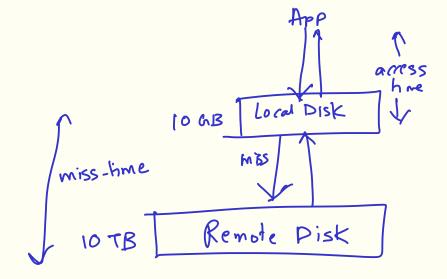
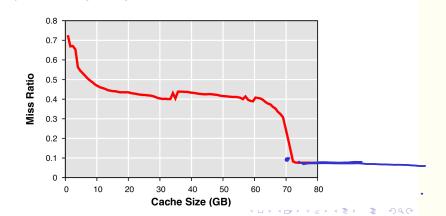

Cloud Storage & Data Center Efficiency

Data Storage Options

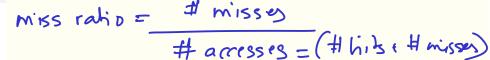
- Local SSD and HDD block storage (often the costliest option)
- Network block storage (more flexibility than local)
- Long-term archival (Amazon redshift, S3 Glacier, possibly tape based)
- Key-value and document databases [Amazon DynamoDB, firestore, BigTable, etc.]
- Realtime databases (Firebase)
- Managed databases as a service


Many places and abstractions for application data on the cloud.

2/15

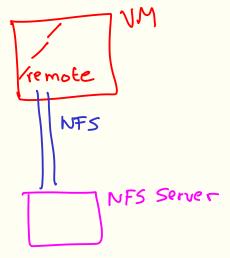

Storage Tiering

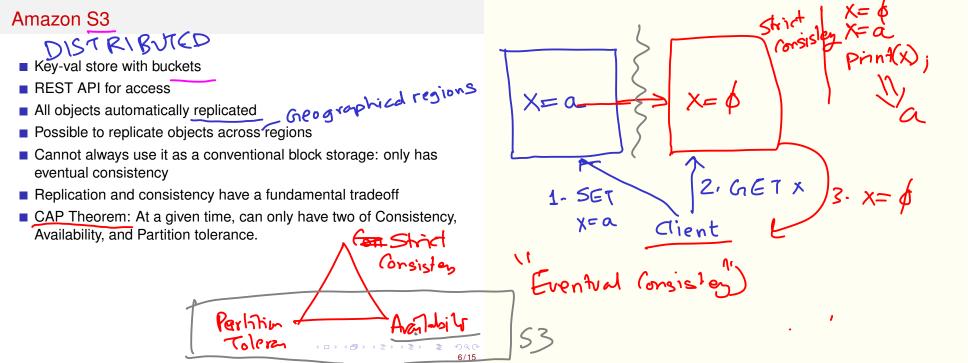
- Many options for storing data
- Price vs. latency vs. capacity tradeoffs
- Faster storage is more expensive and of lower capacity
- Caching: Store commonly used items on faster storage
- Use spatial and temporal locality to lower average access latency
- Items are more likely to be accessed if they or nearby items have been accessed in the past
- Unused items evicted using Least Recently Used (LRU)



Storage Provisioning

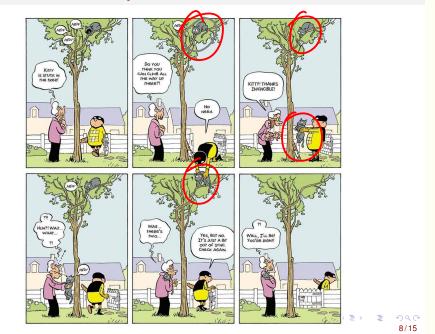
- Effective Access Time = (cache-hit-ratio)*(access-time) + (miss-ratio)*(miss-time)
- Can also be adapted to compute expected cost
- Cache provisioning using miss-ratio-curves :




4/15

Managed NFS: Network File Syslem

- Conventional file-server abstraction
- Block storage: Users setup their own file system
- Amazon Elastic File Server
- Google Cloud Filestore


Eventual Consistency

Eventual Consistency

If no updates take place for a long time, all replicas *eventually* become consistent (have the same data stored)

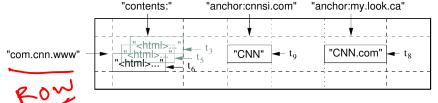
- Easy to implement
- In practice, write-write conflicts handled through some form of leader election
- Inconsistency windows often small (<500 ms)</p>

Eventual Consistency

Google BigTable 4 2006

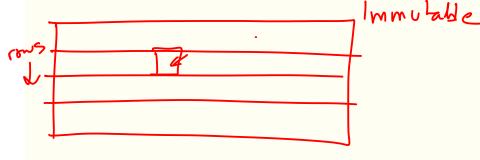
Storage engine for semi-structured data (aka NoSQL)

Items may have different fields, unlike traditional relational DBs


Can view as a "Document database" or specialized key-value store

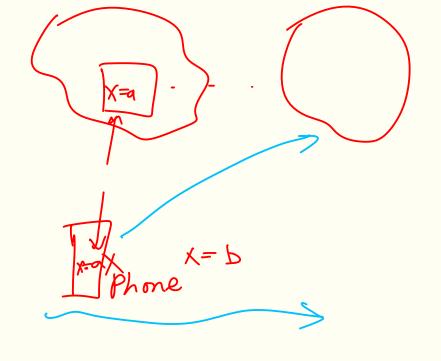
■ Data model: (row, column, time) → array of bytes

■ Timestamps help in versioned data management


■ Building block: Sorted-strings table (chunks of data and index)

Strong consistency: row operations are atomic

Higher level of storage abstraction can yield better performance and consistency properties.


AWS DynamoDB __

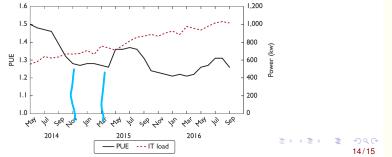
- Also a distributed NoSQL store
- Uses a key to partition items
- Optionally, another key for sort items
- Many policies available for partitioning and replicating items to different geographical regions, indexing, auto-scaling, replication, etc.

Google Cloud Firestore

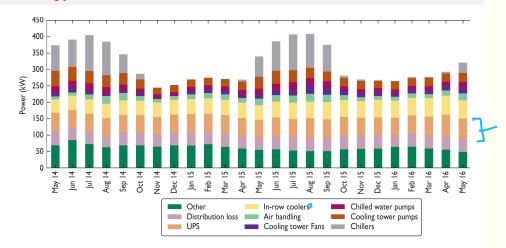
- NoSQL
- Includes support for data synchronization between clients and server
- Offline mode for mobile applications
- Strong consistency
- Multi-region replication

Data Centers

Data Center Efficiency


- Efficient data centers are the key to low-cost cloud services
- Many location considerations: access to networking, power, proximity to users, ...
- Key metric is Power Usage Efficiency >>> ~ (0 (0 Set vevs
- PUE = Total power consumption > Servers + Networking Gramet + Strage
- $lue{}$ Conventional enterprise data centers: PUE \sim 2
- PUE = $2 \rightarrow \text{half the power is spent on non-IT stuff}$
- \blacksquare Most modern cloud data centers have PUE \sim 1.2

Power Consumption In Data Centers


- 1 Servers and network switches
- 2 Cooling
- [3] Electricity distribution losses (UPS etc)
- Data center operation (lights etc.)

Data Center PUE

- Minimzing PUE primarily depends on cooling efficiency
- "Free air cooling": Use outside cold air instead of conventional chillers
- Run servers as hot as possible
- Build data centers in cooler regions (near the artic circle, underwater, ...)
- With free-air cooling, PUE depends on weather conditions
- Data from Massachusetts Green High Performance Data Center :

Energy Breakdown

- No chillers needed during winter months
- In-row-coolers circulate air, and are always operational