Client-Server Systems
Performance Modeling

Engineering Cloud Computing

Week 4
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Client-Server Architecture

m Clients: Remote programs and users
m Servers can support multiple clients
m Servers implement one or more services

m Centralized services implemented on single servers /
m Distributed: service implemented across multiple servers /
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Server Capacity 7\
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Computation Inside Servers

( C
m Packet processing——— Ne{'U\U"K n\er&ce Qa ra

m Data from NIC to CPU via DMA

m Interrupt handling TewsP

m Packet travels up the network stack N€+

m Processes blocked on socket woken up Lk
m Application level processing Ph

m Parse data from socket B Pry

m Process/store data
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Server performance

Key Metrics
Response time: Time between request initiation and response
Throughput: Number of requests handled by server (per second)

Server Performance Considerations

m How many concurrent clients can be served?

m What is the maximum throughput that can be sustained?
m What is the response times for clients?
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Queuing Theory Model

A centralized service can be modeled as a simple queuing
system

Requests +—>» —> Response
—
/\ Queue Process N\ )
, | Served
Assumptions and notations

m The queue has infinite capacity = arrival rate of requests is not
influenced by current queue length or what is being processed.
m Arrival rate of requests: A

——

m Processing capacity service: i requests per second
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Quick Quiz | F(V\D E['W] =ﬁ Aw Y.
—_— o

Bob finds his friend, Alice, at the bus-stop. It turns out both Alice and

Bob are waiting for the same bus.
Alice has been waiting for the bus for 10 minutes. The bus is afﬁM\ f“'\" e W\<30 min s

scheduled to arrive every 30 minutes.

Assume that there is no other information available about the bus (no
real-time GPS etc.). What is Bob’s expected waiting time for the bus? S P(W ) bvs o j_ 0 Mming
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Distribution of Requests and Service Times

m Requests arrive according to a random process

m Typically, arrival process is modeled as a Poisson distribution

4 A= 2 req/Second

m Arrival rate: A\ per second
m Request service rate: n per second

. .. VA =T
P(n arrivals in interval T) = %
n.
E[n] = AT

Inter-arrival time: Time between successive events
PIA<t)=1—-—P(IA>t
coF FUds9=1-PUA>H
=1— P(0 arrivals in time t)

— 1_6—)\15
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1 — e~ is the CDF of the exponential distribution!

—_—

Service Time: Exponentially distributed with parameter u
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Exponential Distribution

mCDF: F(t)=1—e N

m Probability distribution: f(t) = Ae™*

m Memoryless: P(X <T +a|X >a) = P(X <T)
Proof:

Pla<X <T+a)
P(X >a)
[T e Mat
[0 Ae=Atdt
=1-eM=PX<T) (7)

PX <T+a|lX >a)=

m Previous history does not help in predicting future events

m Waiting for the bus example: Waiting time of others doesn’t matter if
bus arrivals are exponentially distributed.
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Markov Chains

m States with transition probabilities P;; between state i and |

m Represented by a matrix P

P;; is probability of going fromjtoiin 1 step

(P?),; denotes probability of being in j after starting at i after 2
steps.

We are interested in P" for n — oo

For markov chains, F/; is in a row and column

That is, the limiting probability of being in a state doesn’t depend on
where you start.

m Limiting distribution of being in state j: m; = limy, oo P}
B> m=1
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M/M/1 Queue Markov Chains

m Balance equations:

B \my = pm

B (\+ p)m = Amg + pme

B (A4 p)my = AMp—1 + pmpy1
A

T = —T0

u
()
T =1\{— | To
i

Letp=A/pandp <1

[e.e] o) .
R OV E
1=0 0

Last step is using the geometric series sum for p

m=1—0p

1

o

p
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Properties

Mean number of objects in the system = p/(1 — p)
Utilization = p

Fraction of time having % requests in the system
A Ak

pr=(1-2)()

pp
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Little’s Law

m N: Number of items in the system
m S: Response time (Time to leave the system)

Little’s Law
E[N] = AE[T]

Proof outline

Kl Plot N vs. time, for a total time T

Area of the ’ribbon’, A = Time spent by all items
A= N/T

Mean time spent in the system, E[T]| = A/N
Mean number in the system, E[N] = A/T

A Counting the area in two ways = E[N| = AE[T]
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Little’s Law Applications

m Very general. Multiple queueing disciplines, network of queues, etc!
m Average response time of server, E[S| = E[T| = E[N]/\
B E[N|=YkP,=p/1—p
1

E[S]= ——
m E[S] o
Scenarios
Is it better to have one queue with 2 servers or 2 separate queues?
What happens when processing power is doubled?
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Server Performance Implications

m Average Response Time =1/u — A

m Useful to identify saturating load
m What to do if incoming traffic rate (\) is close to u?
m Scaling techniques. Next class!
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Throughput

m X: Rate at which events are processed
m C events processed in total time T
C
mX = T
m Events are only processed if system is busy
m Rate at which events are processed when system is busy =
B X=p-pu=2A
m Independent of !
m Throughput of server doesn’t improve if its performance improves!?!

Why do we want faster servers?
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Closed-loop Systems

m Looked at open systems so far
m Many systems are closed, or atleast have some feedback
m Processed items feed back into the queue

m Web server example: people view a sequence of web-pages, based
on what is served
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Queue Networks

m Can represent system as a network of queues
m One queue for CPU, one for disk, etc.

m Or for different parts of the application

m Little’s law is applicable!
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Closed Networks

Items feed back into queue after some “thinking time” E[Z]
Total number of items = N

E[R] is the response time

Little’s law: N = X E[T]

But E[T] = E[R] + E[Z]

N
P ——
Throughput X < ER + BZ]

For small N, the equality holds

In practice, throughput converges to 1/E[R] for high N. (system is
saturated)

m Closed systems useful for measuring the service rate
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