
Functions as a Service

1 / 12

Infrastructure as a Service Pitfalls

Infrastructure is now software, but even that is too hard...

Configuring and managing complete software stack
OS and software upgrades, security patches, . . .
Monitoring and logging
Auto-scaling, redundancy, geo-replication, . . .

2 / 12

Cloud Functions

Cloud platform runs functions on behalf of user
ret-val function-name(arguments) {...}
Users provide the function implementation in any of the supported
languages
Cloud platform provides the language runtime for all the functions
Python, Javascript, Java, Go, . . .
Event-driven programming: function is called to respond to some
event

3 / 12

Functions as a Service

AWS Lambda (∼ 2015)
FaaS ≡ “Serverless”
No need to manage VMs explicitly
Functions run inside sandboxed runtimes

FaaS is a new programming model :
Functions are “pure functions” and stateless
Each function invocation is in a new sandboxed environment
All state is stored in cloud storage services (like S3 buckets)

4 / 12

Pricing

Function invocations are charged
Pay in proportion to usage
Application is not charged if not used!
Resource limits on CPU/memory utilization
Current pricing is very low: $ 10−7 per request

5 / 12

Function triggers

1 Explicit HTTP requests
2 Changes in cloud storage state (new bucket is added etc)
3 Queuing service (new items added in queue)
4 Publish/Subscribe changes

6 / 12

HTTP Trigger Example

1 Calling a function:

curl -X POST
"https :// region -project -id. cloudfunctions .net/function -name"
-H "Content -Type: application /json"
--data ’{" name ":’’foo ’’}’

2 Register function: gcloud functions deploy function-name
–runtime nodejs8 –trigger-http

3 NodeJS function to be called:

exports . helloHttp = (req , res) => {
res.send(Hello ${ escapeHtml (req.query.name ||

req.body.name || ’World ’)}!);
};

7 / 12

Use-cases

Web services (static web hosting, blogs, etc.)
Data processing
API serving

New use cases:
Highly parallel video processing
Linear algebra
ML training

8 / 12

Implementation

1 On trigger, cloud finds a free server with enough resources
2 Instantiates the language runtime on server
3 Example: If user provides Python code, then launch the Python

interpreter, import all dependencies, and run function
4 Once function exits, destroy the execution environment

Cold-start problem: Function invocation latency can be high

Frameworks like OpenWhisk, OpenFaaS can be used to setup
FaaS on local environments.

9 / 12

Performance Issues

Limited lifetimes (∼ 15–30 minutes)
Storage-bound: excess communication and storage overhead
Startup-latency: ∼ 100 ms . Bad for response times
No state: Can’t use any caching or batching

10 / 12

History

CGI (Common Gateway Interface)
Google AppEngine

11 / 12

Pitfalls and Challenges

Vendor lock-in.
High costs for applications with steady workloads
Restricted programming and manageability flexibility
Heterogenous hardware: using GPUs?

12 / 12

