(O T«

Ul
v
i
v

o
1/24

Agenda

m Cluster-level resource management
m VM Resource Overcommitment

2/24

Hypervisor allocates all VMs with many resources:

VM Sizes \/M;
U ﬁpP\ ica hion

CPU cycles (i.e., bandwidth) s¢ (PU Cores [_HaPReane>

Physical memory g

Disk bandwidth [[O oPe_-rd.\"\onS/S econd (|°PS>

B Virtual disk size 7 clukier Management (yer
Network bandwidth —— 4 (hbp s W

@ More recently: Special purpose accelerators (GPUs, FPGAs,
ASICs) <Tpu s
Common to express resource allocations in form of resource vectors.

U

28 &R Ph\jS'i(‘a\ Seruct-s

\J!"l‘.g(o,('zgj

3/24

Virtualization For Resource Allocation

m Virtualization makes fine-grained resource allocation easy
m VMs serve as units of allocation

m Resource management layer (i.e., OS or hypervisor) can set
resource limits on the VM

m Resource limits can often by dynamically changed (e.g., reduce
CPU allocation to 2 cores from 4)

4/24

- e~ o

Resource Allocation In Clusters §(ale E(Fm . ncg‘
— ,/ /7

m Clusters consist of large numbers of servers (10? — 10)

P——

m Resources can be allocated from multiple servers

m Resources allocated as VMs on individual servers YM- 2
m Allocation decisions made by cluster management software

m OpenStack, VMWare for VMs
m Kubernetes, Mesos, Docker swarm for containers
m Slurm, Torque for HPC...

VM ~1

CHM Servecr

5/24

High-Level Resource Allocation Flow

v

) §
Resce
Applications/Users submit resource requirements (R) Jedee | s

m Total number of resources (CPU cores, memory, /0 bandwidth), or Me p-t £
m Size of VM x number of Vs

™ [OCQ‘J .ln‘vox sServer Gmm

—— .
Each server has a hardware capacity (e.g., 48 cores, 512 GB Mact
aster

memory) (C) l Re plicaho
Cluster manager finds free resources on servers to satisfy N . - -7

allocation request - -+
In practice, many other allocation constraints: ‘ k,_ V- | ’)Q -\ 2 {

_A Application quotas: does user have enough “credits” . f {

a Job start/end deadlines = U P C, ScienbiAc (ompuh ng
m Affinity: VMs should be running on same/nearby servers~—

m Anti-affinity: VMs on different servers for fault tolerance Batc h
m Co-location: Applications should not be running on servers with
another application

>Be-”f(N e hvorK /Q"&/\C;_
EC2 Server

6/24

\ . /
g Onlme'

(an? see blure

Resource Allocation Policies

(28

m At a high level, resource allocation is a bin-packing problem

m Also called the “placement” problem
m Which servers to place the VMs on?

U
m Best fit: Allocate resources from server with most free resources “Telﬁs
available .
m Worst fit: Server with least free resources F\’“Sm enka Llon

m First fit: Sort by server-id

m However, this is a multi dimensional packing problem : resources,
r=(CPU, mem, disk, network) — UM size

{28

8)
.Ofine, Single S\ BlnP-c\fﬂ‘\ry_: WP Cowpret € \“\ \ /
- ey ApproXirmakt Aa'r'\ﬂ—\é'ﬂwnﬂ Gest BE)L ﬂlq

Multi-dimensional Packing

64
m Use cosine S|m|Iar|ty between resource requwement and availability
vectors: fitness = ellal | — lal= I\(acw ° “.ru-m

m a is the resource availability on the server
m a = Server Capacity — 3 VM sizes

Other heuristics“ %sz?('), gogg?lg,_
m L2-norm-diff : 3~ (r; — a;)

W L2-norm-raito: }° £

m First-fit-decreasing prod: []r;
m FFD-sum: Y r; -

d

1231 e EE bethat: most awat af
o= free venoues
= ﬁ Qi How h quanh
/ / éree spoce .'(n rmo (Fple
A \ Jlme«»snms?
\4" “ S 42 (| Feell
32, ® =fr
E o
&

8/24

_(Dfrefe r most sahrobed

- mem use epPL
beee 2 Jh, bl ey

!

Centralized Resource Allocation

Cluster manager runs on a single server
Resource allocation state is centralized
Set of available servers, resources on each server, map of
applications to servers, ...
If a new application wants resources:

Find best allocation according to placement policy
Update local state (server resource map)
Allocate resources in form of containers/VMs..

All the advantages and drawbacks of a centralized approach
Used by Kubernetes, Slurm, OpenStack, VMWare,....

—

(O,“\q\-\"yrs nic g s

9/24

New UMrrqp
e

“ k.-

Seners

VM Overcommitment

m Hypervisors can also overcommit resources allocated to VMs
m VMs are “committed” C resources, but can only effectively use c,

where ¢ < C.
m VM’s “true resource allocation effectively reduced
m This process is called resource reclamation
m Useful to “pack” more VMs onto a server

Overcommitment Types

m Transparent: The guest OS/applications cannot “tell” that

resources have been reclaimed by the hypervisor.

a3 Explicit: Guest OS has knowledge of the reclamation, and may
even cooperate in the overcommitment process. ———— Ke-{-um

l,ﬂ[//{ = new M
_ -

(Serwef

eé WM resoue

A lml'ml -ﬂna(‘ba"\
77/ /77

unvus

unus?d Tesow{e‘J) ‘\“; ¥ cPv

CPU Overcommitment

L) N \ Y
m Hypervisors schedule vCPUs to run (just like the OS schedules Tine tuthplen

ggé 7*\[0»9;9“0.-—5

processes) —Conle st sualen . ’TI\
m Hypervisors can thus reduce a VMs CPU allocation by scheduling A‘YP' 1e0byom
its vCPUs less often
. This i§ transparent. Guest OS/appIiggtion have no direct way of G‘\ ves] <
knowing, and do not need to be modified.
m Explicit mechanism: vCPU hot-unplug W?\"} vCPuUs

m With hot-unplug, a vCPU can be “removed” from the VM. - : D _D D
m Guest OS and applications see a reduction in total amount of] .L / ’\I M e

vCPUs available. \\ VA

11/24

c 1T 1

Memory Overcommitment U \\ \ %)FI \ H]m \ij“ar:j’,l:og

o8 Transparent: Hypervisor swaps out the VM’s memory pages.)
m Explicit: Some amount of memory is hot unplugged. ‘ \ T\ Twe (U"‘“‘qa Pey e ‘ &
m Hot-unplugging of memory is...complicated VvV V /\I/
m Guest OS must cooperate and find and return unused pages. S wa P o d\SK

m Another popular explicit reclamation technique is ballooning. M“b(ﬁ} e MNe Pk‘j Peg > o ovefler UM.

12/24

Memory Ballooning Eq\loor\(,————\{‘? M me
n : o

m Ballooning pre-dates hot-unplug, and was required when guest Xerne | \\ fleplicakions \ P“.!'-/(, :
OSes did not support hot-unplug. 1 | Buffecfoche o
m Guest OS is installed with a balloon driver, which allocates large -
amounts of memory «_\rr\';
m The memory requested by the balloon is given to the hypervisor, so Shcted wath . PrP
that it can allocate it to other VM:;W by pEONSH fs_J(v ead('S}
mmmmm - & (SJ/
e S
GZQ,-C'C;(.Q cz
Reading
“Memory Resource Management in VMware ESX Server.” Carl A. 187
Waldspurger.

13/;4

Transparent vs. Explicit Overcommitment Tradeoffs .

N alptiwe BB YO cebovT el
m Transparent techniques may hurt VM performance more — xecle! 9’

m If Guest OS/application is notified about it being shrunk, it can make
better resource allocation decisions

m Example: Most memory is used for disk caching (page cache)
m Guest OS can discard some cached items when balloon expands

m Hypervisor level Transparent Overcommitment is “blind” and may
move “wrong” pages to swap.

14/24

More memory Overcommitment

Main problem with overcommitment:
m Overcommitment reduces VM performance!

m Is there a way to overcommit without affecting VM
performance?

Overcommitment is not so bad!

m In many cases, resources can be overcommited safely without
much performance penalty.

m Mainly because reclaiming resources not used by the VM should . . .) .
not affect performance UM v hlizehon public devis 2 0-50 /.
—\

—_——

m Luckily, most applications use a small fraction of VM resources _ \/eg (oL

m VMs are typically over-provisioned by customers

4 —

15/24

Application Performance With Overcommitment

m Performance of application with overcommitment depends on
overprovisioning and application characteristics.

m Usually, resources can be reclaimed to a large extent without the
proportional performance reduction

m “Utility curves” have this typical Thape:

-
o

S}ecJBB: it redhve opp be rokma -k

o
©
{
1
1

o
o

Keéu(‘iw\ w perfovmare NV b rea ©

| e—e Spec)BB
@ ® Kcompile

{ BB Memcached
* * Spark-Kmea4

N
'S

Normalized Performance
o
N

°
o

0 20 40 60 80 100
‘ (De\flation %

16/24

Memory Overcommitment with Page Deduplication

Lims Mbe
m Many VMs run the same OS (Linux), libraries (glibc, python, ...), S vy |

and software (apache, memcached, ...) - —
m Guest OS code, libraries, and application code occupies significant

amount of VM memory)
VM1 VM2) Lian 5libe
5-1 v5- 1

Merge

Copy On Write

17/24

Page Deduplication

Hypervisor constantly scans and finds duplicate pages
Duplicate pages — Exactly same content

Same libraries, application binaries, data, etc.
Duplicate pages are merged by Hypervisor

Merged page is marked copy-on-write for safety

VM -1 VM -2

Guest Host Guest Host
Pseudo Physical Pseudo Physical
Physical Page # Physical Page #
Page # Page #

A L | X B Yo

1 After Sharing pages X and Y

VM -1 VM -2

Guest Host Ccow Guest Host cow
Pseudo | Physical Pseudo |Physical
Physical | Page# Physical |Page#

Page # Page #

A K & YES B K » YES

/§ 'ﬂgd L\l‘:"‘ we %
pae dhecksuws

M1 pike h I
W&ol > hypecvisn

Py)(/w\/\%7kl
2 Fages r/?—

i

18/24 ,

More On Page Deduplication

m Effective VM memory footprint reduced without actually reducing its
memory allocation

m Completely transparent to VM, even wrt performance!

Downsides?

m Timing side channels!

m Attacker VM can find out what code version a victim VM is running
\= Generate “random” pages.. Pssyme Ovele shoced

m Write to them after a while

m If write operation takes slightly more time, it is because the page
was marked copy-on-write, and the Hypervisor had to make a copy.

m Also maybe steal encryption keys.

19/24

pl

(e Vv
T -
38U ;«slv wYy
CRIv_ <
P | —

/.

7/

Vs

S//z e

s ver

Cluster Load-balancing with Migration

—_— ———————

m Due to Overcommitment on a server or otherwise, VM may face
performance degradation

m Key idea: Live-migrate VM to a less loaded server

Black and gray box overload detection

m Black-box: Look at VM-level metrics that hypervisor can access
m VM CPU utilization, I/O rate, etc.

m Gray-box: Applicatia] and OS level metrics

m Respose time, memory usage inside VM, etc.

Reference

“Black-box and Gray-box Strategies for Virtual Machine Migration”, T.
Wood et. al.

20/24

— m;ﬂ\'q"c
\
/)
— Sewt’r ('éPu—rb_

=\
N
=

rr hore act N Ults

OY‘ t.-vrrqje e \UM/Uh, ic low-

Virtualization for fault-tolerance

- K e
m What if the server hosting a VM fails?! o 4
m Key idea: Primary-secondary replication
m Run two identical VMs. If one fails, the other can seamlessly take
over

Remus

m Checkpoint and migrate VM memory state to secondary server
m Very frequent Checkpointing: every ~ 100 milliseconds

m Key trick: Buffer all outgoing network packets until memory is
synced

Reference
emus . Warfield et. al.

21/24

VM-fork

m Analgous to process fork

m Want to clone a VM and launch it on another server

m Both parent and child VMs continue running

m Useful for increasing parallelism and horizontally scaling

SnowFlock

m Copy memory state using post-copy migration

m Child pages are copied on first access, over the network.
m All parent VM pages are marked copy on write

Reference
SnowFlock

22/24

Record-replay ' ¢
G3 qu,rkem S E)

ot % . ?\) 3(2.
m Useful for debugging < K ﬂ*) w bo"* gta
\
m Record only non-deterministic events C‘"& 2 I [~ “[
-~ - 3/ z’ “,ﬁb)
m Replay them at exactly the time they occured at. \ \‘A T <\ T = I’VY] €
ARy
\
ot ok (eveats
K; v sk P
<
/ <

23/24

Nested Virtualization

m Run a VM inside a VM!
m XenBlanket: PV VM inside a HVM VM RJ '
m Hypercalls are |proxied b

c’r(b @
(\ﬂs:' Y\aéjb;\)\"“
)

< r

e

1\\(."

24/24

