
Software as History Embodied
Nathan Ensmenger, Editor

In the very last published article of his long and distin-
guished career, the eminent historian of computing
Michael Mahoney asked a simple but profound ques-
tion: ‘‘What makes the history of software hard?1 In
his characteristically playful style, Mike was engaging
both with an issue of central importance to historians—
namely, how can we begin to come to grips with the
formidable challenges of writing the history of software—
but also one of great interest to practitioners.

Since electronic computing’s earliest days, the prob-
lem of software has loomed large in the industry
literature. The history of software is hard, Mahoney
argued, because software itself is hard: hard to design,
develop, use, understand, and maintain.

It is this last challenge posed by software—the chal-
lenge of software maintenance—that I take up in this
essay.

The problem of maintenance is a ubiquitous but
neglected element of the history of technology. All
complex technological systems eventually break down
and require repair (some more so than others), and, in
fact, as David Edgerton has suggested, maintenance is
probably the central activity of most technological soci-
eties.2 But maintenance is also low-status, difficult, and
risky. Engineers and inventors don’t like maintenance,
and generally don’t do maintenance—therefore, histor-
ians of technology have largely ignored it.

Unbreakable software?
Nowhere is this dislike of maintenance more appar-

ent than in software development. Not only are
software developers particularly averse to working on
other people’s systems (the infamous ‘‘not invented
here’’ syndrome), but software itself is considered essen-
tially unbreakable. Software does not wear out or break
down in the traditional sense. Once a software-based
system is working, it should work forever (or at least
until the underlying hardware breaks down—but
that’s someone else’s problem). Any latent ‘‘bugs’’ sub-
sequently revealed in the system are considered flaws
in the original design or implementation, not the result
of the wear-and-tear of daily use, and in theory could be
completely eliminated by rigorous development and
testing methods.

But despite the fact that software in theory never
breaks down, in most large software projects mainte-
nance represents the single most time-consuming and
expensive phase of development. Since the early
1960s, software maintenance has been a continuous
source of tension between computer programmers
and users. In a 1972 article, the influential industry

analyst Richard Canning argued that the rising cost of
software maintenance, which by then already devoured
as much as half or two-thirds of programming resour-
ces, was just the ‘‘tip of the maintenance iceberg.’’3

Today, software maintenance is estimated to represent
between 50% and 70% of all software expenditures.4

So if software is an artifact that, in theory, can never
be broken, what is software maintenance? Although
software does not wear out or break down in any tradi-
tional sense, what does ‘‘break’’ over time is the larger
context of use. To borrow a concept from John Law
and Donald MacKenzie, software is a heterogeneous
technology. Unlike computer hardware, which is by def-
inition a tangible ‘‘thing’’ that can be readily isolated,
identified, and evaluated (and whose maintenance can
be anticipated and accounted for), computer software
has been inextricably linked to a larger sociotechnical
system that includes machines (computers and their
associated peripherals), people (users, designers, and
developers), and processes (the corporate payroll sys-
tem, for example). Software maintenance is therefore
as much a social as a technological endeavor. Usually
what needs to be ‘‘fixed’’ is the ongoing negotiation be-
tween the expectations of users, the larger context of
use and operation, and the features of the software sys-
tem in question.

If we consider software not as an end-product or a
finished good, but as a heterogeneous system, with
both technological and social components, we can un-
derstand why the software maintenance problem has
historically been so complex. To begin with, it raises a
fundamental question—one that has plagued software
developers since the advent of electronic computing—
namely, what does it mean for software to work
properly? The most obvious answer is that it performs
as expected—that the system behavior conforms to its
original design specification. But only a small percent-
age of software maintenance is devoted to fixing bugs
in implementation.5

Most software maintenance involves what are vaguely
referred to in the literature as ‘‘enhancements.’’ Enhance-
ments sometimes involved strictly technical measures—
such as implementing performance optimizations—but
most often what Richard Canning termed ‘‘responses
to changes in the business environment.’’ This included
the introduction of new functionality, as dictated by
market, organizational, or legislative developments,
but also changes in the larger technological or organiza-
tional system in which the software was inextricably
bound. Software maintenance also incorporated such

[3B2-8] man2009010086.3d 20/2/09 11:37 Page 88

Think Piece

continued on p. 86

88 IEEE Annals of the History of Computing 1058-6180/09/$25.00 �c 2009 IEEEPublished by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

apparently nontechnical tasks as documenta-
tion, training, support, and management.6 In
the technical literature that emerged in the
1980s, this ‘‘adaptive’’ dimension so domi-
nated the larger problem of maintenance
that some observers pushed for the abandon-
ment of the term maintenance altogether. The
process of adapting software to change would
better be described as ‘‘software support,’’
‘‘software evolution,’’ or (my personal favor-
ite) ‘‘continuation engineering.’’7

Imaginary yet tangible
In his highly regarded book The Mythical

Man-Month, the computer scientist (and
IBM program manager) Frederick Brooks fa-
mously likened programming to poetry,
suggesting that ‘‘The programmer, like the
poet, works only slightly removed from
pure-thought stuff. He builds his castles in
the air, from air, creating by exertion of the
imagination.’’8 To a degree, Brooks’s fanciful
metaphor is entirely accurate—at least when
the programmer is working on constructing
a new system. But when charged with main-
taining a so-called legacy system, the
programmer is working not with a blank
slate but a palimpsest. Computer code is in-
deed a kind of writing, and software
development a form of literary production.
But the ease with which computer code can
be written, modified, and deleted belies the
durability of the underlying document. Be-
cause software is a tangible record, not only
of the intentions of the original designer
but of the social, technological, and organiza-
tion context in which it was developed, it
cannot be easily modified. ‘‘We never have
a clean slate,’’ argued Bjarne Stroustrup, cre-
ator of the widely used C++ programming
language: ‘‘Whatever new we do must make
it possible for people to make a transition
from old tools and ideas to new.’’9 In this
sense, software is less like a poem and more
like a contract, a constitution, or a covenant.
Despite the fact that the material costs associ-
ated with building software are low (in
comparison with traditional, physical sys-
tems), the degree to which software is
embedded in larger, heterogeneous systems
makes starting from scratch almost impossi-
ble. Software is history, organization, and
social relationships made tangible.

One of the remarkable implications of all
this is that the software industry, which
many consider to be one of the fastest-
moving and most innovative industries in
the world, is perhaps the industry most con-
strained by its own history. As one observer
recently noted, today there are still more
than 240 million lines of computer code writ-
ten in Cobol, which was first introduced in
1959.10 All of this Cobol code needs to be
actively maintained, modified, and expanded.
Maintenance is central to the histories of soft-
ware, computing, and technology. We need
to know more about it, and we need to take
it more seriously.

For practitioners, the tangled web of
history embedded within legacy code is pre-
cisely what makes software maintenance so
difficult; for historians, it represents only a
remarkable opportunity.

References and notes
1. M.S. Mahoney, ‘‘What Makes the History of

Software Hard,’’ IEEE Annals of the History of

Computing, vol. 30, no. 3, 2004, pp. 8-18.

2. D. Edgerton, The Shock of the Old: Technology

and Global History since 1900, Oxford Univ.

Press, 2007.

3. R. Canning, ‘‘The Maintenance ‘Iceberg’,’’ EDP

Analyzer, vol. 10, no. 10, 1972, pp. 1-14.

4. G. Parikh, ‘‘Maintenance: Penny Wise, Program

Foolish,’’ SIGSOFT Software Eng. Notes, vol. 10,

no. 5, 1985.

5. D.C. Rine, ‘‘A Short Overview of a History of

Software Maintenance: As It Pertains to Reuse,’’

SIGSOFT Software Eng. Notes, vol. 16, no. 4,

1991, pp. 60-63.

6. E. Burton Swanson, ‘‘The Dimensions of Main-

tenance,’’ Proc. 2nd Int’l Conf. Software Eng.

(ICSE 76), IEEE Computer Soc. Press, 1976,

pp. 492-497.

7. G. Parikh, ‘‘What Is Software Maintenance

Really? What Is In A Name?’’ SIGSOFT Software

Eng. Notes, vol. 9, no. 2, 1984, pp. 114-116.

8. F. Brooks, The Mythical Man-Month: Essays on

Software Engineering, Addison-Wesley, 1975.

9. B. Stroustrup, ‘‘A History of C++,’’ History of

Programming Languages, T.M. Bergin and R.G.

Gibson, eds., ACM Press, 1996.

10. M. Swaine, ‘‘Is Your Next Language COBOL?’’

Dr. Dobbs J., 18 Sept. 2008.

Contact department editor Nathan Ensmenger at
annals-thinkpiece@computer.org.

[3B2-8] man2009010086.3d 20/2/09 13:42 Page 90

Think Piece

continued from p. 88

86 IEEE Annals of the History of Computing

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 18:57 from IEEE Xplore. Restrictions apply.

