
Spark

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael
Franklin,
Scott Shenker, Ion Stoica

Spark
Fast, Interactive, Language-
Integrated Cluster Computing

UC BERKELEY
www.spark-project.org

Project Goals

Extend the MapReduce model to better support
two common classes of analytics apps:

»Iterative algorithms (machine learning,
graphs)

»Interactive data mining

Enhance programmability:
»Integrate into Scala programming language
»Allow interactive use from Scala interpreter

Motivation

Most current cluster programming models are based on
acyclic data flow from stable storage to stable storage

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

Input Output

RDD

Motivation

MapMap

MapMap

MapMap

Reduc
e

Reduc
e

Reduc
e

Reduc
e

Input Outpu
t

Most current cluster programming models are based
on acyclic data flow from stable storage to stable
storage

Motivation

Acyclic data flow is inefficient for applications
that repeatedly reuse a working set of data:

»Iterative algorithms (machine learning,
graphs)

»Interactive data mining tools (R, Excel,
Python)

With current frameworks, apps reload data from
stable storage on each query

Solution: Resilient
Distributed Datasets (RDDs)

Allow apps to keep working sets in memory for
efficient reuse

Retain the attractive properties of MapReduce
» Fault tolerance, data locality, scalability

Support a wide range of applications

Programming Model

Resilient distributed datasets (RDDs)
» Immutable, partitioned collections of objects
»Created through parallel transformations (map,
filter, groupBy, join, …) on data in stable storage

»Can be cached for efficient reuse

Actions on RDDs
»Count, reduce, collect, save, …

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to
driver program)

collect
reduce
count
save

lookupKey

Spark Operations

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1Block 1

Block 2Block 2

Block 3Block 3

WorkerWorker

WorkerWorker

WorkerWorker

DriverDriver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1Cache 1

Cache 2Cache 2

Cache 3Cache 3

Base RDDBase RDD
Transformed RDDTransformed RDD

ActionAction

Result: full-text search of Wikipedia in
<1 sec (vs 20 sec for on-disk data)

RDD Fault Tolerance

RDDs maintain lineage information that can be
used to reconstruct lost partitions

Ex:
messages = textFile(...).filter(_.startsWith(“ERROR”))
 .map(_.split(‘\t’)(2))

HDFS FileHDFS File
Filtered

RDD

Filtered
RDD

Mapped
RDD

Mapped
RDD

filter
(func = _.contains(...))

map
(func = _.split(...))

Example: Logistic Regression

Goal: find best line separating two sets
of points

+

–

+
+

+

+

+

+

+
+

– –
–

–

–

–

–
–

+

target

–

random initial line

Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
 val gradient = data.map(p =>
 (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
 w -= gradient
}

println("Final w: " + w)

Spark Applications

In-memory data mining on Hive data (Conviva)

Predictive analytics (Quantifind)

City traffic prediction (Mobile Millennium)

Twitter spam classification (Monarch)

Collaborative filtering via matrix factorization

…

Frameworks Built on Spark

Pregel on Spark (Bagel)
»Google message passing

model for graph computation
»200 lines of code

Hive on Spark (Shark)
»3000 lines of code
»Compatible with Apache Hive
»ML operators in Scala

Implementation

Runs on Apache Mesos to
share resources with Hadoop &
other apps

Can read from any Hadoop
input source (e.g. HDFS)

SparkSpark HadoopHadoop MPIMPI

MesosMesos

NodeNode NodeNode NodeNode NodeNode

…

No changes to Scala compiler

Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition

Interactive Spark

Modified Scala interpreter to allow Spark to be used
interactively from the command line

Required two changes:
» Modified wrapper code generation so that each line

typed has references to objects for its dependencies
» Distribute generated classes over the network

Related Work
DryadLINQ, FlumeJava

»Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

Relational databases
»Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud
»Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.g. Twister, HaLoop)
»Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)
»Store data in files, no explicit control over what is cached

Behavior with Not Enough RAM

C
ac

he
 d

is
ab

le
d

25
%

50
%

75
%

Fu
lly

 c
ac

he
d

0

40

80 68.8

58.1

40.7

29.7

11.5

% of working set in memory

It
e
r
a
t
io

n
 t

im
e
 (

s
)

