Transient Cloud Computing

Prateek Sharma

Cloud VM Pricing

* Conventional on-demand instances: fixed per-hour/second pricing

* Reserved instances: Long-term lease (1/3 years), cheaper than on-

demand

* Transient instances: Price and availability varies over time

« Classic example: EC2 spot
Instances

* Price set by continuous
second-price auction

- If price > user’s bid, the
Instance is terminated after 2
minutes

. —— Spot price

On-demand |

150 200

New Paradigm: Transient Computing

Application
0 Xz
n U =
S 3 3
0 £
o 2 o
x & A /
v
B Time

e ——————————————
Application server status

Conventional resources

e Continuous availability

Application

Request
resources

\4

s
I

Revocation Server Re-available
Warning Revocation

Transient Resource Availability
e Access unilaterally revoked
e Applications face disruption

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
& Gannot assume continuous availability
I

I

I

|

Diversity In Transient Cloud Servers

¢ [ransient server revocations depend on server-type, location

e >5,000 EC2 spot markets Ex: {server-type: m4.small, region: us-east-1,

data-center-zone: A, OS: Linux}

Frequent revocations

1 {Infrequent revocations

o In EC2, price volatility = revocations
(V)
c
{5 100 | < -
C
@)
x
Q
—
Q.
4c'l'> ii' ______ — L&
o L .
n 10-1 .. al JIAN N MW I
14 21 28
Hour

Transient cloud servers: diversity in demands and revocation frequency

4

Transiency Is Common In The Cloud

All major cloud providers offer transient servers

Amazon EC2 Google Cloud Azure
Spot Instances Preemptible VMs Batch VMs

Lifetime 2-48 hours <24 hours ~|2 hours
Discount 50-90% 70% 80%
e Revocations = Servers have limited lifetimes

e Conventional cloud servers: non-revocable on-demand servers

m=mmm== === === =e—Data center capacity
Transien

Resource demand is dynamic

Demand

Surplus = low-cost transient
Non-revocable

Transient Server Characteristics

* Frequent revocations: MTTFs of hours/days, not years

* Run applications without disruption/performance degradation?
e Advance warning. Not sudden fail-stop failures

 How to mask revocations to reduce downtimes?
e Heterogeneity: Different price vs. availability tradeoffs

* Resource management policies to manage revocation risk?

e How can applications make effective use of transient resources?

e Can we design systems with transiency-specific mechanisms and
policies?

Transiency-driven System Design Challenges

Applications

1.Reduce impact of revocations on availability and performance
2.Reduce number and frequency of revocations

3.Abstractions for transient servers

4. Transient resource reclamation to avoid revocations

Transient Servers

7

Migrating Application State

Basic idea:
Run on spot when possible. Migrate to on-demand when revoked.

Spot On-demand

: : Migrate : .
. Application 1 — Application :

PO SRR

 Existing technique: VM Live Migration
« Migration may not complete within advance warning (2 mins)
* Incomplete migrations result in state-loss and unavailability

- Can we completely migrate VMs within warning period?

SpotCheck VM Migration

* Bounded-time VM Live Migration
- Ensures VMs migrate within a specified time duration

* Independent of memory size, application behavior

| - .
Backup Server:

On-demand

» Continuously checkpoint memory
 Residual dirty pages sent Iin
bounded time

* Restore skeleton state immediately
- VCPU state, page-tables,..
- Copy remaining pages on access

9

SpotCheck: A Derivative Cloud

* Derivative cloud: Cloud middleware derived from native cloud

« SpotCheck: lllusion of low-cost, non-revocable servers to run
unmodified apps

* Multiplex spot and on-demand pools across multiple
customers

f SpotCheck A

G T o Dyt ol
K Voot

Native laaS Cloud

10

Implementing SpotCheck

* How to migrate VM state in public clouds?
- Migration and other hypervisor functionality not exposed
« Solution: Nested Virtualization (Xen-Blanket)

« Bonus: can run multiple nested VMs

laaS VM

Xen-Blanket

laaS Hypervisor (Xen)

- Mitigating concurrent revocations:
- Map customer VMs to different spot servers

* Map VMs from different spot servers to a backup server

SpotCheck Application Performance

» Performance and cost overhead of continuous checkpointing is low

SpecJBB

TPC-W

0.015%

16.7%

* Performance degradation :

due to continuous
checkpointing is low

—~ 12000
0

S 10000¢
8000}
6000}
4000}
2000¢

Throughput (b

0

9 Spec)BB Throughput |

1 10 20 30 40 50
Num. VMs per backup server

 Backup servers can support ~40 VMs

 Amortizes backup server cost

12

Challenges in Running Distributed Applications

SIGMETRICS ‘17

Data analysis pipeline

- Spqr‘llg

e

E—— Re\IO\(ed . e Re\,oked 2 Frp— " Rev O\(ed 'w

Qerver AM// Server Aﬂ/ - Serve ﬂ/

e All servers concurrently revoked = complete resource starvation

e Can we mitigate concurrent revocations for distributed apps?

|3

Key Idea: Select Heterogenous Servers

ik

4 Analysis Results sp Q

Rack-A Rack-B

e Heterogenous servers: different configuration, data center racks/zones
e Many applications can tolerate partial failures, run in degraded mode
e Key: Uncorrelated revocations

 Can we use heterogenous server selection in the cloud?

| 4

Heterogenous Server Selection

Distributed Application

e Select a heterogenous collection of servers that:
* Minimizes cost
* Minimizes number and frequency of revocations

e Minimizes fraction lost due to revocation = Uncorrelated servers

|5

Server Portfolios: Heterogenous Mix of Servers

Server selection is analogous to financial portfolio construction

Gold Large

Bonds

e Stocks, bonds to max returns . Server types to max savings and min

and min risk revocation risk

e Reduce risk of large losses using Reduce risk of concurrent revocation
uncorrelated assets using uncorrelated servers

¢ |nvestors have different risk and . Applications have different risk/
reward preferences reward preferences

|6

Key ldea: Diversification

e Diversification reduces volatility due to individual markets

Mkt A - Volatile

e Many EC2 markets have low correlations
e Diversification is a viable strategy

I\A/Ikt B- Spiky
\

==

Mkt C -High but stable

Portfolio

$ - 5

Time

—i
@)

10-mmm

Spot Market Id
(@)

HE]

[|| []

0-, I
0 5 10
Spot Market

|7

Price Correlation

Model-driven Portfolio Construction

e Based on Modern Portfolio Theory from finance (Markowitz 1953)

e Objective: Maximize risk-adjusted returns

F|Return] — « - Risk

\

E[Spot-price] Risk averseness parameter Revocation risk
~ On-demand-price 0, inf) (variance in prices)

1

e Example output: portfolio allocation vector, x: small med large
0 0.2 0.8

|18

Portfolio Construction Optimization

F|Return] — a - Risk

\

. FE|Spot-price] Risk averseness parameter ~ Revocation risk
~ On-demand-price 0, inf) (variance in prices)
X
c: Discount vector| X - X
l V: Covariance matrix

Spot price traces

S

% ((A(t) — E[A))(B(t) — E[B]))

-

n
Subject to: Zl‘,xi =1 Spot price traces for markets A,B

x> 0) Convex Quadratic

Maximize: ecx! — axVx!

19

Risk-Return Tradeoffs With Portfolios

E[Return| — « - Risk a=0

% Cost Saving
N
<)

a=1000
20 ;
0 . :
0.0 0.2 0.4 0.6 0.8 1.0
. Revocation Risk Probability .

Interactive Batch
- — >
Low Application’s Risk Tolerance High

e Failures/delays are undesirable e Failures/delays are tolerable
e High diversification e | ow diversification
* Lower savings, low risk * High savings, higher risk

20

ExoSphere: Transiency-aware Cluster Management

MPI Spark .. ® ExoSphere provides virtual clusters to
run multiple applications

e Spark, MPI, BOINC

®* Transiency-aware Mesos (4K lines)

Transiency AP e Applications submit: (#CPUs, Mem, o)
¢ Applications can share cloud servers
* Multiplexing = Reduced costs
- l e Applications get price, MTTF,
T T revocation-warning notifications

D D

21

Transiency Mitigation Policies With ExoSphere

e ExoSphere enables applications to

implement custom policies Application
e Especially useful for fault-tolerance
e Checkpoint application state and roll-back Transiency notifications

INn case of revocations

ExoSphere

e Use existing mechanisms to implement
policy in few lines of code

Young-Daly periodic checkpoint interval = /2 x Time to Checkpoint x MTTF

l

Checkpoint size, disk-speed Provided by ExoSphere

22

When To Checkpoint?

e Key idea: checkpoint periodically to minimize expected running time

o Simplified Spark performance model on transient servers

ik T T T: Checkpointing interval
E[T| =T+ =61 (%) POIing
T MTTR \2/ |s: Time required to save RDD
Checkpointing Recovery MTTR: Mean Time To Revocation
overhead

e Minimize E[T] with respect to 7-

RDD checkpoint interval (1) =+v2-6- MTTR

— |

RDD size, write speed Spot market price traces

Young-Daly 1974

23

Effectiveness of Portfolios

Cost-risk comparison based on EC2 spot prices from March-Nov 2015

90

I @@ Portfolio
© 9 Spot Fleet

| xxx Greedy

00
0

(00)
o

Cost Saving (%)
(@) o ~ ~
o Ul o ol

4 1 1 1 1 T T | 1 1 1 1 T T | 1 1 1 1 T T T |
]5.0-3 10-2 10-1 100
Revocation Risk Probability

e 85% cost savings compared to on-demand

e ~100x reduction in revocation risk compared to existing approaches

24

Application Performance In ExoSphere

B NoTransiency Awareness [l Portfolios [l Portfolios+Fault-tolerance

Running Time Relative
to On-demand

MPI Batch Data Processing Interactive Processing (TPCH)

Portfolios+checkpointing: reduces transiency overhead to < 10%

Risk intolerant interactive applications see significant performance benefit

25

ExoSphere Summary

® Jransient server selection based on portfolio modeling
e ExoSphere: system for portfolio based cluster management
e General framework supporting common transiency policies

e Cloud transient servers are an increasingly popular area:

Homogenous server selection éOptiSpot, SpotOn [SoCC ’I5],...

éSpal‘k [TR-Spark-SoCC ’16, HPDC’ | 7], MPI [HPDC ’ 4],
ML [Proteus-EuroSys’17]

Application-specific techniques

26

Reclaiming Resources Using Resource Deflation

e How to reclaim resources from low-priority VMs?

e Resource Deflation: Fractional resource reclamation.

High Priority VM Low Priority VMs shrunk
New VM -50% -50%

Bl : KN
N =

—_—
T aASAsas

el T)

® For most applications: higher availability Cost
> performance degradation
: : - Spot
e Trade-off higher availability for T .
performance degradation
Availability Performance
On-demand

27

Thanks!

Questions!

e Transient Servers

e SpotCheck
e Flint
e ExoSphere

e Resource Deflation

28

ExoSphere Backup

| — Spot price - - On-demand

0.0 .) .)
0 50 100 150 200
Time

90 v Us-€ast-1

85 | & y _
2 o2
2 80 ;(i
2 75| X
> x
@ 70t -
. e—e Portfolio 'S
2 65|]
O ©<© Spot Fleet .

60l x Greedy X |

1?0-4 10-3 10-2 10-1 100
Revocation Risk Probability

Market weight

=
o

B k
508— r
@)
>0.6H
o — m3.medium ($0.07)
©0.4
= — m3.large ($0.14)
5:0.27 — m3.xlarge ($0.28)
— m3.2xlarge ($0.56)
\ \ [[
0'8.0 0.2 0.4 0.6 0.8
Spot price ($)
B r3.large-e [m3.medium-b HEEE m3.medium-a
[r3.large-b [r3.large-a
1.0
0.8
0.6
0.4
0.2
0.0

0 100

200 300

400 500

Revocation risk averseness (alpha)

1.0

ExoSphere + Flint

Running Time (s)

2800
2600
2400
2200
2000
1800
1600
1400

| | | |
X—XCheckpointing _ e
® ®Recomputation _ - i
’/
_ i
~
~
/ p—
”
/ _
/
]]]] i
0O 1 5 10
Failures

30

1400

[1 private [shared

1200

1000
800 f-
600 -
400 |-
200

Total Cost ($)

All-low Equal-distr 1:2:1 All-high

Distribution of Risk-Averseness

3500
3000}
2500}
= 2000
1500}]
1000}
500}

Running Time (s)

Checkpointing Interval (s)

Checkpointing Overhead

RDD checkpointing

KMeans ["2
PageRank 3
ALS 10
System-Level I 5 S
0 15 30 45 60

% Increase in Running Time

e RDD checkpointing: <10% performance overhead

e System-level checkpointing: high overhead of writing OS and cache

31

Application Performance

B Greedy Server Selection B ExoSphere

Running Time

MPI Batch Data Processing Interactive Processing

e (Greedy selection only considers cost = high revocation risk

¢ Risk intolerant applications see significant performance benefit

32

Interactive Data Processing Performance

B No revocations (On-demand server performance)
B With server revocation

29.8
Default Spark
536
32 10x reduction
Flint
55

0 150 300 450 600
TPC-H response time (s)

Interactivity maintained even after revocation

33

