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m Gradual typing in Python

m Compile-time error detection
m Blame tracking

® ...and in Jython
m Bytecode type specialization
m Challenges

m Making statically typed code run fast

m Prevent dynamic code from infecting static code

m Minimizing overhead of going from static to dynamic and vice
versa
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Function casts: motivation and example

1. def explore_files(files, fun):
for file in files:
if file.is_directory():
explore_dir(file: 7 = file, fun: 7 = file — str)
else: print fun(file)
. def explore_dir(dirfile, fun:file — str) — unit:
explore_files(file.members(): list = 7, fun: file — str = 7)

N gk wen

m Standard gradual typing approach: inserted casts
moderate between static and dynamic code
m Simple for basic types (int, float)
m Harder for functions
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Function casts induce overhead

m Previous approaches:
m Casts create new wrapper functions around casted functions,
m or casts attach to functions and are used at call sites
m Coercion calculus, threesomes
m Both approaches have problems
m Installing wrappers at every cast site is space-inefficient
m Attached casts result in complex output from compiler
m We would expect to generate code like:

[ei(e2)] = let f = [ex] in f.fun(f.FVs, [e2])

® but instead we have to generate:

[ex(e2)] =
let f=[e1] in
case f of
| Casted f' K = f'([e2] : dom(K)) : cod(K) G
| Function f' = f'.fun(f’.FVs, [ez]) 2
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Function casts

Our approach

m Function closures always contain a pointer to a first-class

threesome
m Null if the function is not casted
v u= ...|(fun= Az c).e,FVs = p,cast =T} 2 T3)

m At function call sites, generated code is simple

[ex(e2)] = let f = [e1] in f-fun([ez], )

m Pass in entire closure instead of just the FVs

m Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead GJ
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Our approach

m Initial casts on bare functions install a generic wrapper around
code

m Wrapper is parametrized over the cast to apply

T L (fun = Az ¢).(f(z:dom(c.cast))):cod(c.cast),
FVs =p,cast =T} L T3)

m Additional casts only update the threesome

m At call site, wrapper around casted functions will extract the
closure's threesome and apply it
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Object casts

create invalid assumptions

. obj:dyn = {x =10, y = True} #Object initialization
. def get_ref(obj:{x:int, y:dyn}) — (unit — int):
return )\_:unit. obj.x #Capture typed reference
. x_ref:(unit — int) = get_ref(oby)

. obj.x = “Hello!”

. print (x_ref{() + 10)

SO~ w N =
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. obj:dyn = {x =10, y = True} #Object initialization
. def get_ref(obj:{x:int, y:dyn}) — (unit — int):
return )\_:unit. obj.x #Capture typed reference
. x_ref:(unit — int) = get_ref(oby)

. obj.x = “Hello!”

. print (x_ref{() + 10)

SO~ w N =

We want to detect the type error, to allow for efficient member
accesses, and to have the ability to blame the responsible site in
code.
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Object casts

m Need a solution to object casting that supports these
objectives

m Straightforward approaches are slow and incompatible with
the semantics of imperative languages

m Existence of strong updates prevents the approach used in
function casts from extending to objects

m Same principles apply for mutable reference cells (but Python
doesn't have them)
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An approach: monotonic objects

m Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

m Monotonic objects

m Objects internally maintain the meet of the types that have
been statically specified for each member
m When an object is cast,
B the stored meet of each member is updated (if necessary) to
reflect the new type,
B and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
m If there is no such meet type, a cast error occurs.
m When a field update occurs, the new value is cast to the
object’'s meet type for that member.

m If this cast fails, we have a trapped error. G‘J
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Casts mutate object structure

1:
2:
3:
4:
b:
6:

obj:dyn = {x = 10, y = True} #Object initialization

def get_ref(obj:{x:int, y:dyn}) — (unit — int):
return )\ _:unit. obj.x #Capture typed reference

x_ref:(unit — int) = get_ref{ obj)

obj.x = “Hello!”

print (x_ref() + 10)

obj initially has
@ dynamically-typed members

& )

y|1 True | dyn
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Object casts e )
Implications

Casts mutate object structure

obj:dyn = {x = 10, y = True} #Object initialization

def get_ref{obj:{x:int, y:dyn}) — (unit — int):
return )\_:unit. obj.x #Capture typed reference

x_ref:(unit — int) = get_ref{oby)

obj.x = “Hello!"

print (x_ref() + 10)

SRS e

After it passes through a cast,

o its types are updated to their
obj:{x:int,

o @

y|1 True | dyn

1
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Object casts e )
Implications

Casts mutate object structure

1:
2:
3:
4:
5:
6:

obj:dyn = {x = 10, y = True} #Object initialization
def get_ref{obj:{x:int, y:dyn}) — (unit — int):

return A_:unit. obj.x #Capture typed reference
x_ref:(unit — int) = get_ref{ ob))

print (x_ref() + 10)

Attempted update to x fails,

strilint = L blames update code
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Implications

Object casts

Static reads are fast

obj:dyn = {x = 10, y = True} #Object initialization
. def get_ref(obj:{x:int, y:dyn}) — (unit — int):

3:  return A_unit. obj.x #Capture typed reference
x_ref:(unit — int) = get_ref{ obyj)

. print (x_ref() + 10)

N =

A

Reads of statically typed
properties can directly access
the object’s member values,
bypassing the dictionary,
using permutation vectors:

obj—mems|obj.perm(0)]

@
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mplications

Implications

Fully static references to objects allow direct access to fields
m dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

m But avoids reference counting or dependence on GC
m Alternative: check member types at access sites
m Probably greater overhead, but maybe can be optimized
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Gradual Jython

m Gradual Jython is a WIP

m Static typechecking
m Type specialization for primitive types
m Shashank: Optimized function casts using MethodHandles
m To be integrated (as an option) into an upcoming version of
Jython

m Some interest in releasing the static typechecker as a
standalone app
m Additional work on Gradual Jython done by

m Jim Baker (Canonical)
m Chris Poulton (University of Colorado at Boulder)
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Conclusions

m Statically typed code should be as fast as possible
m Casts from dynamic to static will happen a lot, so we need to
make them work well:
m Minimize overhead of casts
m Minimize overhead of using casted values (function calls,
member access)
m Provide useful information when things go wrong
m Gradual function casts and monotonic objects help us achieve
these goals

m May be other worthwhile approaches, especially to object casts

m Figuring out these issues is critical to adding robust gradual
typing to Python — and we're well on our way!
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