
Computer Networks

Slides courtesy Kurose & Ross

Agenda

• Computer networks, primarily from an application
perspective

• Protocol layering

• Client-server architecture

• End-to-end principle

• TCP

• Socket programming

Why Networking?

• All communication takes place over computer networks

• Networking affects how we design distributed systems:
• Architecture
• Performance
• Reliability and Resiliency

Networking Goals

• Reliable delivery of data (packets)

• Low latency delivery of data

• Utilize physical networking bandwidth

• Share network bandwidth among multiple agents

Network Elements
• Links:

• Wired or wireless

• Hosts or end-points:
• Servers/clients

• Packets:
• Units of data transmission

• Switches, Routers, Middleboxes:
• Receive, process, forward packets Abstraction

Four sources of packet
delay

dproc: nodal processing
 check bit errors

 determine output link

 typically < msec

A

B

propagation

transmission

nodal

processing queueing

 dqueue: queueing delay
 time waiting at output link for

transmission
 depends on congestion level

of router

dnodal = dproc + dqueue + dtrans + dprop

1-6

Throughput: Internet
scenario

10 connections (fairly) share

backbone bottleneck link R bits/sec

Rs

Rs

Rs

Rc

Rc

Rc

R

• per-connection
end-end
throughput:
min(Rc,Rs,R/10)

• in practice: Rc or
Rs is often
bottleneck

Client-server architecture

Server:

• always-on host

• permanent IP address

• data centers for scaling

Clients:

• communicate with server

• may be intermittently
connected

• may have dynamic IP
addresses

• do not communicate
directly with each other

Server

Client Client

Internet protocol stack

• application: supporting network
applications

• FTP, SMTP, HTTP

• transport: process-process data
transfer

• TCP, UDP

• network: routing of datagrams
from source to destination

• IP, routing protocols

• link: data transfer between
neighboring network elements

• Ethernet, 802.111 (WiFi), PPP

• physical: bits “on the wire”

application

transport

network

link

physical

1-9

source

application

transport

network

link

physical

HtHn M

segment Ht

datagram

destination

application

transport

network

link

physical

HtHnHl M

HtHn M

Ht M

M

network

link

physical

link

physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation
message M

Ht M

Hn

frame

1-10

Application Layer 2-11

App-layer protocol defines

• types of messages
exchanged,

• e.g., request, response

• message syntax:

• what fields in
messages & how fields
are delineated

• message semantics

• meaning of
information in fields

• rules for when and how
processes send &
respond to messages

open protocols:

• defined in RFCs

• allows for
interoperability

• e.g., HTTP, SMTP

proprietary protocols:

• e.g., Skype

HTTP Header Example

ResponseRequest

Application Layer 2-13

HTTP overview

uses TCP:

• client initiates TCP
connection (creates
socket) to server, port 80

• server accepts TCP
connection from client

• HTTP messages
(application-layer
protocol messages)
exchanged between
browser (HTTP client) and
Web server (HTTP server)

• TCP connection closed

HTTP is
“stateless”

• server maintains
no information
about past client
requests

protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state”
may be inconsistent,
must be reconciled

aside

Application Layer 2-14

What transport service does an
app need?

data integrity

• some apps (e.g., file
transfer, web
transactions) require
100% reliable data
transfer

• other apps (e.g., audio)
can tolerate some loss

timing

• some apps (e.g.,
Internet telephony,
interactive games)
require low delay to
be “effective”

throughput
 some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic
apps”) make use of
whatever throughput
they get

security
 encryption, data

integrity, …

Principle Of End-To-End System Design
“END-TO-END ARGUMENTS IN SYSTEM DESIGN” J.H.
Saltzer, D.P. Reed and D.D. Clark

• Where to implement functionality in a distributed
system?

• Especially relevant in networking

• Example: Copy a file across the network reliably
• Option 1 : Copy file, and then verify contents using

checksums
• Option 2 : Build a perfectly reliable network, routers, etc.

• Even with a perfectly reliable network, things can go
wrong

• Need application level verification anyway

Principle Of End-To-End System Design
(2/2)
• It is better to implement functionality at the “ends” of
the network (aka the hosts)

• Enables effective layering
• Better to implement functionality at higher layers of

abstraction

• Also useful in non-network settings like operating
systems

• Implementing system calls in hardware is not a great idea

Transport Layer 3-17

Transport services and
protocols
provide logical

communication between
app processes running on
different hosts

transport protocols run in
end systems

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

 Internet: TCP and UDP

applicatio
n
transport
network
data link
physical

logical end-end transport
applicatio
n
transport
network
data link
physical

Application Layer 2-19

Sockets

• process sends/receives messages to/from its
socket

• socket analogous to door

• sending process shoves message out door

• sending process relies on transport
infrastructure on other side of door to deliver
message to socket at receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Transport Layer 3-21

Transport vs. network layer

network layer:
logical
communication
between hosts

transport layer:
logical
communication
between
processes
 relies on,

enhances,
network layer
services

12 kids in Ann’s house
sending letters to 12
kids in Bill’s house:

• hosts = houses
• processes = kids
• app messages =

letters in envelopes
• transport protocol =

Ann and Bill who
demux to in-house
siblings

• network-layer protocol
= postal service

household analogy:

Transport Layer 3-22

UDP: User Datagram Protocol
[RFC 768]

• “no frills,” “bare bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:

• lost

• delivered out-of-order
to app

• connectionless:

• no handshaking
between UDP sender,
receiver

• each UDP segment
handled independently
of others

 UDP use:
 streaming

multimedia apps
(loss tolerant, rate
sensitive)

 DNS
 SNMP

 reliable transfer
over UDP:
 add reliability at

application layer
 application-specific

error recovery!

Transport Layer 3-23

TCP: Overview RFCs: 793,1122,1323,

2018, 2581

full duplex data:
 bi-directional data flow

in same connection
 MSS: maximum

segment size

connection-oriented:
 handshaking

(exchange of control
msgs) inits sender,
receiver state before
data exchange

flow controlled:
 sender will not

overwhelm receiver

• point-to-point:
• one sender, one

receiver

• reliable, in-order
byte steam:

• no “message
boundaries”

• pipelined:
• TCP congestion and
flow control set
window size

Transport Layer 3-24

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-25

TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” of
first byte in segment’s
data

acknowledgements:

• seq # of next byte
expected from other side

• cumulative ACK

Q: how receiver handles out-
of-order segments

• A: TCP spec doesn’t say, -
up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet
ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-26

TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-27

TCP sender events:

data rcvd from app:

create segment with
seq #

seq # is byte-stream
number of first data
byte in segment

start timer if not
already running

 think of timer as for
oldest unacked segment

 expiration interval:
TimeOutInterval

timeout:

retransmit segment
that caused timeout

restart timer

 ack rcvd:

if ack acknowledges
previously unacked
segments

 update what is known
to be ACKed

 start timer if there are
still unacked segments

Transport Layer 3-29

TCP congestion control: additive
increase multiplicative decrease

 approach: sender increases transmission
rate (window size), probing for usable
bandwidth, until loss occurs
 additive increase: increase cwnd by 1

MSS every RTT until loss detected
 multiplicative decrease: cut cwnd in half

after loss

c
w
n
d
:

 T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Performance

• Ideal: Window-size/Round-Trip-Time

• Throughput = Window-size/RTT*(sqrt(2/3)*packet-loss-
probability)

• Performance also depends on receive-buffer sizes

Application Layer 2-31

Socket programming with
UDP

UDP: no “connection” between client &
server

• no handshaking before sending data

• sender explicitly attaches IP destination address
and port # to each packet

• rcvr extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or
received out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of

bytes (“datagrams”) between client and server

Client/server socket interaction:
UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =
socket(AF_INET, SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

Application 2-32

server (running on serverIP) client

Application Layer 2-33

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET,

 socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for

server

get user keyboard
input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Application Layer 2-34

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print “The server is ready to receive”

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

Application Layer 2-35

Socket programming with
TCP
client must contact server

• server process must first
be running

• server must have created
socket (door) that
welcomes client’s contact

client contacts server by:

• Creating TCP socket,
specifying IP address, port
number of server process

• when client creates socket:
client TCP establishes
connection to server TCP

• when contacted by client,
server TCP creates new
socket for server process to
communicate with that
particular client

• allows server to talk
with multiple clients

• source port numbers
used to distinguish
clients

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Application Layer 2-36

Client/server socket interaction:
TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,

port=x, for incoming

request:
serverSocket = socket()

create socket,

connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Socket Programming With TCP

Socket Example
An example script to connect to Google using socket
programming in Python
import socket # for socket
import sys

try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 print "Socket successfully created"
except socket.error as err:
 print "socket creation failed with error %s" %(err)

default port for socket
port = 80

try:
 host_ip = socket.gethostbyname('www.google.com')
except socket.gaierror:

 # this means could not resolve the host
 print "there was an error resolving the host"
 sys.exit()

connecting to the server
s.connect((host_ip, port))

print "the socket has successfully connected to google \
on port == %s" %(host_ip)

Application Layer 2-39

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

Application Layer 2-40

Example app: TCP server

 from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

 connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

Higher Level Networking

• Client/server code abstracted out (python’s twisted
framework)

• Message queues: Kafka, ZeroMQ, etc

• Durability of messages (can persist on disk)

• Message lifetimes (time to live)

• Filtering, queueing policies

• Batching policies

• Delivery policies (at most once, at least once, etc)

Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Physical

application

(www browser,

email client)

application

OS

packet

capture

(pcap)

packet

analyzer

copy of all

Ethernet

frames

sent/receive

d

Debugging Networks: Packet Capture

Separation of Concerns

• Break problem into separate parts

• Solve each problem independently

• Encapsulate data across layers

• Protocol: Rules for communication within same layer

• Service: Abstraction provided to layer above

• API: Concrete way of using that service

• Layering+Encapsulation Example

Remote Procedure Calls

Moving to Microservices

getUserInfo()

getDirections()

renderMap()

analytics()

https://pixabay.com/en/laptop-computer-open-screen-blank-310098/

Moving to Microservices

getUserInfo()

Server

getDirections()

Server

Stub

renderMap()

Stub

analytics()

Server

Stub

Remote Procedure Calls

• Procedure (function) calls a well known and understood
mechanism for transfer of data and control within a
program/process

• Remote Procedure Calls : extend conventional local calls
to work across processes.

• Processes may be running on different machines
• Allows communication of data via function parameters and

return values
• RPC invocations also serve as notifications (transfer of

control)

RPC Example

ClientClient ServerServer
return action

update_temp(device, temp)

Parameters passed over a network channel

RPC Advantages

• Clean and simple to understand semantics similar to
local procedure calls

• Generality: all languages have local procedure calls
• RPC libraries augment the procedure call interface to make

RPCs appear similar to local calls

• Abstraction for a common client/server communication
pattern

push_temp(name) {
 t = get_current_temp();

return update_temp (name, t); //RPC
}

Challenges

• RPCs impose new challenges not faced in local calls

• How to pass parameters?
• Passing data over a network raises issues like endian-ness
• Pointers: machines may not share an address space

• How to deal with machine failures?
• Local procedures are assumed to always run
• A remote machine running an RPC may face crashes, network issues
• Need to consider failure semantics in RPC implementations

• How to integrate RPCs with existing language runtimes?
• Seamless local and remote calls
• Integrate RPCs with language caller/callee interface

RPC Semantics

• Usually, RPCs are blocking
• Thus, also useful for synchronization

How RPCs Work

• Each process has 2 additional components:
• Code stubs
• RPC runtime

• Code stubs “translate” local calls remote calls
• Pack/unpack parameters

• RPC runtime transmits these translated calls over the
network

• Wait for result

How RPCs Work

Parameter Passing

• Local procedure parameter passing
• Call-by-value
• Call-by-reference: arrays, complex data structures

• Remote procedure calls simulate this through:
• Stubs – proxies
• Flattening – marshalling
• Serializing local, in-memory representation

• Related issue: global variables are not allowed in RPCs

Client And Server Stubs

• Client makes procedure call (just like a local procedure
call) to the client stub

• Server is written as a standard procedure

• Stubs take care of packaging arguments and sending
messages

• Packaging parameters is called marshalling

• Stub compiler generates stub automatically from specs
in an Interface Definition Language (IDL)

• Simplifies programmer task

Steps of RPC
1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

Marshalling
• Problem: different machines have different data formats

• Intel: little endian, SPARC: big endian

• Solution: use a cross-platform, general, standard representation
• Convert in-memory object representation to a standardized “wire”

format

• Example: external data representation (XDR)

• Problem: how do we pass pointers?
• If it points to a well-defined data structure, pass a copy and the server

stub passes a pointer to the local copy

• What about data structures containing pointers?
• Prohibit

• Dereference and send (used by most RPC implementations)

• Chase pointers over network

• Marshalling: transform parameters/results into a byte stream
(serialization of parameters)

Binding

• Problem: how does a client locate a server?
• How does caller code locate and call the callee
• Use bindings (similar to how symbols are bound to variables

during run-time in local programs)

• Server
• Export server interface during initialization
• Send name, version no, unique identifier, handle (address) to

binder

• Client
• First RPC: send message to binder to import server interface
• Binder: check to see if server has exported interface

• Return handle and unique identifier to client

Binding Comments

• Binding can be at run-time
• Better handling of partial failures (clients can try other

advertised end-points, protocols, etc.)
• Increased dynamism

• Exporting and importing incurs overheads

• Binder can be a bottleneck
• Use multiple binders

• Binder can do load balancing

Failure Semantics

• Client unable to locate server: return error

• Lost request messages: simple timeout mechanisms

• Lost replies: timeout mechanisms
• Make operation idempotent
• Use sequence numbers, mark retransmissions

• Server failures: did failure occur before or after
operation?

• At least once semantics / Idempotent (SUNRPC)
• At most once
• No guarantee
• Exactly once: desirable but difficult to achieve

More Failure Semantics

• Client failure: what happens to the server computation?
• Referred to as an orphan

• Extermination: log at client stub and explicitly kill orphans
• Overhead of maintaining disk logs

• Reincarnation: Divide time into epochs between failures and
delete computations from old epochs

• Gentle reincarnation: upon a new epoch broadcast, try to
locate owner first (delete only if no owner)

• Expiration: give each RPC a fixed quantum T; explicitly
request extensions

• Periodic checks with client during long computations

Implementation Issues

• Choice of protocol [affects communication costs]
• Use existing protocol (UDP) or design from scratch
• Packet size restrictions
• Reliability in case of multiple packet messages
• Flow control

• Copying costs are dominant overheads
• Need at least 2 copies per message

• From client to NIC and from server NIC to server

• As many as 7 copies
• Stack in stub – message buffer in stub – kernel – NIC – medium –

NIC – kernel – stub – server

Sun RPC
• One of the most widely used RPC systems

• Developed for use with NFS (Network File System)

• Built on top of UDP or TCP
• TCP: stream is divided into records

• UDP: max packet size < 8912 bytes

• UDP: timeout plus limited number of retransmissions

• TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure

• At-least-once semantics if reply received, at-least-zero semantics if no
reply. With UDP tries at-most-once

• Use SUN’s eXternal Data Representation (XDR)
• Big endian order for 32 bit integers, handle arbitrarily large data structures

Sun RPC program structure

Protocol Buffers

IDL (Interface definition language)

Describe once and generate interfaces for any

language.

Data Model

Structure of the request and response.

Wire Format

Binary format for network transmission.

syntax = “proto3”;

message Person {

 string name = 1;

 int32 id = 2;

 string email = 3;

 enum PhoneType {

 MOBILE = 0;

 HOME = 1;

 WORK = 2;

 }

 message PhoneNumber {

 string number = 1;

 PhoneType type = 2;

 }

 repeated PhoneNumber phone = 4;

}

Service Definitions

service RouteGuide {

 rpc GetFeature(Point) returns (Feature);

 rpc RouteChat(stream RouteNote) returns (stream RouteNote);

}

message Point {

 int32 Latitude = 1;

� int32 Longitude = 2;

}

message RouteNote {

 Point location = 1;

 string message = 2;

}

message Feature {

 string name = 1;

 �Point location = 2;

}

Ruby Service

gRPC server

Go Service

gRPC server

gRPC
Stub

Java Service

gRPC
Stub

Python Service

gRPC server

gRPC
Stub

Multiple Language Support

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Modern RPCs and Protocol Buffers

• Many distributed systems use RPCs today (like Mesos)

• Common paradigm: serialize function calls in some
serialization format (XML, JSON,…) and send over HTTP
(xmlrpclib, etc.)

• HTTP servers unpacks and executes the remote call
• POST http://foo.com/api/function-name {arg1:x, arg2:y}

Protocol Buffers

message Point {

 int32 x = 1 ; //Field “tags”, since names are not included in the message

 int32 y = 2 ;

 String name = 3 ;

}

Repeated Points point = 4 ; //List/array

• Getters and setter methods created for each message during compilation
(protoc)

• Access via msg.fieldname() (for example, point.x())
• Multiple languages supported

• Relatively new (2008) serialization format from Google
• Binary format. Faster than JSON/XML

• Con: Not self documenting

gRPC: A Modern RPC Framework

• “Service” : Function declaration
• Unary: Single response for a request
• Streaming: Multiple streaming requests result in single response

• Uses HTTP/2 as transport
• Messages are just POST requests. Request name is URI, params is

content
• Can multiplex multiple requests onto single TCP connection

• At-most-once failure semantics, but other schemes using
retries possible

• Can use load balancers

• GRPC Python: https://www.semantics3.com/blog/a-simplified-
guide-to-grpc-in-python-6c4e25f0c506/

