
Transient Cloud Computing

Prateek Sharma

Cloud VM Pricing

• Conventional on-demand instances: fixed per-hour/second pricing

• Reserved instances: Long-term lease (1/3 years), cheaper than on-
demand

• Transient instances: Price and availability varies over time

 2

• Classic example: EC2 spot
instances

• Price set by continuous
second-price auction

• If price > user’s bid, the
instance is terminated after 2
minutes

New Paradigm: Transient Computing

 3

Conventional resources

• Continuous availability

Application

R
eq

ue
st

re
so

ur
ce

s

R
el

in
qu

is
h

Time

Application server status

Transient Resource Availability

• Access unilaterally revoked

• Applications face disruption

• Cannot assume continuous availability

Application

R
eq

ue
st

re
so

ur
ce

s

Server
Revocation

Re-availableRevocation
Warning

Diversity In Transient Cloud Servers

• Transient server revocations depend on server-type, location

• >5,000 EC2 spot markets

Hour

Ex: {server-type: m4.small, region: us-east-1,

 data-center-zone: A, OS: Linux}

 4

In EC2, price volatility ➔ revocations

Frequent revocations

Infrequent revocations

Transient cloud servers: diversity in demands and revocation frequency

Transiency Is Common In The Cloud

• Revocations ➔ Servers have limited lifetimes

• Conventional cloud servers: non-revocable on-demand servers

Amazon EC2
Spot Instances

Google Cloud
Preemptible VMs

Azure
Batch VMs

Lifetime 2-48 hours <24 hours ~12 hours

Discount 50-90% 70% 80%

 5

All major cloud providers offer transient servers

Data center capacity

Non-revocable

Transient

D
em

an
d Resource demand is dynamic

Surplus ➔ low-cost transient

Transient Server Characteristics

• Frequent revocations: MTTFs of hours/days, not years

• Run applications without disruption/performance degradation?

• Advance warning: Not sudden fail-stop failures

• How to mask revocations to reduce downtimes?

• Heterogeneity: Different price vs. availability tradeoffs

• Resource management policies to manage revocation risk?

 6

• How can applications make effective use of transient resources?

• Can we design systems with transiency-specific mechanisms and
policies?

Transiency-driven System Design Challenges

 7

Transient Servers

Applications

1.Reduce impact of revocations on availability and performance

2.Reduce number and frequency of revocations

3.Abstractions for transient servers

4.Transient resource reclamation to avoid revocations

Migrating Application State

 8

Basic idea:
 Run on spot when possible. Migrate to on-demand when revoked.

Application

Spot On-demand

Application
Migrate

• Existing technique: VM Live Migration

• Migration may not complete within advance warning (2 mins)

• Incomplete migrations result in state-loss and unavailability

• Can we completely migrate VMs within warning period?

SpotCheck VM Migration

• Bounded-time VM Live Migration

• Ensures VMs migrate within a specified time duration

• Independent of memory size, application behavior

 9

VM

Spot

VM

On-demand
Backup Server

• Continuously checkpoint memory
• Residual dirty pages sent in

bounded time
• Restore skeleton state immediately

• VCPU state, page-tables,..
• Copy remaining pages on access

SpotCheck: A Derivative Cloud

• Derivative cloud: Cloud middleware derived from native cloud

• SpotCheck: Illusion of low-cost, non-revocable servers to run
unmodified apps

• Multiplex spot and on-demand pools across multiple
customers

 10

SpotCheck

Native IaaS Cloud

Spot Pool
VM VM VM

On-demand Pool
VM VM VM

Lease Servers

Migrate

Implementing SpotCheck

• How to migrate VM state in public clouds?

• Migration and other hypervisor functionality not exposed

• Solution: Nested Virtualization (Xen-Blanket)

• Bonus: can run multiple nested VMs

 11

• Mitigating concurrent revocations:

• Map customer VMs to different spot servers

• Map VMs from different spot servers to a backup server

User VM

Xen-Blanket

IaaS VM

IaaS Hypervisor (Xen)

SpotCheck Application Performance

• Performance and cost overhead of continuous checkpointing is low

 12

• Backup servers can support ~40 VMs

• Amortizes backup server cost

SpecJBB 0.015%

TPC-W 16.7%

• Performance degradation
due to continuous
checkpointing is low

Challenges in Running Distributed Applications

• All servers concurrently revoked ➔ complete resource starvation

• Can we mitigate concurrent revocations for distributed apps?

 13

Server Revoked
Server Revoked

Server Revoked

Data analysis pipeline

SIGMETRICS ‘17

Key Idea: Select Heterogenous Servers

• Heterogenous servers: different configuration, data center racks/zones

• Many applications can tolerate partial failures, run in degraded mode

• Key: Uncorrelated revocations

• Can we use heterogenous server selection in the cloud?

 14

Server Revoked

Analysis Results

Rack-A Rack-B

Heterogenous Server Selection

• Select a heterogenous collection of servers that:

• Minimizes cost

• Minimizes number and frequency of revocations

• Minimizes fraction lost due to revocation ➔ Uncorrelated servers

 15

small medium large

Distributed Application

medium

Server Portfolios: Heterogenous Mix of Servers

 16

• Stocks, bonds to max returns
and min risk ⟶ Server types to max savings and min

revocation risk

• Reduce risk of large losses using
uncorrelated assets

⟶ Reduce risk of concurrent revocation
using uncorrelated servers

• Investors have different risk and
reward preferences ⟶ Applications have different risk/

reward preferences

Server selection is analogous to financial portfolio construction

Gold

Bonds
Stocks

Large

Medium

Small

Key Idea: Diversification

 17

• Can we design a server selection policy that:

• Many EC2 markets have low correlations

• Diversification is a viable strategy

• Diversification reduces volatility due to individual markets

Time

$

Time

$

Time

$

Time

$

Mkt A - Volatile Mkt B- Spiky Mkt C -High but stable
Portfolio

+ + =

Se
rv

er
 m

ar
ke

t
ID

0

5

10

15

0 5 10 15
Spot Market

Sp
ot

 M
ar

ke
t

0.0

1.0

0.5

Price Correlation

Id

Id

Model-driven Portfolio Construction

• Based on Modern Portfolio Theory from finance (Markowitz 1953)

• Objective: Maximize risk-adjusted returns

 18

E[Return]� ↵ · Risk

Revocation risk

(variance in prices)1� E[Spot-price]

On-demand-price

Risk averseness parameter
[0, inf)

• Example output: portfolio allocation vector, x: small med large
0 0.2 0.8

Portfolio Construction Optimization

 19

E[Return]� ↵ · Risk

Revocation risk

(variance in prices)1� E[Spot-price]

On-demand-price

Risk averseness parameter
[0, inf)

servers. To address this problem, we present server portfolios, a
new model-driven framework to create virtual clusters composed
of a mix of transient server types which offer flexible costs and
availability.

Portfolios enable ExoSphere to construct a mix of cloud servers
tailored to application needs. Server portfolios draw inspiration
from finance [15, 30]. Intuitively, a financial portfolio involves
creating a suitable mix of financial investments for an investor that
are drawn from an underlying mix of assets such as stocks, bonds,
etc. The goal is to construct a mix that matches the investor’s
tolerance for risk and reward. The risk tolerance dictates whether
the portfolio contains a more risky mix of high-reward assets, or a
mix of lower-reward but lower-risk assets.

Similarly, server portfolios comprise a mix of transient servers
that are drawn from an underlying mix of all transient server mar-
kets. Like financial assets, transient server markets exhibit different
price and revocation characteristics. Some markets may have low
prices but higher revocation rates, while others have higher, more
stable, prices with infrequent revocations. Consequently, depending
on the risk tolerance of an application, server portfolio construc-
tion involves maximizing the risk-adjusted returns by designing an
appropriate mix of server markets.

ExoSphere instantiates the model-driven portfolio mechanism to
create virtual clusters for applications. At startup time, applications
specify their aggregate resource requirements (CPU-cores and mem-
ory) in the form of a resource vector r = [rcpu,rmem] , and their risk
tolerance2. It then uses portfolio creation models and algorithms
that are rooted in Modern Portfolio Theory [30] to construct a mix
of servers for the application, as discussed next.

3.3 Model-driven Portfolio Construction
We now present ExoSphere’s portfolio model, which is based

on Modern Portfolio Theory in Economics [15, 30]. The goal in
ExoSphere is to maximize risk-adjusted returns for each application,
where the returns are the cost savings from using transient servers
(over the on-demand prices), while risk is the application’s tolerance
to server revocation events. Formally, ExoSphere finds a suitable
mix of transient servers that maximize the risk-adjusted expected
return given by:

E[Return]�a ·Risk (1)

where E[Return] is the difference between the cost of an on-demand
server and the expected cost of the transient server. To formally
define E[Return], assume that the cloud platform offers servers in n
distinct markets. Let Di denote the on-demand price, and let E[Si]
denote the mean of the transient server price. Then,

Returni = 1� E[Si]

Di
(2)

Let c denote the vector representing the returns for all n markets,
where c = [Return1, . . . ,Returnn]. Let xi denote the fraction of
servers from market i chosen in our portfolio (0  xi  1). Then
x = [x1, · · ·xn] denotes the portfolio allocation vector, and xT is its
transpose. The effective expected return of a portfolio is then:

E[Return] = cxT (3)

The parameter a (in Equation 1) denotes the risk-averseness
of the application or user. A low value of a indicates that the
application places lower emphasis on avoiding server revocation

2If available, the estimated job length can be provided, and only
markets with MTTR >> job-length are considered.

risk. Conversely, a high value of a indicates that an application
is highly risk-averse, and is willing to incur an extra cost for this.
We also use the term risk tolerance to mean the inverse of risk-
averseness.

To capture risk, we draw an analogy with financial portfolio
selection, where investments with uncorrelated price changes are
chosen to construct a portfolio. The rationale is that if one asset (say,
a particular stock) sees a decline in price, then the other assets (e.g.,
a bond) are unlikely to see a concurrent decline. This way, we avoid
large declines in the overall portfolio value.

In our case, we wish to select server markets with independent
revocation events—thus if there is a revocation in one market, others
will not see a concurrent revocation. This reduces the total number of
allocated servers that are revoked. To do so, we define a covariance
matrix V that captures pairwise correlations between all pairs of
markets. Vi j is the correlation between markets i, j, and captures
their simultaneous revocations. Higher values indicate that the two
markets are highly correlated in their revocations, and the chances
of closely spaced revocations are greater. We use this formulation
to define the revocation risk of a portfolio as:

Risk = xVxT (4)

Our portfolio construction problem can then be formulated as the
following optimization problem:

Maximize: cxT �axVxT (5)

Subject to:
n

Â
1

xi = 1

x � 0

We can solve Equation 5 for a wide range of risk-aversion parame-
ters (a) to compute the lowest-cost portfolios for any given risk. The
expected returns and revocation risks of these portfolios are shown
in Figure 3, which shows the expected cost savings for a range of
revocation risks. As the revocation risk is reduced, so is the cost
savings. We also see from Figure 3 that expanding the candidate-set
from r3 servers in the US-east-1 region to all the servers in the
US-east-1 region results in a 1% increase in savings, and a 20-50%
reduction in revocation risk. This occurs because a larger set of
candidate markets both allows more freedom in choosing markets,
and increases the number of markets with low correlations.

The effectiveness of the risk-averseness parameter can also be
seen in Figure 4, which shows the distribution of servers in portfo-
lios with different risk-averseness parameters. We can see that the
portfolios become more diversified as the risk-averseness increases.
Constructing the covariance matrix. The covariance matrix V
captures the pairwise correlation between markets. Our formula-
tion allows multiple types of correlation to be used. The different
correlation functions (and their corresponding V matrices) allows
ExoSphere to adjust the portfolios to the users’ perceptions of risk.

The first and most basic form of correlation is simply the correla-
tion between the spot prices. In the case of Amazon EC2, we can
use price histories of spot servers, which are publicly available, to
compute the mean returns and the covariance matrix. That is, we
compute the pairwise covariances by using spot prices to capture
revocation events and using the standard covariance formulation.
Let Xt ,Yt denote the spot price of markets X ,Y respectively at time
t. Then the standard definition of covariance applies:

V price
XY =

1
T

T

Â
t=1

(X(t)�E[X])(Y (t)�E[Y]) (6)

This captures the correlation between the prices in different markets,

4

x

x

V: Covariance matrix

1

n

nX

t=1

((A(t)� E[A])(B(t)� E[B]))

Spot price traces for markets A,B

xc: Discount vector

Spot price traces

Convex Quadratic

 %
 C

os
t

Sa
vi

ng

0

20

40

60

80

Revocation Risk Probability

0.0 0.2 0.4 0.6 0.8 1.0

Risk-Return Tradeoffs With Portfolios

 20

𝜶=0

𝜶=1000

𝜶=10E[Return]� ↵ · Risk

Low HighApplication’s Risk Tolerance

• Failures/delays are tolerable

• Low diversification

• High savings, higher risk

• Failures/delays are undesirable

• High diversification

• Lower savings, low risk

Interactive Batch

ExoSphere: Transiency-aware Cluster Management

 21

ExoSphere

MPI Spark

Transiency API

… • ExoSphere provides virtual clusters to
run multiple applications

• Spark, MPI, BOINC

• Transiency-aware Mesos (4K lines)

• Applications submit: (#CPUs, Mem, 𝛂)

• Applications can share cloud servers

• Multiplexing ➝ Reduced costs

• Applications get price, MTTF,
revocation-warning notifications

Transiency Mitigation Policies With ExoSphere

• ExoSphere enables applications to
implement custom policies

• Especially useful for fault-tolerance

• Checkpoint application state and roll-back
in case of revocations

• Use existing mechanisms to implement
policy in few lines of code

 22

ExoSphere

Application

Transiency-policies

Transiency notifications

Young-Daly periodic checkpoint interval =
p

2⇥ Time to Checkpoint⇥MTTF

Checkpoint size, disk-speed Provided by ExoSphere

When To Checkpoint?

• Key idea: checkpoint periodically to minimize expected running time

• Simplified Spark performance model on transient servers

 23

Checkpointing
overhead

Recovery

𝜏: Checkpointing interval

δ: Time required to save RDD

MTTR: Mean Time To Revocation

E[T] = T +
T

⌧
· � + T

MTTR

⇣⌧
2

⌘

RDD size, write speed Spot market price traces

RDD checkpoint interval (⌧) =
p
2 · � ·MTTR

Young-Daly 1974

• Minimize E[T] with respect to 𝜏:

Effectiveness of Portfolios

 24

• 85% cost savings compared to on-demand

• ~100x reduction in revocation risk compared to existing approaches

Cost-risk comparison based on EC2 spot prices from March-Nov 2015

10-3 10-2 10-1 100

5evRFatiRn 5isk 3rRbability

45

50

55

60

65

70

75

80

85

90

CR
st

 6
av

in
g

(%
)

3RrtfRliR
6SRt)leet
GreeGy

Application Performance In ExoSphere

 25

R
un

ni
ng

 T
im

e
R

el
at

iv
e

to
 O

n-
de

m
an

d

0

0.425

0.85

1.275

1.7

MPI Batch Data Processing

1.0931.035
1.21

1.5
1.625

1.5

No Transiency Awareness Portfolios Portfolios+Fault-tolerance

• Portfolios+checkpointing: reduces transiency overhead to < 10%

• Risk intolerant interactive applications see significant performance benefit

0

20

40

60

80

Interactive Processing (TPCH)

6.8

27

80

>10x

ExoSphere Summary

• Transient server selection based on portfolio modeling

• ExoSphere: system for portfolio based cluster management

• General framework supporting common transiency policies

• Cloud transient servers are an increasingly popular area:

 26

Homogenous server selection OptiSpot, SpotOn [SoCC ’15],…

Heterogenous server selection Amazon SpotFleets, Tributary [ATC’18]

Application-specific techniques Spark [TR-Spark-SoCC ’16, HPDC’17], MPI [HPDC ’14],
ML [Proteus-EuroSys’17]

Reclaiming Resources Using Resource Deflation

• How to reclaim resources from low-priority VMs?

• Resource Deflation: Fractional resource reclamation.

 27

1 32

High Priority VM Low Priority

1 32 4

Cost

Availability Performance

Spot

On-demand

Deflatable

• For most applications: higher availability
> performance degradation

• Trade-off higher availability for
performance degradation

-50% -50%

4
New VM

VMs shrunk

Thanks!

 28

• Transient Servers

• SpotCheck

• Flint

• ExoSphere

• Resource Deflation

Questions?

ExoSphere Backup

 29

10-4 10-3 10-2 10-1 100

5evRFatiRn 5isk 3rRbability

55
60
65
70
75
80
85
90

CR
st

 6
av

in
g

(%
)

3RrtfRliR
6SRt)leet
GreeGy

us-east-1

ExoSphere + Flint

 30

Checkpointing Overhead

 31

KMeans

PageRank

ALS

System-Level

% Increase in Running Time

0 15 30 45 60

58

10

3

2

• RDD checkpointing: <10% performance overhead

• System-level checkpointing: high overhead of writing OS and cache

RDD checkpointing

Application Performance

 32

R
un

ni
ng

 T
im

e

0

1.25

2.5

3.75

5

MPI Batch Data Processing Interactive Processing

Greedy Server Selection ExoSphere

7% 30% 4x

• Greedy selection only considers cost ➔ high revocation risk

• Risk intolerant applications see significant performance benefit

Interactive Data Processing Performance

 33

Default Spark

Flint

TPC-H response time (s)

0 150 300 450 600

55

536

32

29.8

No revocations (On-demand server performance)
With server revocation

Interactivity maintained even after revocation

10x reduction

