rethinking performance metrics: Conventional metrics
such as parallel speedups will be insufficient for ML-
assisted workloads that use a combination of training
and inference, where the answer can be provided by a
trained ML-model. We believe that cost will remain a
first-level metric in the cloud, and must be a core part of
performance and resource optimizations.

We also claim that ML platforms can provide a single,
unified framework for future applications that will integrate
ML and MD simulations in new ways. Fundamentally, we are
proposing to use systems in ways that they are not designed
for, which leads to many natural performance challenges. For
instance, the dataflow model used by TensorFlow provides
suboptimal performance for fine-grained parallelism required
for MD simulations on GPU and TPU clusters, and new
performance optimizations and abstractions are necessary.

Finally, bringing a “classic” HPC workload such as MD
simulations into an entirely new cloud+ML ecosystem will
require the HPC, cloud, and ML communities to work to-
gether with domain scientists and engineers in new ways. The
confluence will provide opportunities for the next generation
of domain scientists to be trained in practical ML and cloud
skills. At the same time, cloud researchers should be more
cognizant of this new class of workload, which is radically
different from the “enterprise” and “big-data” workloads that
cloud platforms have traditionally been optimized for.
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