
Cloud Storage & Data Center Efficiency

1 / 15



Data Storage Options

Local SSD and HDD block storage (often the costliest option)
Network block storage (more flexibility than local)
Long-term archival (Amazon redshift, S3 Glacier, possibly tape
based)
Key-value and document databases [Amazon DynamoDB, firestore,
BigTable, etc.]
Realtime databases (Firebase)
Managed databases as a service

2 / 15

Many places and abstractions for application data on the cloud.



Storage Tiering

Many options for storing data
Price vs. latency vs. capacity tradeoffs
Faster storage is more expensive and of lower capacity
Pricing is a combination of: capacity and number of I/O operations

Caching: Store commonly used items on faster storage
Use spatial and temporal locality to lower average access latency
Items are more likely to be accessed if they or nearby items have
been accessed in the past
Unused items evicted using Least Recently Used (LRU)

3 / 15



Storage Provisioning

Effective Access Time = (cache-hit-ratio)*(access-time) +
(miss-ratio)*(miss-time)
Can also be adapted to compute expected cost
Cache provisioning using miss-ratio-curves :

4 / 15



Managed NFS

Conventional file-server abstraction
Block storage: Users setup their own file system
Amazon Elastic File Server
Google Cloud Filestore

5 / 15



Amazon S3

Key-val store with buckets
REST API for access
All objects automatically replicated
Possible to replicate objects across regions
Cannot always use it as a conventional block storage: only has
eventual consistency
Replication and consistency have a fundamental tradeoff
CAP Theorem: At a given time, can only have two of Consistency,
Availability, and Partition tolerance.

6 / 15



Eventual Consistency

Eventual Consistency
If no updates take place for a long time, all replicas eventually become
consistent (have the same data stored)

Easy to implement
In practice, write-write conflicts handled through some form of
leader election
Inconsistency windows often small (<500 ms)

7 / 15



Eventual Consistency

8 / 15



Google BigTable

Storage engine for semi-structured data (aka NoSQL)
Items may have different fields, unlike traditional relational DBs
Can view as a “Document database” or specialized key-value store
Data model: (row, column, time) → array of bytes
Timestamps help in versioned data management
Building block: Sorted-strings table (chunks of data and index)
Strong consistency: row operations are atomic

9 / 15

Higher level of storage abstraction can yield better performance and
consistency properties.



AWS DynamoDB

Also a distributed NoSQL store
Uses a key to partition items
Optionally, another key for sort items
Many policies available for partitioning and replicating items to
different geographical regions, indexing, auto-scaling, replication,
etc.

10 / 15



Google Cloud Firestore

NoSQL
Includes support for data synchronization between clients and
server
Offline mode for mobile applications
Strong consistency
Multi-region replication

11 / 15



Data Centers

12 / 15



Data Center Efficiency

Efficient data centers are the key to low-cost cloud services
Many location considerations: access to networking, power,
proximity to users, . . .
Key metric is Power Usage Efficiency

PUE =
Total power consumption

IT power consumption
Conventional enterprise data centers: PUE ∼ 2
PUE = 2 → half the power is spent on non-IT stuff
Most modern cloud data centers have PUE ∼ 1.2

Power Consumption In Data Centers
1 Servers and network switches
2 Cooling
3 Electricity distribution losses (UPS etc)
4 Data center operation (lights etc.)

13 / 15



Data Center PUE

Minimzing PUE primarily depends on cooling efficiency
“Free air cooling”: Use outside cold air instead of conventional
chillers
Run servers as hot as possible
Build data centers in cooler regions (near the artic circle,
underwater, . . . )

With free-air cooling, PUE depends on weather conditions
Data from Massachusetts Green High Performance Data Center :

14 / 15



Energy Breakdown

No chillers needed during winter months
In-row-coolers circulate air, and are always operational

15 / 15


