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Agenda

• Computer networks, primarily from an application 
perspective

• Protocol layering 

• Client-server architecture 

• End-to-end principle 

• TCP 

• Socket programming 



Why Networking? 

• All communication takes place over computer networks

• Networking affects how we design distributed systems:
• Architecture
• Performance
• Reliability and Resiliency



Networking Goals 

• Reliable delivery of data (packets)

• Low latency delivery of data

• Utilize physical networking bandwidth 

• Share network bandwidth among multiple agents 



Network Elements
• Links:

• Wired or wireless

• Hosts or end-points:
• Servers/clients 

• Packets:
• Units of data transmission

• Switches, Routers, Middleboxes:
• Receive, process, forward packets Abstraction



Four sources of packet 
delay

dproc: nodal processing 
 check bit errors

 determine output link

 typically < msec

A

B

propagation

transmission

nodal

processing queueing

 dqueue: queueing delay
 time waiting at output link for 

transmission 
 depends on congestion level 

of router

dnodal = dproc + dqueue + dtrans +  dprop
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Throughput: Internet 
scenario

10 connections (fairly) share 

backbone bottleneck link R bits/sec

Rs

Rs

Rs

Rc

Rc

Rc

R

• per-connection 
end-end 
throughput: 
min(Rc,Rs,R/10)

• in practice: Rc or 
Rs is often 
bottleneck



Client-server architecture

Server: 

• always-on host

• permanent IP address

• data centers for scaling

Clients:

• communicate with server

• may be intermittently 
connected

• may have dynamic IP 
addresses

• do not communicate 
directly with each other

Server

Client Client



Internet protocol stack

• application: supporting network 
applications

• FTP, SMTP, HTTP

• transport: process-process data 
transfer

• TCP, UDP

• network: routing of datagrams 
from source to destination

• IP, routing protocols

• link: data transfer between 
neighboring  network elements

• Ethernet, 802.111 (WiFi), PPP

• physical: bits “on the wire”

application

transport

network

link

physical
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App-layer protocol defines

• types of messages 
exchanged, 

• e.g., request, response 

• message syntax:

• what fields in 
messages & how fields 
are delineated

• message semantics 

• meaning of 
information in fields

• rules for when and how 
processes send & 
respond to messages

open protocols:

• defined in RFCs

• allows for 
interoperability

• e.g., HTTP, SMTP

proprietary protocols:

• e.g., Skype



HTTP Header Example

ResponseRequest
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HTTP overview

uses TCP:

• client initiates TCP 
connection (creates 
socket) to server,  port 80

• server accepts TCP 
connection from client

• HTTP messages 
(application-layer 
protocol messages) 
exchanged between 
browser (HTTP client) and 
Web server (HTTP server)

• TCP connection closed

HTTP is 
“stateless”

• server maintains 
no information 
about past client 
requests

protocols that maintain 
“state” are complex!

 past history (state) must 
be maintained

 if server/client crashes, 
their views of “state” 
may be inconsistent, 
must be reconciled

aside
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What transport service does an 
app need?

data integrity

• some apps (e.g., file 
transfer, web 
transactions) require 
100% reliable data 
transfer 

• other apps (e.g., audio) 
can tolerate some loss

timing

• some apps (e.g., 
Internet telephony, 
interactive games) 
require low delay to 
be “effective”

throughput
 some apps (e.g., 

multimedia) require 
minimum amount of 
throughput to be 
“effective”

 other apps (“elastic 
apps”) make use of 
whatever throughput 
they get 

security
 encryption, data 

integrity, …



Principle Of End-To-End System Design
“END-TO-END ARGUMENTS IN SYSTEM DESIGN” J.H. 
Saltzer, D.P. Reed and D.D. Clark

• Where to implement functionality in a distributed 
system?

• Especially relevant in networking 

• Example: Copy a file across the network reliably 
• Option 1 :  Copy file, and then verify contents using 

checksums 
• Option 2 : Build a perfectly reliable network, routers, etc. 

• Even with a perfectly reliable network, things can go 
wrong

• Need application level verification anyway



Principle Of End-To-End System Design 
(2/2)
• It is better to implement functionality at the “ends” of 
the network (aka the hosts) 

• Enables effective layering 
• Better to implement functionality at higher layers of 

abstraction

• Also useful in non-network settings like operating 
systems

• Implementing system calls in hardware is not a great idea 
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Transport services and 
protocols
provide logical 

communication between 
app processes running on 
different hosts

transport protocols run in 
end systems 

 send side: breaks app 
messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages, 
passes to app layer

more than one transport 
protocol available to apps

 Internet: TCP and UDP

applicatio
n
transport
network
data link
physical

logical end-end transport
applicatio
n
transport
network
data link
physical
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Sockets

• process sends/receives messages to/from its 
socket

• socket analogous to door

• sending process shoves message out door

• sending process relies on transport 
infrastructure on other side of door to deliver 
message to socket at receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket
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Transport vs. network layer

network layer: 
logical 
communication 
between hosts

transport layer: 
logical 
communication 
between 
processes 
 relies on, 

enhances, 
network layer 
services

12 kids in Ann’s house 
sending letters to 12 
kids in Bill’s house:

• hosts = houses
• processes = kids
• app messages = 

letters in envelopes
• transport protocol = 

Ann and Bill who 
demux to in-house 
siblings

• network-layer protocol 
= postal service

household analogy:
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UDP: User Datagram Protocol 
[RFC 768]

• “no frills,” “bare bones” 
Internet transport protocol

• “best effort” service, UDP 
segments may be:

• lost

• delivered out-of-order 
to app

• connectionless:

• no handshaking 
between UDP sender, 
receiver

• each UDP segment 
handled independently 
of others

 UDP use:
 streaming 

multimedia apps 
(loss tolerant, rate 
sensitive)

 DNS
 SNMP

 reliable transfer 
over UDP: 
 add reliability at 

application layer
 application-specific 

error recovery!
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TCP: Overview  RFCs: 793,1122,1323, 

2018, 2581

full duplex data:
 bi-directional data flow 

in same connection
 MSS: maximum 

segment size

connection-oriented: 
 handshaking 

(exchange of control 
msgs) inits sender, 
receiver state before 
data exchange

flow controlled:
 sender will not 

overwhelm receiver

• point-to-point:
• one sender, one 

receiver 

• reliable, in-order 
byte steam:

• no “message 
boundaries”

• pipelined:
• TCP congestion and 
flow control set 
window size
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TCP segment structure

source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data 

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

# bytes 

rcvr willing

to accept

counting

by bytes 

of data

(not segments!)

Internet

checksum

(as in UDP)
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TCP seq. numbers, ACKs
sequence numbers:

• byte stream “number” of 
first byte in segment’s 
data

acknowledgements:

• seq # of next byte 
expected from other side

• cumulative ACK

Q: how receiver handles out-
of-order segments

• A: TCP spec doesn’t say, - 
up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet 
ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
 N

sender sequence number space 

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender
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TCP seq. numbers, ACKs

User
types

‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
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TCP sender events:

data rcvd from app:

create segment with 
seq #

seq # is byte-stream 
number of first data 
byte in  segment

start timer if not 
already running 

 think of timer as for 
oldest unacked segment

 expiration interval: 
TimeOutInterval 

timeout:

retransmit segment 
that caused timeout

restart timer

 ack rcvd:

if ack acknowledges 
previously unacked 
segments

 update what is known 
to be ACKed

 start timer if there are  
still unacked segments



Transport Layer 3-29

TCP congestion control: additive 
increase multiplicative decrease

 approach: sender increases transmission 
rate (window size), probing for usable 
bandwidth, until loss occurs
 additive increase: increase  cwnd by 1 

MSS every RTT until loss detected
 multiplicative decrease: cut cwnd in half 

after loss 
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behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time



TCP Performance

• Ideal: Window-size/Round-Trip-Time

• Throughput = Window-size/RTT*(sqrt(2/3)*packet-loss-
probability)

• Performance also depends on receive-buffer sizes
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Socket programming with 
UDP

UDP: no “connection” between client & 
server

• no handshaking before sending data

• sender explicitly attaches IP destination address 
and port # to each packet

• rcvr extracts sender IP address and port# from 
received packet

UDP: transmitted data may be lost or 
received out-of-order

Application viewpoint:
• UDP provides unreliable transfer  of groups of 

bytes (“datagrams”)  between client and server



Client/server socket interaction: 
UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =
socket(AF_INET, SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying 

client address,

port number

Application  2-32

server (running on serverIP) client
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Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(socket.AF_INET, 

                                  socket.SOCK_DGRAM)

message = raw_input(’Input lowercase sentence:’)

clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress = 

                                  clientSocket.recvfrom(2048)

print modifiedMessage

clientSocket.close()

Python UDPClient
include Python’s socket 
library

create UDP socket for 

server

get user keyboard
input 

Attach server name, port to 

message; send into socket

print out received string 

and close socket

read reply characters from

socket into string
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Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print “The server is ready to receive”

while 1:

    message, clientAddress = serverSocket.recvfrom(2048)

    modifiedMessage = message.upper()

    serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port 

number 12000

loop forever

Read from UDP socket into 
message, getting client’s 
address (client IP and port)

send upper case string 

back to this client



Application Layer 2-35

Socket programming with 
TCP
client must contact server

• server process must first 
be running

• server must have created 
socket (door) that 
welcomes client’s contact

client contacts server by:

• Creating TCP socket, 
specifying IP address, port 
number of server process

• when client creates socket: 
client TCP establishes 
connection to server TCP

• when contacted by client, 
server TCP creates new 
socket for server process to 
communicate with that 
particular client

• allows server to talk 
with multiple clients

• source port numbers 
used to distinguish 
clients 

TCP provides reliable, in-order
byte-stream transfer (“pipe”) 
between client and server

application viewpoint:
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Client/server socket interaction: 
TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,

port=x, for incoming 

request:
serverSocket = socket()

create socket,

connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP 
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket



Socket Programming With TCP



Socket Example
# An example script to connect to Google using socket 
# programming in Python 
import socket # for socket 
import sys  
  
try: 
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
    print "Socket successfully created"
except socket.error as err: 
    print "socket creation failed with error %s" %(err) 
  
# default port for socket 
port = 80
  
try: 
    host_ip = socket.gethostbyname('www.google.com') 
except socket.gaierror: 
  
    # this means could not resolve the host 
    print "there was an error resolving the host"
    sys.exit() 
  
# connecting to the server 
s.connect((host_ip, port)) 
  
print "the socket has successfully connected to google \ 
on port == %s" %(host_ip) 
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Example  app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Python TCPClient

create TCP socket for 

server, remote port 12000

No need to attach server 

name, port 
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Example app: TCP server

 from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

     connectionSocket, addr = serverSocket.accept()

     

     sentence = connectionSocket.recv(1024)

     capitalizedSentence = sentence.upper()

     connectionSocket.send(capitalizedSentence)

     connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for  

incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new 
socket created on return

read bytes from socket (but 

not address as in UDP)

close connection to this 

client (but not welcoming 

socket)



Higher Level Networking

• Client/server code abstracted out (python’s twisted 
framework)

• Message queues: Kafka, ZeroMQ, etc 

• Durability of messages (can persist on disk)

• Message lifetimes (time to live)

• Filtering, queueing policies 

• Batching policies 

• Delivery policies (at most once, at least once, etc)



Transport (TCP/UDP)

Network (IP)

Link (Ethernet)

Physical

application

(www browser, 

email client)

application

OS

packet

capture

(pcap)

packet

analyzer

copy of all 

Ethernet 

frames 

sent/receive

d

Debugging Networks: Packet Capture



Separation of Concerns

• Break problem into separate parts

• Solve each problem independently 

• Encapsulate data across layers 

• Protocol: Rules for communication within same layer

• Service: Abstraction provided to layer above 

• API: Concrete way of using that service 

• Layering+Encapsulation Example 



Remote Procedure Calls



Moving to Microservices

getUserInfo()

getDirections()

renderMap()

analytics()

https://pixabay.com/en/laptop-computer-open-screen-blank-310098/



Moving to Microservices

getUserInfo()

Server

getDirections()

Server

Stub

renderMap()

Stub 

analytics()

Server

Stub



Remote Procedure Calls

• Procedure (function) calls a well known and understood 
mechanism for transfer of data and control within a 
program/process

• Remote Procedure Calls : extend conventional local calls 
to work across processes.

• Processes may be running on different machines
• Allows communication of data via function parameters and 

return values
• RPC invocations also serve as notifications (transfer of 

control)



RPC Example

ClientClient ServerServer
return action

update_temp(device, temp)

Parameters passed over a network channel



RPC Advantages

• Clean and simple to understand semantics similar to 
local procedure calls

• Generality: all languages have local procedure calls
• RPC libraries augment the procedure call interface to make 

RPCs appear similar to local calls

• Abstraction for a common client/server communication 
pattern

push_temp(name) {
    t = get_current_temp();

return update_temp (name, t);  //RPC
}



Challenges

• RPCs impose new challenges not faced in local calls

• How to pass parameters?
• Passing data over a network raises issues like endian-ness
• Pointers: machines may not share an address space

• How to deal with machine failures?
• Local procedures are assumed to always run
• A remote machine running an RPC may face crashes, network issues
• Need to consider failure semantics in RPC implementations

• How to integrate RPCs with existing language runtimes?
• Seamless local and remote calls
• Integrate RPCs with language caller/callee interface



RPC Semantics

• Usually, RPCs are blocking
• Thus, also useful for synchronization 



How RPCs Work

• Each process has 2 additional components: 
• Code stubs
• RPC runtime

• Code stubs “translate” local calls remote calls
• Pack/unpack parameters

• RPC runtime transmits these translated calls over the 
network

• Wait for result



How RPCs Work



Parameter Passing 

• Local procedure parameter passing
• Call-by-value
• Call-by-reference: arrays, complex data structures

• Remote procedure calls simulate this through:
• Stubs – proxies
• Flattening – marshalling
• Serializing local, in-memory representation

• Related issue: global variables are not allowed in RPCs



Client And Server Stubs

• Client makes procedure call (just like a local procedure 
call) to the client stub

• Server is written as a standard procedure

• Stubs take care of packaging arguments and sending 
messages

• Packaging parameters is called marshalling

• Stub compiler generates stub automatically from specs 
in an Interface Definition Language (IDL)

• Simplifies programmer task



Steps of RPC 
1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client



Marshalling
• Problem: different machines have different data formats

• Intel: little endian, SPARC: big endian

• Solution: use a cross-platform, general, standard representation
• Convert in-memory object representation to a standardized “wire” 

format

• Example: external data representation (XDR)

• Problem: how do we pass pointers?
• If it points to a well-defined data structure, pass a copy and the server 

stub passes a pointer to the local copy 

• What about data structures containing pointers? 
• Prohibit

• Dereference and send (used by most RPC implementations)

• Chase pointers over network

• Marshalling: transform parameters/results into a byte stream 
(serialization of parameters)



Binding

• Problem: how does a client locate a server?
• How does caller code locate and call the callee 
• Use bindings (similar to how symbols are bound to variables 

during run-time in local programs)

• Server
• Export server interface during initialization
• Send name, version no, unique identifier, handle (address) to 

binder

• Client
• First RPC: send message to binder to import server interface
• Binder: check to see if server has exported interface

• Return handle and unique identifier to client



Binding Comments

• Binding can be at run-time 
• Better handling of partial failures (clients can try other 

advertised end-points, protocols, etc.)
• Increased dynamism

• Exporting and importing incurs overheads

• Binder can be a bottleneck
• Use multiple binders

• Binder can do load balancing



Failure Semantics

• Client unable to locate server: return error

• Lost request messages: simple timeout mechanisms

• Lost replies: timeout mechanisms
• Make operation idempotent
• Use sequence numbers, mark retransmissions

• Server failures: did failure occur before or after 
operation?

• At least once semantics / Idempotent (SUNRPC)
• At most once
• No guarantee
• Exactly once: desirable but difficult to achieve



More Failure Semantics

• Client failure: what happens to the server computation?
• Referred to as an orphan

• Extermination: log at client stub and explicitly kill orphans
• Overhead of maintaining disk logs

• Reincarnation: Divide time into epochs between failures and 
delete computations from old epochs

• Gentle reincarnation: upon a new epoch broadcast, try to 
locate owner first (delete only if no owner)

• Expiration: give each RPC a fixed quantum T; explicitly 
request extensions

• Periodic checks with client during long computations



Implementation Issues

• Choice of protocol [affects communication costs]
• Use existing protocol (UDP) or design from scratch
• Packet size restrictions
• Reliability in case of multiple packet messages
• Flow control

• Copying costs are dominant overheads
• Need at least 2 copies per message

• From client to NIC and from server NIC to server

• As many as 7 copies
• Stack in stub – message  buffer in stub – kernel  – NIC – medium  – 

NIC  – kernel  – stub – server  



Sun RPC
• One of the most widely used RPC systems

• Developed for use with NFS (Network File System)

• Built on top of UDP or TCP
• TCP: stream is divided into records

• UDP: max packet size < 8912 bytes

• UDP: timeout plus limited number of retransmissions

• TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure

• At-least-once semantics if reply received, at-least-zero semantics if no 
reply. With UDP tries at-most-once

• Use SUN’s eXternal Data Representation (XDR) 
• Big endian order for 32 bit integers, handle arbitrarily large data structures



Sun RPC program structure



Protocol Buffers

IDL (Interface definition language)

Describe once and generate interfaces for any 

language.

Data Model

Structure of the request and response.

Wire Format

Binary format for network transmission.

syntax = “proto3”;

message Person {

    string name = 1;

    int32 id = 2;

    string email = 3;

    enum PhoneType {

      MOBILE = 0;

      HOME = 1;

      WORK = 2;

    }

    message PhoneNumber {

      string number = 1;

      PhoneType type = 2;

    }

    repeated PhoneNumber phone = 4;

}



Service Definitions

service RouteGuide {

  rpc GetFeature(Point) returns (Feature);

  rpc RouteChat(stream RouteNote) returns (stream RouteNote);

}

message Point {

  int32 Latitude = 1;

�  int32 Longitude = 2;

}

message RouteNote {

  Point location = 1;

  string message = 2;

}

message Feature {

 string name = 1;

 �Point location = 2;

}



Ruby Service

gRPC server

Go Service

gRPC server

gRPC 
Stub

Java Service

gRPC 
Stub

Python Service

gRPC server

gRPC 
Stub

Multiple Language Support

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.



Modern RPCs and Protocol Buffers

• Many distributed systems use RPCs today (like Mesos)

• Common paradigm: serialize function calls in some 
serialization format (XML, JSON,…) and send over HTTP 
(xmlrpclib, etc.)

• HTTP servers unpacks and executes the remote call
• POST http://foo.com/api/function-name {arg1:x, arg2:y}



Protocol Buffers

message Point {

  int32 x = 1 ; //Field “tags”, since names are not included in the message

  int32 y = 2 ;

  String name = 3 ;

}

Repeated Points point = 4 ; //List/array

• Getters and setter methods created for each message during compilation 
(protoc)

• Access via msg.fieldname() (for example,  point.x())
• Multiple languages supported

• Relatively new (2008) serialization format from Google
• Binary format. Faster than JSON/XML

• Con: Not self documenting 



gRPC: A Modern RPC Framework

• “Service” : Function declaration
• Unary: Single response for a request
• Streaming: Multiple streaming requests result in single response

•  Uses HTTP/2 as transport 
• Messages are just POST requests. Request name is URI, params is 

content
• Can multiplex multiple requests onto single TCP connection 

• At-most-once failure semantics, but other schemes using 
retries possible

• Can use load balancers 

• GRPC Python: https://www.semantics3.com/blog/a-simplified-
guide-to-grpc-in-python-6c4e25f0c506/


