
Introduction
Function casts
Object casts

Status and conclusions

Towards Gradual Typing in Python

Michael M. Vitousek Shashank Bharadwaj Jeremy G. Siek

{michael.vitousek, shashank.bharadwaj, jeremy.siek}@colorado.edu

University of Colorado at Boulder
Boulder, Colorado, USA

June 11, 2012

1 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast
Prevent dynamic code from infecting static code
Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast
Prevent dynamic code from infecting static code
Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast
Prevent dynamic code from infecting static code
Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast

Prevent dynamic code from infecting static code
Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast
Prevent dynamic code from infecting static code

Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Introduction

Gradual typing in Python

Compile-time error detection
Blame tracking

. . . and in Jython

Bytecode type specialization

Challenges

Making statically typed code run fast
Prevent dynamic code from infecting static code
Minimizing overhead of going from static to dynamic and vice
versa

2 / 20



Introduction
Function casts
Object casts

Status and conclusions

Outline

1 Introduction

2 Function casts
Motivation
Our approach

3 Object casts
Motivation
Monotonic objects
Implications

4 Status and conclusions
Status of Gradual Jython
Conclusions

3 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Outline

1 Introduction

2 Function casts
Motivation
Our approach

3 Object casts
Motivation
Monotonic objects
Implications

4 Status and conclusions
Status of Gradual Jython
Conclusions

4 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts: motivation and example

1: def explore files(files, fun):
2: for file in files:
3: if file.is directory():
4: explore dir(file: ?⇒ file, fun: ?⇒ file→ str)
5: else: print fun(file)
6: def explore dir(dir:file, fun:file→ str)→ unit:
7: explore files(file.members(): list⇒ ?, fun: file→ str⇒ ?)

Standard gradual typing approach: inserted casts
moderate between static and dynamic code

Simple for basic types (int, float)
Harder for functions

5 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts: motivation and example

1: def explore files(files, fun):
2: for file in files:
3: if file.is directory():
4: explore dir(file: ?⇒ file, fun: ?⇒ file→ str)
5: else: print fun(file)
6: def explore dir(dir:file, fun:file→ str)→ unit:
7: explore files(file.members(): list⇒ ?, fun: file→ str⇒ ?)

Standard gradual typing approach: inserted casts
moderate between static and dynamic code

Simple for basic types (int, float)
Harder for functions

5 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:

Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,

or casts attach to functions and are used at call sites
Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems

Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient

Attached casts result in complex output from compiler
We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Function casts induce overhead

Previous approaches:
Casts create new wrapper functions around casted functions,
or casts attach to functions and are used at call sites

Coercion calculus, threesomes

Both approaches have problems
Installing wrappers at every cast site is space-inefficient
Attached casts result in complex output from compiler

We would expect to generate code like:

Je1(e2)K = let f = Je1K in f.fun(f.FVs, Je2K)

but instead we have to generate:

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.FVs, Je2K)

6 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Function closures always contain a pointer to a first-class
threesome

Null if the function is not casted

v ::= . . . | 〈fun = λ(x c).e,FVs = ρ, cast = T1
T2=⇒ T3〉

At function call sites, generated code is simple

Je1(e2)K = let f = Je1K in f.fun(Je2K, f)

Pass in entire closure instead of just the FVs

Uncasted functions simply extract the FVs from the closure,
and proceed normally — very little overhead

7 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Initial casts on bare functions install a generic wrapper around
code

Wrapper is parametrized over the cast to apply

f : T1
T2=⇒ T3 −→ 〈fun = λ(x c).(f(x:dom(c.cast))):cod(c.cast),

FVs = ρ, cast = T1
T2=⇒ T3〉

Additional casts only update the threesome

At call site, wrapper around casted functions will extract the
closure’s threesome and apply it

8 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Initial casts on bare functions install a generic wrapper around
code

Wrapper is parametrized over the cast to apply

f : T1
T2=⇒ T3 −→ 〈fun = λ(x c).(f(x:dom(c.cast))):cod(c.cast),

FVs = ρ, cast = T1
T2=⇒ T3〉

Additional casts only update the threesome

At call site, wrapper around casted functions will extract the
closure’s threesome and apply it

8 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Initial casts on bare functions install a generic wrapper around
code

Wrapper is parametrized over the cast to apply

f : T1
T2=⇒ T3 −→ 〈fun = λ(x c).(f(x:dom(c.cast))):cod(c.cast),

FVs = ρ, cast = T1
T2=⇒ T3〉

Additional casts only update the threesome

At call site, wrapper around casted functions will extract the
closure’s threesome and apply it

8 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Initial casts on bare functions install a generic wrapper around
code

Wrapper is parametrized over the cast to apply

f : T1
T2=⇒ T3 −→ 〈fun = λ(x c).(f(x:dom(c.cast))):cod(c.cast),

FVs = ρ, cast = T1
T2=⇒ T3〉

Additional casts only update the threesome

At call site, wrapper around casted functions will extract the
closure’s threesome and apply it

8 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Our approach

Our approach

Initial casts on bare functions install a generic wrapper around
code

Wrapper is parametrized over the cast to apply

f : T1
T2=⇒ T3 −→ 〈fun = λ(x c).(f(x:dom(c.cast))):cod(c.cast),

FVs = ρ, cast = T1
T2=⇒ T3〉

Additional casts only update the threesome

At call site, wrapper around casted functions will extract the
closure’s threesome and apply it

8 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Outline

1 Introduction

2 Function casts
Motivation
Our approach

3 Object casts
Motivation
Monotonic objects
Implications

4 Status and conclusions
Status of Gradual Jython
Conclusions

9 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts create invalid assumptions

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

We want to detect the type error, to allow for efficient member
accesses, and to have the ability to blame the responsible site in
code.

10 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts create invalid assumptions

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

We want to detect the type error,

to allow for efficient member
accesses, and to have the ability to blame the responsible site in
code.

10 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts create invalid assumptions

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

We want to detect the type error, to allow for efficient member
accesses,

and to have the ability to blame the responsible site in
code.

10 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts create invalid assumptions

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

We want to detect the type error, to allow for efficient member
accesses, and to have the ability to blame the responsible site in
code.

10 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Object casts

Need a solution to object casting that supports these
objectives

Straightforward approaches are slow and incompatible with
the semantics of imperative languages

Existence of strong updates prevents the approach used in
function casts from extending to objects

Same principles apply for mutable reference cells (but Python
doesn’t have them)

11 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Object casts

Need a solution to object casting that supports these
objectives

Straightforward approaches are slow and incompatible with
the semantics of imperative languages

Existence of strong updates prevents the approach used in
function casts from extending to objects

Same principles apply for mutable reference cells (but Python
doesn’t have them)

11 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Object casts

Need a solution to object casting that supports these
objectives

Straightforward approaches are slow and incompatible with
the semantics of imperative languages

Existence of strong updates prevents the approach used in
function casts from extending to objects

Same principles apply for mutable reference cells (but Python
doesn’t have them)

11 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Object casts

Need a solution to object casting that supports these
objectives

Straightforward approaches are slow and incompatible with
the semantics of imperative languages

Existence of strong updates prevents the approach used in
function casts from extending to objects

Same principles apply for mutable reference cells (but Python
doesn’t have them)

11 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member
When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,
and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member
When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,
and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member

When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,
and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member
When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,

and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member
When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,
and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.

If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

An approach: monotonic objects

Strong updates to objects resolve to trapped errors if they
invalidate any view of the object

Monotonic objects

Objects internally maintain the meet of the types that have
been statically specified for each member
When an object is cast,

the stored meet of each member is updated (if necessary) to
reflect the new type,
and the value of each member is cast to the new meet type,
or left alone if the meet has not changed.
If there is no such meet type, a cast error occurs.

When a field update occurs, the new value is cast to the
object’s meet type for that member.

If this cast fails, we have a trapped error.

12 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts mutate object structure

1: obj:dyn = {x = 10, y = True} #Object initialization

2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

DICT

MEMS

x

y

0

1

10

True

dyn

dyn

obj:dyn

obj initially has
dynamically-typed members

13 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts mutate object structure

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

DICT

MEMS

x

y

0

1

10

True

int

dyn

obj:dyn
obj:{x:int,

 y:dyn}

After it passes through a cast,
its types are updated to their
meets

14 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Casts mutate object structure

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: obj.x = “Hello!”
6: print (x ref() + 10)

str u int = ⊥
Attempted update to x fails,
blames update code

15 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Static reads are fast

1: obj:dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn})→ (unit→ int):
3: return λ :unit. obj.x #Capture typed reference
4: x ref:(unit→ int) = get ref(obj)
5: print (x ref() + 10)

DICT

MEMS

x

y

0

1

10

True

int

dyn

0 1

obj:dyn
obj:{x:int,

 y:dyn}

 PERM

Reads of statically typed
properties can directly access
the object’s member values,
bypassing the dictionary,
using permutation vectors:

obj→mems[obj.perm(0)]

16 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Motivation
Monotonic objects
Implications

Implications

Fully static references to objects allow direct access to fields

dynamically-typed references may need to be boxed

Member updates need casts, but accesses are fast

Flow-sensitive

Restrictive

But avoids reference counting or dependence on GC

Alternative: check member types at access sites

Probably greater overhead, but maybe can be optimized

17 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Outline

1 Introduction

2 Function casts
Motivation
Our approach

3 Object casts
Motivation
Monotonic objects
Implications

4 Status and conclusions
Status of Gradual Jython
Conclusions

18 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking

Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types

Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Gradual Jython

Gradual Jython is a WIP

Static typechecking
Type specialization for primitive types
Shashank: Optimized function casts using MethodHandles

To be integrated (as an option) into an upcoming version of
Jython

Some interest in releasing the static typechecker as a
standalone app

Additional work on Gradual Jython done by

Jim Baker (Canonical)
Chris Poulton (University of Colorado at Boulder)

19 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts

Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)

Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20



Introduction
Function casts
Object casts

Status and conclusions

Status of Gradual Jython
Conclusions

Conclusions

Statically typed code should be as fast as possible

Casts from dynamic to static will happen a lot, so we need to
make them work well:

Minimize overhead of casts
Minimize overhead of using casted values (function calls,
member access)
Provide useful information when things go wrong

Gradual function casts and monotonic objects help us achieve
these goals

May be other worthwhile approaches, especially to object casts

Figuring out these issues is critical to adding robust gradual
typing to Python — and we’re well on our way!

20 / 20


	Introduction
	Function casts
	Motivation
	Our approach

	Object casts
	Motivation
	Monotonic objects
	Implications

	Status and conclusions
	Status of Gradual Jython
	Conclusions


