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Project Goals

Extend the MapReduce model to better support 
two common classes of analytics apps:

»Iterative algorithms (machine learning, 
graphs)

»Interactive data mining

Enhance programmability:
»Integrate into Scala programming language
»Allow interactive use from Scala interpreter



Motivation

Most current cluster programming models are based on 
acyclic data flow from stable storage to stable storage
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Motivation

Acyclic data flow is inefficient for applications 
that repeatedly reuse a working set of data:

»Iterative algorithms (machine learning, 
graphs)

»Interactive data mining tools (R, Excel, 
Python)

With current frameworks, apps reload data from 
stable storage on each query



Solution: Resilient
Distributed Datasets (RDDs)

Allow apps to keep working sets in memory for 
efficient reuse

Retain the attractive properties of MapReduce
» Fault tolerance, data locality, scalability

Support a wide range of applications



Programming Model

Resilient distributed datasets (RDDs)
» Immutable, partitioned collections of objects
»Created through parallel transformations (map, 
filter, groupBy, join, …) on data in stable storage

»Can be cached for efficient reuse

Actions on RDDs
»Count, reduce, collect, save, …



Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey

Spark Operations



Example: Log Mining

Load error messages from a log into memory, then 
interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()
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WorkerWorker
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cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1Cache 1

Cache 2Cache 2

Cache 3Cache 3

Base RDDBase RDD
Transformed RDDTransformed RDD

ActionAction

Result: full-text search of Wikipedia in 
<1 sec (vs 20 sec for on-disk data)



RDD Fault Tolerance

RDDs maintain lineage information that can be 
used to reconstruct lost partitions

Ex:
messages = textFile(...).filter(_.startsWith(“ERROR”))
                        .map(_.split(‘\t’)(2))

HDFS FileHDFS File
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Filtered 
RDD

Mapped 
RDD

Mapped 
RDD

filter
(func = _.contains(...))

map
(func = _.split(...))



Example: Logistic Regression

Goal: find best line separating two sets 
of points
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Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
  val gradient = data.map(p =>
    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)
  w -= gradient
}

println("Final w: " + w)



Spark Applications

In-memory data mining on Hive data (Conviva)

Predictive analytics (Quantifind)

City traffic prediction (Mobile Millennium)

Twitter spam classification (Monarch)

Collaborative filtering via matrix factorization

…



Frameworks Built on Spark

Pregel on Spark (Bagel)
»Google message passing

model for graph computation
»200 lines of code

Hive on Spark (Shark)
»3000 lines of code
»Compatible with Apache Hive
»ML operators in Scala



Implementation

Runs on Apache Mesos to 
share resources with Hadoop & 
other apps

Can read from any Hadoop 
input source (e.g. HDFS)

SparkSpark HadoopHadoop MPIMPI

MesosMesos

NodeNode NodeNode NodeNode NodeNode

…

No changes to Scala compiler



Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition



Interactive Spark

Modified Scala interpreter to allow Spark to be used 
interactively from the command line

Required two changes:
» Modified wrapper code generation so that each line 

typed has references to objects for its dependencies
» Distribute generated classes over the network



Related Work
DryadLINQ, FlumeJava

»Similar “distributed collection” API, but cannot reuse 
datasets efficiently across queries

Relational databases
»Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud
»Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.g. Twister, HaLoop)
»Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)
»Store data in files, no explicit control over what is cached



Behavior with Not Enough RAM
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