
Hardware Virtualization

E-516 Cloud Computing

1 / 33



Virtualization

Virtualization is a vital technique employed throughout the OS
Given a physical resource, expose a virtual resource through
layering and enforced modularity
Users of the virtual resource (usually) cannot tell the difference

Different forms:
Multiplexing: Expose many virtual resources
Aggregation: Combine many physical resources [RAID, Memory]
Emulation: Provide a different virtual resource

2 / 33



Virtualization in Operating Systems

Virtualizing CPU enables us to run multiple concurrent processes
Mechanism: Time-division multiplexing and context switching
Provides multiplexing and isolation

Similarly, virtualizing memory provides each process the
illusion/abstraction of a large, contiguous, and isolated “virtual”
memory
Virtualizing a resource enables safe multiplexing

3 / 33



Virtual Machines: Virtualizing the hardware

Software abstraction
Behaves like hardware
Encapsulates all OS and application state

Virtualization layer (aka Hypervisor)
Extra level of indirection
Decouples hardware and the OS
Enforces isolation
Multiplexes physical hardware across VMs

4 / 33



Hardware Virtualization History

1967: IBM System 360/ VM/370 fully virtualizable
1980s–1990s: “Forgotten”. x86 had no support
1999: VMWare. First x86 virtualization.
2003: Xen. Paravirtualization for Linux. Used by Amazon EC2
2006: Intel and AMD develop CPU extensions
2007: Linux Kernel Virtual Machines (KVM). Used by Google Cloud
(and others).

5 / 33



Guest Operating Systems

VMs run their own operating system (called “guest OS”)
Full Virtualization: run unmodified guest OS.
But, operating systems assume they have full control of actual
hardware.
With virtualization, they only have control over “virtual” hardware.
Para Virtualization: Run virtualization-aware guest OS that
participates and helps in the virtualization.

Full machine hardware virtualization is challenging
What happens when an instruction is executed?
Memory accesses?
Control I/O devices?
Handle interrupts?
File read/write?

6 / 33



Full Virtualization Requirements

Isolation. A VM should not interfere with its neighbours.
Encapsulation. All VM state should be encapsulated by the
hypervisor. This can be used to “move” a VM to another machine
Performance. Applications should not face a high performance
when running in a VM. Performance should be “similar” to a
bare-metal OS setup.

7 / 33



Virtualization Goals

Popek and Goldberg set out formal requirements in 1974:
Equivalence. VM should be indistinguishable from underlying
hardware
Resource control. VM (guest OS) should be in control of its own
virtualized resources.
Efficiency. As far as possible, VM instructions should be executed
directly on the hardware CPU without going through the hypervisor.

8 / 33



Naive Approach: Emulation

Emulation: reproduce the behavior of hardware in software
CPU emulaiton: Interpret and translate each CPU instruction
Device emulation: Interpret and translate device commands
10 − 1000× performance penalty
But, enables cross-platform execution
x86 Linux emulated using javascript. https://bellard.org/jslinux
However, emulation breaks the Efficiency requirement—the
virutalization software should “get out of the way” as much as
possible, instead of emulating every instruction.

9 / 33



Emulation is still Useful!

10 / 33



Direct execution Challenges

Why not just run the VM as another user-space process?

Guest OS will want to run in a “privileged CPU mode”
If VM runs as a userspace process, these instructions will not be
allowed
Ideal case (and Popek-Goldberg requirement): every privileged
instruction should result in a trap

Control then transfers to the hypervisor, which can handle the trap,
just like conventional OS.
Hypervisor can emulate these privileged instructions
Trap-and-emulate approach.
Example: guest OS calls halt. Hypervisor traps and emulates the
guest OS intent, and turns off the Virtual Machine by killing the
userspace process that the VM was running as.

x86 : Nah.
Some instructions behave differently when executed with different
privilege levels.
Traps are not always generated. Instructions thus fail silently, and
guest OS crashes.

11 / 33



Dynamic Binary Translation

Application code inside VM is generally “safe” and can be directly
executed (there are no sensitive instructions)
Guest OS issues sensitive instructions.
Key idea: Rewrite the instructions that are executed by the
guest OS
Also refered to as “Just in time” translation
Before some VM (guest OS) code is executed, hypervisor “scans”
it, and rewrites the sensitive instructions to emulate them.
Typically done at basic-block level.
Approach pioneered by VMware to make x86 virtualizable
Performance overhead can be reduced with engineering
optimizations:

Keep a cache of translated blocks
Offset memory accesses and jumps become tricky when mixing
translated and vanilla basic blocks.

12 / 33



Paravirtualization

Pioneered by Xen in 2003. (Research project from Cambridge
University)
First open-source x86 virtualization
Key-idea: Modify the guest OS to never issue sensitive
instructions directly.
Instead, guest makes “hypercalls” to the hypervisor when it wants to
do something privileged.
Surprisingly, the amount of modifications required are small, and
relatively easy to make.

13 / 33



Hardware assisted Virtualization

In 2006, Intel and AMD, finally fixed x86
New privileged ring level added : -1
Hardware-assisted trap and emulate
All sensitive instructions now trap. Yay!
When guest OS executes these instructions, they cause a VM-exit
Hypervisor handles the VM-exit, and resumes the VM through the
VM-enter instruction.
Hardware assigns each VM a VMCB/VMCS (VM control
block/structure) which maintains trap information.
Used by all hypervisors today.
First used by KVM (Linux’s kernel virtual machine module)

14 / 33



KVM

Key idea: VMs are just Linux processes!
Hardware extensions make hypervisors easy to write
A lot of what the hypervisor does (resource management and
control) is done by the OS (Linux) anyway.
Why write a new OS, just use Linux as the hypervisor!

QEMU
Quick Emulator
Emulates all kinds of devices (bios, cdrom, network cards,...)
KVM uses QEMU for device emulation and handling all userspace
VM management operations
QEMU handles launching and stopping VMs, monitoring,
debugging, etc.

15 / 33



Storage Virtualization

Bare-metal OS: Filesystem writes to physical disk partition
Guest OS: Allowing direct writes to disk is not usually suitable
Note: Guest OS runs its own file system on its virtualized disk

Solution 1: Assign a physical disk partition to VM
Physical disk formats limit the number of partitions
VMs get partitions of pre-allocated sizes

16 / 33



Virtual disks

Solution 2: Virtual disks
Hypervisor intercepts and translates disk writes
Guest OS writes to guest-block-i
Hypervisor maintains a guest-block to host-block table
Usually, a virtual disk is a file on the host file system
Example, VM may be assigned /home/VMs/vdisk1.img
guest-block-i is simply offset-i in the vdisk1.img file
Two filesystems in play: Guest FS and Host FS

17 / 33



More Virtual disks

Virtual disks make full-disk snapshots easy
Hypervisor can record all blocks written by the VM
Common technique: copy-on-write
Enabled by more complex disk formats (qcow2, etc)
Guest writes to guest-block-i
Original mapping is virtual-disk-block-i
Hypervisor copies the original vdisk-block-i to vdisk-block-j.
Write operation is applied to vdisk-block-j.
Hypervisor updates the mapping : guest-block-i is now vdisk-block-j
Old block (vdisk-block-i) remains unmodified.

Copy on write allows disk snapshots : Copy all modified blocks.
Notion of layered storage: Snapshot contains only modified blocks,
and uses the original VM disk for unmodified blocks.

18 / 33



Remote Virtual Disks

Remote Disks
In many cases, the virtual disk can also be remote
Simple approach: Virtual disk is on an NFS file system
Or use vdisks on Storage Area Networks (SANs)

19 / 33



Using KVM

Launch VM: sudo qemu-system-x86_64 -enable-kvm vdisk1.img
Install OS: qemu -cdrom ubuntu.iso -boot d vdisk1.img
Create raw/plain vdisk: qemu-img create vdisk1.img 10g
Copy-on-write: qemu-img create vdisk2.qcow2 10g
Create snapshot qemu-img create snap1.img -b vdisk2.qcow2
VM memory: -m 4g
Number of vCPUs, SMP and NUMA configuration, . . .
Networking options : bridge (tun/tap interface), userspace (NAT),
. . .

20 / 33



Memory Virtualization
Conventional bare-metal OS

Process Virtual Address → Physical Address
OS sets up page-table for this translation
Higher-order bits of addresses used to determine page-number
Address = Page-number + Offset within page
Virtual to physical translation done by CPU’s MMU (memory
management unit) for every read/write access
CPU maintains a cache of translations: Translation Lookaside
Buffer

With Hardware Virtualization
Guest OS maintains Guest Virtual Address → Guest Physical
Address page tables
Another layer of indirection is needed:
Hypervisor does the Guest Physical Address → Machine Physical
Address mapping

21 / 33



Approaches to Memory Virtualization

Demand-filled Software MMU
Hypervisors can maintain guest-physical to machine-physical
mappings
On-demand translation: For every guest-physical page access,
hypervisor looks up the machine-physical page number and inserts
that into the page-table that the CPU MMU “walks”.
This is effectively a “software managed TLB”
Hypervisor marks all page table entries as “invalid” initially, and fills
them on page-faults
Essentially trap-and-emulate (more like trap and translate)

Hardware assisted paging
Virtualization-enabled CPUs support multi-dimensional paging
CPU MMU can walk Guest and Host page tables

22 / 33



Shadow Paging

Xen introduced shadow paging, a different approach to memory
virtualization
Key idea: When the guest OS wants modifies its own page tables, it
makes a hypercall instead
Hypervisor then modifies the page table on the Guest OS’s behalf
CPU points to the modified page-table created by the Hypervisor
Thus, hypervisor provides a “Shadow page table” for every guest
page table
Advantage: Minimal address translation overheads, since there is
no extra translation required during regular execution.
Even with hardware assisted double-paging, CPU has to access
multiple pages for translation for every VM memory access.

23 / 33



I/O Devices

QEMU emulates I/O devices such as keyboard, mouse, disk
controllers, network interface cards (NICs), . . .
Guest OS sees generic virtual hardware devices
Guest OS device drivers interact with virtual devices
QEMU faithfully implements and emulates hardware functionality
Example: Guest sends packet through vNIC → QEMU will send the
packet through real NIC

24 / 33



Hardware assisted I/O Virtualization

Emulating hardware devices allows flexibility and resource
management
But biggest drawback: performance, especially for latency-sensitive
devices and operations (fast NICs > 10 Gbps)
Some I/O devices have virtualization capability
I/O device exposes multiple “virtual” devices
Each virtual device can be assigned directly to the VM
Often accomplished with SR-IOV (Single Root I/O Virtualization).
Guest OS interacts with hardware directly, instead of going through
an emulated device.
Especially popular in network cards

25 / 33



Xen Paravirtualized I/O

Expose a simplified device to the guest
No need to emulate different types of the same I/O device
Set of ring-buffers for reading and writing from/to device
Guest OS must have drivers for paravirtualized devices
Hypervisor does actual device transfers

26 / 33



Virtual Machine Snapshots

VM State is comprised of:
vCPU state (registers etc.)
I/O device state (registers, other device state)
Virtual disk state. “Easy” with copy on write virtual disks.
All Memory state. (The most interesting)

Offline snapshot: Stop or pause VM and take full snapshot
Online/Live snapshot: Take snapshot of running VM.

Snapshot uses:
Full-system backups
Debugging
Migrating VMs between physical servers.

27 / 33



VM Live migration

Move entire VM from one server to another
Without affecting application
Live → VM cannot be stopped during the migration

Usecases:
If physical server needs to be shut-down for maintenance
Server is overloaded with VMs, so move some to other servers
Move VM closer to the end-user if user moves (“follow the user”)

Typically, virtual disk is remote (mounted over the network)
The challenge is therefore how to move all memory state without
application downtime

28 / 33



Migration Flow

Live Migration flow:
VM is running on source till time t

VM runs on destination from tim t + δ.
δ is the downtime when the VM is not running
Goal: make downtime as small as possible
For offline migration, downtime is the time it takes to copy all VM
state over the network (can be ~minutes).

29 / 33



Live Memory Snapshot

Central problem:
As a VM executes, it writes to its memory pages
Saving a memory snapshot entails copying memory pages and
storing them (typically on disk).

Thus, memory snapshots take non-zero time

How to save something that is constantly changing?

30 / 33



Live Memory Migration

1 Copy entire memory to remote server
Takes time t0 = t(M), where M is the memory size
During this time, some pages have changed

2 Copy only the pages that have changed to remote server
Hypervisor write-protects all pages. If page is written to by the VM,
CPU marks it as “dirty”.
Hypervisor copies all dirty pages into a buffer, and sends them over
the network.
Because of locality of reference, number of pages dirtied is small,
and is Dt(M)
Time required to send these pages is ti = t(Dti−1) ≤ ti−1 .

3 Repeat step 2 until dirty pages Dti is small enough.
Can be determined based on acceptable downtime
Transferring ~10 megabytes of pages will result in downtime of only
few milliseconds!

4 If dirty page threshold is reached, stop the VM, and copy the
remaining dirty pages and vCPU and I/O state.

5 Resume VM on destination server
31 / 33



More VM Live migration

Iteratively copying smaller and smaller number of dirty pages
Large VMs (several GB of memory) can still be migrated with very
small downtimes
Usually applications are not affected, if downtime is smaller than the
network timeouts their clients set (which is usually 10s of seconds).

32 / 33



Post-copy VM migration

So far, have seen a “pre-copy” approach
Copy all VM memory state to destination before running on
destination

Alternative approach: Post-copy
Move vCPU state to destination first
VM execution will cause page-faults
Copy pages from source upon first access
Advantage: VM can start running on destination immediately
Downside: Residual state (pages) can exist on source server for a
long time

33 / 33


