
Distributed Machine Learning

Distributed Systems Spring 2019

Lecture 22

Obligatory ML is saving/destroying the world slide

Insert

Supervised Machine Learning In One Slide

• Goal: Fit a function over some data (xi , yi)
• Functions are parametrized : f (w , x)
• Example: Linear function f = ax + b, w = (a, b)
• How to find the parameters/weights that fit best?
• Loss function, L =

∑
i error(yi , f (w , xi)) =

∑
i |yi − f (w , xi)|2

• Computational goal: Find w to minimize the loss function
• Deep neural networks: millions of weights

Distributed Machine Learning In One Slide

• What parallelism can we exploit?
• Basic idea: distribute the loss function computation
• Process 0 computes minw

∑N/2
i=0 |yi − f (w , xi)|2 and finds w1

• Process 1 computes minw
∑N

i=N/2 |yi − f (w , xi)|2 and finds w2
• This is data parallelism.
• Each process computes over a subset of the data (i.e., a map
operation)
• How to reduce, i.e., combine w1 and w2?

Model Fitting With SGD

• Loss function, L =
∑

i error(yi , f (w , xi)) =
∑

i |yi − f (w , xi)|2

• Central question: How to find w ?
• Most common technique: Gradient Descent
• wt+1 = wt − η∆L(wt)
• ∆L(wt) is the gradient found using partial derivatives
• Stochastic gradient descent (SGD): Evaluate gradient on only
subset of data points
• Also called a “mini-batch”

Parameter Server Architecture

• Workers compute gradients using SGD on small data batches
• New gradients shared with other workers via parameter server
• Other ways of communication: all-to-all reduce,...

Data Parallel SGD Timeline

Synchronous SGD

• Synchronous SGD uses a barrier.

HogWild!

• Asynchronous parallel SGD
• Typical way: processes compute gradients, and update shared
gradient array.
• Gradient array protected using a lock
• HogWild! is a lock-free technique
• Key idea: Let processes update their gradients without locking
• Works well if updates are sparse

Consistency vs. Performance

• Synchronous SGD has synchronization overheads
• But, Async SGD suffers from poor statistical efficiency
• Because of updating models with stale weights
• Synchronous: Per-iteration time is longer
• Async: Per-iteration time is shorter, but more iterations
required

Model Parallelism

• Alternative is to replicate data on all machines, but split model

TensorFlow

• Computation structured as a
dataflow graph
• TF programs create graphs (ala
Spark)
• TF engine evaluates graph
• Many inbuilt operation kernels
• Dataflow graphs can be
partitioned in many ways
• Supports model and data
parallelism, and hybrid schemes

Some Open Questions

• Sync vs. Async
• How many parameter servers vs. workers?
• Role of GPUs
• Geo-distributed training: how to minimize updates?
• Accelerate inference (evaluate f (w , x)

References

Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis. Tal Ben-Nun, Torsten Hoefler

END

