Hardware Virtualization J

E-516 Cloud Computing

1/33

Virtualization &@2 N 52
- —

[\ﬂr‘kua\iza"'\m j

m Virtualization is a vital technique employed throughout the OS P _(Fu\\ Ph_\stC'a\ Machines

m Given a physical resource, expose a virtual resource through C?\J/ I’R’morg, Slm—a5 e .- -
layering and enforced modularity —

m Users of the virtual resource (usually) cannot tell the difference ’ \/;

Different forms:
m Multiplexing: Expose many virtual resources

{
T
m Aggregation: Combine many physical resources [RAID, Memory] i ‘ ﬂ
m Emulation: Provide a different virtual resource A ’]‘

Disk\ pise2

| pgo g o

@ Enohhion

T

2/33

Virtualization in Operating Systems

m Virtualizing CPU enables us to run multiple concurrent processes
m Mechanism: Time-division multiplexing and context switching
m Provides multiplexing and isolation
m Similarly, virtualizing memory provides each process the 1
illusion/abstraction of a large, contiguous, and isolated “virtual”
memory

m Virtualizing a resource enables safe multiplexing

3/33

ar—

\

Conbext Siateh

Virtual Machines: Virtualizing the hardware

m Software abstraction

m Behaves like hardware

m Encapsulates all OS and application state
m Virtualization layer (aka Hypervisor)

m Extra level of indirection

m Decouples hardware and the OS

m Enforces isolation

m Multiplexes physical hardware across VMs

Secner: CPU, Hem, o bevicer, GPU U6 (onbhollers. -

. \\f‘[r{'uq\ Hac"\'he_
. 0{1.
lCO‘J(\ C\l”)

E Linv X

> S{-em MMnd oS ek
\['lrh/alizfa

\/O bevices

\ 'H\{PEK\TES‘DK‘/,V‘H‘F Machine Monﬂor‘]

T PHysIcAL HMKDW*‘RQ//J

Hardware Virtualization History

1967: IBM System 360/ VM/370 fully virtualizable =~

1980s—-1990s: “Forgotten”. x86 had no support

1999: VMWare. First x86 virtualization. ——— Dﬂna«m ‘¢ g'mg rm'\S\‘J’ om
2003: Xen. Paravirtualization for Linux. Used by Amazon EC2

2006: Intel and AMD develop CPgex,ten_s_igas

2007: Linux Kernel Virtual Machineg (KVM). Used by Google Cloud
(and others).

5/33

Guest Operating Systems b Tetervupt Tables pxfmf(25)
o
‘b
m VMs run their own operating system (called “guest OS”) k‘)""“" WESL A

/§
</
. R R o e S L\aﬂﬂél — hous € C)
m Full Virtualization: run unmodified guest OS. rmovse. ok 2 [
m But, operating systems assume they have full control of actual ']

hardware. «

VT\?-(YUP"’ D{%ﬁp% kj_ \‘y_—é >/'

hansle ,kg bt O

m With virtualization, they only have control over “virtual” hardware.
m Para Virtualization: Run virtualization-aware guest OS that (oble
participates and helps in the virtualization. CPYIi—>
Full machine hardware virtualization is challenging C\]C)} —= Disable (nlecrpls,

m What happens when an instruction is executed?
m Memory accesses?

m Control I/0 devices?

m Handle interrupts?

m File read/write?

6/33

Full Virtualization Requirements
M-2) i
\{M/\ { V r&\ﬂca*\t
oPY- halt ()) Flg?ir*h— o/ g

_ | |solation. A VM should not interfere with its neighbours.

Hyp eV isC _J

m Encapsulation. All VM state should be encapsulated by the

hypervisor. This can be used to “move” a VM to another machine oy PR Y SICAL H./w
m Performance. Applications should not face a high performance

when running in a VM. Performance should be “similar” to a he FCS

bare-metal OS setup. =)

7/33

Virtualization Goals

(SB P(p((>>
Popek and Goldberg set out formal requirements in 1974 Pfd
m Equivalence. VM should be indistinguishable from underlying

/" hardware T
_m Resource control. VM (guest OS) should be in control of its own GUQJ‘ oS

virtualized resources.

m Efficiency. As far as possible, VM instructions should be executed
directly on the hardware CPU without going through the hypervisor. \I M J

——

8/33

Naive Approach: Emulation

m Emulation: reproduce the behavior of hardware in software

m CPU emulaiton: Interpret and translate each CPU instruction
m Device emulation: Interpret and translate device commands
/ m 10 — 1000x performance peyliy

m But, enables cross-platform execution

m x86 Linux emulated using javascript. https://bellard.org/jslinux

m However, emulation breaks the Efficiency requirement—the
virutalization software should “get out of the way” as much as
possible, instead of emulating every instruction.

(

9/33

CPv
1- fetch next “instwchion [Prvjra\m Counl (-(>

2-Deccde Ololo\nloto\l] ofll 1O
_ 7 1 y

\ (l

(
AdD

<. Lxeccte
N g fhuace CPU v ' Rgﬂ'lglers —_ \rdr‘iq\olea
‘ Mem«:g_—é F’\'Tralg
. Decoa-m& —=> look up kble

" OPGFBHD ns
ada/mu'l [mov

Emulation is still Useful! Floppy Dive Brovlakion: — |4 MB Ffle on

l- lnihaliz .- - m F3
LOADING... PLEASE A 0Dbyied d Looklo
INSERT DISK INTO DRIVE A: ;
’7 #CLICK* THERE YOU GO. 2' Keaé secto[block <= v€ad Fle o'ﬂ'seﬂ
THANK YOU. L, .
DER 15 NCREDIELY T \ 3. bmte sector
YEAH, UH, IT'S THE NEWJ
L(MODEL FROM MEMOREX. 4- Gonho)

AMAZING. AND HoU 15 <
PRESIDENT REAGAN? ¢

\117 HE'S....HE'S FINE. ~ [U'OS

T FEEL WEIRD USING OLD
SOFTWARE THAT DOESN'T
KNOW IT'S BEING EMULATED.

10/33

Exceph o = (llegd 8pecehm W\

P(D asg

Direct execution Challenges

Why not just run the VM as another user-space process?

m Guest OS will want to run in a “privileged CPU mode”
m If VM runs as a userspace process, these instructions will not be

allowed
m |deal case (and Popek-Goldberg requirement): every privileged
instruction should result in a trap \ Soe > hatt = {eeminate WH
_ _ Hyeern aft > 3
m Control then transfers to the hypervisor, which can handle the trap, - — A
just like conventional OS. o
m Hypervisor can emulate these privileged instructions ,C P ®) ySserspacé

~71m Trap-and-emulate approach.

m Example: guest OS calls halt. Hypervisor traps and emulates the
guest OS intent, and turns off the Virtual Machine by killing the
userspace process that the VM was running as.

m x86 : Nah.
/7 m Some instructions behave differently when executed with different
privilege levels.

m Traps are not always generated. Instructions thus fail silently, and

guest OS crashes.
11/33

mshjch'm se-[/uenre/]:\g\(_

Dynamic Binary Translation «
block
m Application code inside VM is generally “safe” and can be directly
executed (there are no sensitive instructions) Qﬂp Wall.handle
m Guest OS issues sensitive instructions. “S_ Fﬂ
m Key idea: Rewrite the instructions that are executed by the I : 1 ‘l:s\W chon
guest OS Hypesrviser seqver 7
m Also refered to as “Just in time” translation

m Before some VM (guest OS) code is executed, hypervisor “scans” —
it, and rewrites the sensitive instructions to emulate them. o \ Gev
)\

m Typically done at basic-block level. &

m Approach pioneered by VMware to make x86 virtualizable
m Performance overhead can be reduced with engineering
optimizations:
/A Keep a cache of translated blocks

m Offset memory accesses and jumps become tricky when mixing
translated and vanilla basic blocks.

12/33

Paravirtualization
halt ——=hypeeetl halt

[Pio.neer.ed by Xen in 2003. (Research project from Cambridge —_— Suscall W

University) — Hof pe s o s ENES andl;
m First open-source x86 virtualization Process \) Mcm §§rc i
m Key-idea: Modify the guest OS to never issue sensitive s

instructions directly. — : __Drwers \

m Instead, guest makes “hypercalls” to the hypervisor when it wants to .-
do something privileged.

m Surprisingly, the amount of modifications required are small, anoﬂ

40d >

{xzé'— ,
et Xen

relatively easy to make.

13/33

Hardware assisted Virtualization

In 2006, Intel and AMD, finally fixed x86 ?:
New privileged ring level added : -1 T(GP re
Hardware-assisted trap and emulate ef“"\a

All sensitive instructions now trap. Yay! V
When guest OS executes these instructions, they cause a VM-exit
Hypervisor handles the VM-exit, and resumes the VM through the

VM-enter instruction. /J
m Hardware assigns each VM a VMCB/VMCS (VM control
block/structure) which maintains trap information.
m Used by all hypervisors today. ‘)
m First used by KVM (Linux’s kernel virtual machine module) ‘
-_

14/33

KVM

)ﬁ (Cw \] Mfi \[M’ 2"
m Key idea: VMs are just Linux processes!
m Hardware extensions make hypervisors easy to write)
m A lot of what the hypervisor does (resource management and /»]aEHU
control) is done by the OS (Linux) anyway. K\'M i
m Why write a new OS, just use Linux as the hypervisor! } [“ nux
QEMU

m Quick Emulator

m Emulates all kinds of devices (bios, cdrom, network cards,.,.)

m KVM uses QEMU for device emulation and handling all userspace
VM management operations —)

m QEMU handles launching and stopping VMs, monitoring, A~
debugging, etc. B

15/33

Storage Virtualization

m Bare-metal OS: Filesystem writes to physical disk partition
m Guest OS: Allowing direct writes to disk is not usually suitable
m Note: Guest OS runs its own file system on its virtualized disk

Solution 1: Assign a physical disk partition to VM
m Physical disk formats limit the number of partitions
m VMs get partitions of pre-allocated sizes

16/33

Virtual disks

Solution 2: Virtual disks

m Hypervisor intercepts and translates disk writes

m Guest OS writes to guest-block-i

m Hypervisor maintains a guest-block t0o host-block table
m Usually, a virtual disk is a file on the host file system

m Example, VM may be assigned /home/VMs/vdiskl.img
B guest-block-i is simply offset-i in the vdisk1.img file
m Two filesystems in play: Guest FS and Host FS

17/33

More Virtual disks

m Virtual disks make full-disk snapshots easy

m Hypervisor can record all blocks written by the VM

m Common technique: copy-on-write

m Enabled by more complex disk formats (qcow2, etc)

m Guest writes to guest-block-i

m Original mapping is virtual-disk-block-i

m Hypervisor copies the original vdisk-block-i to vdisk-block-j.

m Write operation is applied to vdisk-block-j.

m Hypervisor updates the mapping : guest-block-i is now vdisk-block-j
m Old block (vdisk-block-i) remains unmodified.

m Copy on write allows disk snapshots : Copy all modified blocks.

m Notion of layered storage: Snapshot contains only modified blocks,
and uses the original VM disk for unmodified blocks.

18/33

Remote Virtual Disks

Remote Disks

m In many cases, the virtual disk can also be remote

m Simple approach: Virtual disk is on an NFS file system
m Or use vdisks on Storage Area Networks (SANS)

19/33

Using KVM

Launch VM: sudo gemu-system-x86_64 -enable-kvm vdiskl.img
Install OS: gemu -cdrom ubuntu.iso -boot d vdiskl.img
Create raw/plain vdisk: gemu-img create vdiskl.img 10g
Copy-on-write: gemu-img create vdisk2.qcow2 10g

Create snapshot gemu-img create snapl.img -b vdisk2.qcow2
VM memory: -m 4g

Number of vCPUs, SMP and NUMA configuration, . ..

Networking options : bridge (tun/tap interface), userspace (NAT),

20/33

Memory Virtualization
Conventional bare-metal OS

m Process Virtual Address — Physical Address

m OS sets up page-table for this translation

m Higher-order bits of addresses used to determine page-number

m Address = Page-number + Offset within page

m Virtual to physical translation done by CPU’s MMU (memory
management unit) for every read/write access

m CPU maintains a cache of translations: Translation Lookaside
Buffer

With Hardware Virtualization

m Guest OS maintains Guest Virtual Address — Guest Physical
Address page tables

m Another layer of indirection is needed:

m Hypervisor does the Guest Physical Address — Machine Physical
Address mapping

21/33

Approaches to Memory Virtualization

Demand-filled Software MMU

m Hypervisors can maintain guest-physical to machine-physical
mappings

m On-demand translation: For every guest-physical page access,

hypervisor looks up the machine-physical page number and inserts
that into the page-table that the CPU MMU “walks”.

m This is effectively a “software managed TLB”

m Hypervisor marks all page table entries as “invalid” initially, and fills
them on page-faults

m Essentially trap-and-emulate (more like trap and translate)

Hardware assisted paging
m Virtualization-enabled CPUs support multi-dimensional paging
m CPU MMU can walk Guest and Host page tables

22/33

Shadow Paging

Xen introduced shadow paging, a different approach to memory
virtualization

Key idea: When the guest OS wants modifies its own page tables, it
makes a hypercall instead

Hypervisor then modifies the page table on the Guest OS’s behalf

m CPU points to the modified page-table created by the Hypervisor

m Thus, hypervisor provides a “Shadow page table” for every guest

page table

Advantage: Minimal address translation overheads, since there is
no extra translation required during regular execution.

Even with hardware assisted double-paging, CPU has to access
multiple pages for translation for every VM memory access.

23/33

I/O Devices

m QEMU emulates I/O devices such as keyboard, mouse, disk
controllers, network interface cards (NICs), ...

m Guest OS sees generic virtual hardware devices
m Guest OS device drivers interact with virtual devices
m QEMU faithfully implements and emulates hardware functionality

m Example: Guest sends packet through vNIC — QEMU will send the
packet through real NIC

24/33

Hardware assisted /O Virtualization

Emulating hardware devices allows flexibility and resource
management

But biggest drawback: performance, especially for latency-sensitive
devices and operations (fast NICs > 10 Gbps)

Some |I/O devices have virtualization capability

I/O device exposes multiple “virtual” devices

Each virtual device can be assigned directly to the VM

Often accomplished with SR-I0OV (Single Root I/O Virtualization).

Guest OS interacts with hardware directly, instead of going through
an emulated device.

Especially popular in network cards

25/33

Xen Paravirtualized 1/0O

m Expose a simplified device to the guest

m No need to emulate different types of the same 1/O device
m Set of ring-buffers for reading and writing from/to device
m Guest OS must have drivers for paravirtualized devices

m Hypervisor does actual device transfers

Domain 0 Back End Domain U Front End

Request Notification Events
__

Read Request Write Request

Write Response Read Response

e
Response Notification Events

26/33

Virtual Machine Snapshots

VM State is comprised of:

m VCPU state (registers etc.)

m |/O device state (registers, other device state)

m Virtual disk state. “Easy” with copy on write virtual disks.
m All Memory state. (The most interesting)

m Offline snapshot: Stop or pause VM and take full snapshot
m Online/Live snapshot: Take snapshot of running VM.

Snapshot uses:

m Full-system backups

m Debugging

m Migrating VMs between physical servers.

27/33

VM Live migration

m Move entire VM from one server to another
m Without affecting application
m Live — VM cannot be stopped during the migration

Usecases:

m If physical server needs to be shut-down for maintenance

m Server is overloaded with VMs, so move some to other servers
m Move VM closer to the end-user if user moves (“follow the user”)

m Typically, virtual disk is remote (mounted over the network)

m The challenge is therefore how to move all memory state without
application downtime

28/33

Migration Flow

Live Migration flow:

m VM is running on source till time ¢

® VM runs on destination from tim ¢ 4 4.

m 0 is the downtime when the VM is not running
m Goal: make downtime as small as possible

m For offline migration, downtime is the time it takes to copy all VM
state over the network (can be ~minutes).

29/33

Live Memory Snapshot

Central problem:
m As a VM executes, it writes to its memory pages

m Saving a memory snapshot entails copying memory pages and
storing them (typically on disk).

m Thus, memory snapshots take non-zero time
m How to save something that is constantly changing?

30/33

Live Memory Migration

Copy entire memory to remote server
m Takes time ty = t(M), where M is the memory size
m During this time, some pages have changed
Copy only the pages that have changed to remote server
m Hypervisor write-protects all pages. If page is written to by the VM,
CPU marks it as “dirty”.
m Hypervisor copies all dirty pages into a buffer, and sends them over
the network.
m Because of locality of reference, number of pages dirtied is small,
and is Dt(M)
m Time required to send these pagesis t; = t(Ds,_,) < t;—1 .
Repeat step 2 until dirty pages Dy, is small enough.
m Can be determined based on acceptable downtime
m Transferring ~10 megabytes of pages will result in downtime of only
few milliseconds!
A If dirty page threshold is reached, stop the VM, and copy the
remaining dirty pages and vCPU and /O state.
Resume VM on destination server

31/33

More VM Live migration

m lteratively copying smaller and smaller number of dirty pages

m Large VMs (several GB of memory) can still be migrated with very
small downtimes

m Usually applications are not affected, if downtime is smaller than the
network timeouts their clients set (which is usually 10s of seconds).

32/33

Post-copy VM migration

m So far, have seen a “pre-copy” approach

m Copy all VM memory state to destination before running on
destination

Alternative approach: Post-copy

m Move vCPU state to destination first

m VM execution will cause page-faults

m Copy pages from source upon first access

m Advantage: VM can start running on destination immediately

m Downside: Residual state (pages) can exist on source server for a
long time

33/33

