Lemma 1. Let $s \neq t$, and $s \nrightarrow t$. Then, $s . v[s . p]>t . v[s . p]$

Proof. The more interesting case is when s and t occur on two different processes $(s . p \neq t . p)$.
$s \nrightarrow t$ means that there is no message path from s to t.
Process s.p's (say, Process-0) component
A local timestamp (s.v[s.p]) essentially counts local events. On receiving a message from s, t takes component wise max, and increments only its own local index.

Thus, for all other processes $\mathrm{t}: s . v[s . p] \geq t . v[s . p]$.
Now, the only way for equality $s . v[s . p]=t . v[s . p]$, is if there is a message path from s to t. But we know that $s \nrightarrow t$ and thus no message path exists.

Thus, we get strict inequality: s.v[s.p] $>t . v[s . p]$

Theorem 2. $s \rightarrow t$ if and only if $s . v<t . v$

Proof. Let's start with the forward direction:
If $s \rightarrow t$, then $s . v<t . v$
$s \rightarrow t$ means that there is some message path from sto t. If we apply the rules of vector clock updates, we get:
$\forall k: s . v[k] \leq t . v[k]$, because again rcpt involves pairwise maximums.
We thus get that $s . v \leq t . v$. But we want strict inequality.
But, we can apply Lemma 1.
$s \rightarrow t$ means that $t \rightarrow s$, which means: $t . v[t . p]>s . v[t . p]$
Thus there is one index for which strict inequality occurs, and thus we get $s . v<t . v$

Now the other direction: If $\boldsymbol{s} . \boldsymbol{v}<\boldsymbol{t} . \boldsymbol{v}$, then $\boldsymbol{s} \rightarrow \boldsymbol{t}$

We can prove this by contradiction and Lemma 1.
Suppose $s \nrightarrow t$. Then we get $s . v[s . p]>t . v[s . p]$
But this contradicts $s . v<t . v$

