
Solving Discrete Logarithms in Smooth-Order Groups with CUDA1

Ryan Henry Ian Goldberg

Cheriton School of Computer Science
University of Waterloo

Waterloo ON Canada N2L 3G1

{rhenry,iang}@cs.uwaterloo.ca

Abstract

This paper chronicles our experiences using CUDA to implement a parallelized variant of Pollard’s
rho algorithm to solve discrete logarithms in groups with cryptographically large moduli but smooth or-
der using commodity GPUs. We first discuss some key design constraints imposed by modern GPU
architectures and the CUDA framework, and then explain how we were able to implement efficient
arbitrary-precision modular multiplication within these constraints. Our implementation can execute
roughly 51.9 million 768-bit modular multiplications per second — or a whopping 840 million 192-bit
modular multiplications per second — on a single Nvidia Tesla M2050 GPU card, which is a notable
improvement over all previous results on comparable hardware. We leverage this fast modular multipli-
cation in our implementation of the parallel rho algorithm, which can solve discrete logarithms modulo
a 1536-bit RSA number with a 255-smooth totient in less than two minutes. We conclude the paper by
discussing implications to discrete logarithm-based cryptosystems, and by pointing out how efficient im-
plementations of parallel rho (or related algorithms) lead to trapdoor discrete logarithm groups; we also
point out two potential cryptographic applications for the latter. Our code is written in C for CUDA and
PTX; it is open source and freely available for download online.

1 Introduction

Over the past several decades, the algorithms and symbolic computation research communities have made
considerable advances with respect to state-of-the-art algorithms for solving many number-theoretic prob-
lems of interest. At the same time, Moore’s law has ensured steady speed increases in the computing devices
on which these algorithms run. The results have been astounding: modern symbolic computation packages,
such as Maple2 and Mathematica3, accept arbitrary-precision operands and can solve a plethora of useful
problems very efficiently. Nonetheless, much work remains; there exist many fundamental problems for
which no efficient (i.e., polynomial-time) algorithm is known. While there is considerable interest in ex-
panding the range of problems that a modern symbolic computation toolkit can solve efficiently, it turns
out that there are also practical advantages to having some problems remain intractable, specifically when
the “inverse problem” is efficient to compute. In particular, such one-way functions give rise to public-key
cryptosystems, such as the ones that protect our everyday online transactions.

In practice, nearly all public key cryptosystems derive their security guarantees from assumptions about
(possibly relaxations of) one of the following three types of presumed ‘hard’ problems: those related to

1The latest version of this paper is available as CACR Tech Report 2012-02, http://cacr.uwaterloo.ca/
techreports/2012/cacr2012-02.pdf.

2http://www.maplesoft.com/
3https://www.wolfram.com/mathematica/
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factoring large integers, those related to computing discrete logarithms, or those related to solving certain
computational problems on integer lattices. This paper is concerned with a variant of the second problem
on this list; i.e., that of computing discrete logarithms when the modulus is large but has smooth totient
(more precisely, it focuses on computing discrete logarithms in the multiplicative group of units modulo
N when the group order ϕ(N) is B-smooth for some B � N ; that is, when all of the prime factors of
ϕ(N) are less than B). In particular, we explore the extent to which one can leverage the massive, yet
cost-effective, parallelism provided by modern general-purpose graphics processing units (GP GPUs) to
solve discrete logarithms (with respect to certain special moduli) that would otherwise be impractical to
solve using CPUs alone. We also discuss the implications of being able to solve such discrete logarithms
for existing discrete logarithm-based cryptosystems, and demonstrate how this ability gives rise to a useful
cryptographic primitive called a trapdoor discrete logarithm group.

Outline. Before commencing our foray into parallel programming on GPUs with CUDA and PTX in §3,
we first overview related work in the literature in §1.1, and then briefly touch on some mathematical pre-
liminaries, including discrete logarithms and the parallel rho method for computing them, in §2. The key to
an efficient realization of parallel rho on GPUs is fast modular multiplication; therefore, we devote much of
§4 to the implementation details of efficient arbitrary-precision modular multiplication in CUDA, including
various optimizations that lead to dramatic performance improvements over a naive implementation. §4 also
discusses how we tailored the parallel rho method to run well within the hardware constraints of CUDA
GPUs. A performance evaluation of our implementation appears in §5; based on these empirical observa-
tions, as well as some theoretical analysis, §6.1 discusses the implications for deployed discrete-logarithm-
based cryptosystems, while §6.2 concludes that GPU-based implementations of parallel rho are sufficient to
realize trapdoor discrete logarithm groups, and suggests some possible cryptographic applications. §7 wraps
up with a brief summary and a pointer to our open source implementation.

1.1 Related work

In recent years, there has been considerable interest in using commodity graphics processing units (GPUs)
to perform highly parallelized computations at a low cost, especially for use in speeding up (and attacking)
public key cryptosystems. Because GPUs are particularly well suited to solving systems of linear equations,
it should be unsurprising that several high-speed implementations of lattice-based cryptosystems have suc-
cessfully employed them. For example, Hermans et al. [19] implemented NTRUEncrypt — the encryption
function for the NTRU cryptosystem — in CUDA and ran it on an Nvidia GTX 280 graphics card at a record-
breaking throughput of 200,000 encryptions per second with a 256-bit security level. Aguilar et al. [1] ported
their single-server lattice-based private information retrieval (PIR) scheme to run on GPUs; in all of their
experiments, Aguilar et al. observed an 8x–9x improvement in throughput when compared to throughput on
a system composed of similarly priced CPUs. Several other research groups have obtained promising results
using GPUs to perform modular exponentiations [15, 17, 27, 28], an operation that forms the basis of many
number-theoretic public key cryptosystems. Harrison and Waldron [17], for example, report a 4x throughput
increase using GPUs instead of comparably priced CPUs for the special case of computing 1024-bit modular
exponentiations. More recently, Neves and Araujo [28] obtained similar positive results by implementing
arbitrary-precision modular exponentiations in CUDA. The present paper focuses on leveraging GPUs to
do the inverse of modular exponentiation; i.e., to solve instances of one variant of the so-called discrete
logarithm problem.

Perhaps the most relevant prior work along these lines is that of Bailey et al. [2]; they describe their
efforts to use several clusters of conventional computers, PlayStation 3 consoles, powerful graphics cards,
and FPGAs to break the Certicom ECC2K-130 challenge [13]. (A more recent paper [4] further elaborates on
how the team has optimized their implementation for efficient binary field arithmetic on commodity GPUs.)



As in the present work, Bailey et al. use the parallel rho method to solve discrete logarithms; however,
our efforts differ in that the ECC2K-130 challenge involves solving discrete logarithms in an elliptic curve
over a binary field, whereas this work considers the problem of solving discrete logarithms in a special
class of multiplicative groups. The latter setting is quite different since it involves computing modular
arithmetic with a very large modulus, rather than computing binary field elliptic curve arithmetic. At the
time of writing, the team’s efforts to break ECC2K-130 are still underway; the interested reader should
consult http://ecc-challenge.info/ for nearly real-time progress updates. Other groups [7, 8]
have obtained positive results using game consoles — specifically, the Cell-based PlayStation 3 — to solve
discrete logarithms over elliptic curves using the parallel rho method, but so far no other group has reported
positive results using commodity hardware to solve discrete logarithms in the setting considered in this work.

The current state of the art with respect to fast modular multiplications on GPUs appears to be Bernstein
et al.’s work on ‘The Billion-Mulmod-Per-Second PC’ [5]. The authors of that work managed to obtain
an impressive 481 million 192-bit modular multiplications per second on an Nvidia GTX 295 graphics
card. The Nvidia GTX 295 has 480 cores that each run at 1.2 GHz; thus, their implementation achieves
a per-core throughput of about 1 million 192-bit modular multiplications per second, which is about one
modular multiplication per 1200 clock pulses on each core. The experiments considered in this paper use two
Nvidia Tesla M2050 cards, which each have 448 cores that run at 1.55 GHz. Our implementation computes
roughly 840 million 192-bit modular multiplications per second on each one of these cards — a per-core
throughput of about 1.875 million 192-bit modular multiplications per second, which is about one modular
multiplication per 830 clock pulses on each core.4 Several other groups have also implemented efficient
modular multiplication in CUDA; unfortunately, the source code for most of these implementations is not
publicly available, thus preventing their numerous “speed records” from being independently replicated or
verified. To avoid such shortcomings in our own work, all of our source code is open source and freely
available for download from http://crysp.uwaterloo.ca/software/.

2 Mathematical preliminaries

This section provides a terse overview of the discrete logarithm problem and Pollard’s rho method [34] for
computing discrete logarithms, as well as van Oorschot and Wiener’s approach [40] to parallelizing Pollard’s
rho. It also briefly discusses Pollard’s p−1 factoring algorithm [33], which will be relevant to the discussion
in §6.2. We begin with a formal statement of the discrete logarithm problem.

Definition 1 (Discrete logarithm problem [25, §3.6]). Given a finite, cyclic group G of order n, a gener-
ator g of G, and an arbitrary group element α ∈ G, the discrete logarithm problem is to find the unique
integer exponent x in the interval [0, n− 1] such that gx = α. The exponent x is the discrete logarithm of α
with respect to g in G.

Our focus in this work is on solving discrete logarithms in cyclic subgroups G of the multiplicative group
of units moduloN . The parallel rho method has fallen out of fashion for computing discrete logarithms in this
setting, with more specialized algorithms such as index calculus being preferred [25, §3.6.5]; nonetheless, in
the special case where the group order n has only small factors, Pollard’s rho may dramatically outperform

4Fundamental differences exist between the Nvidia GTX 295 graphics cards that Bernstein et al. used and the
Nvidia Tesla M2050s used in this work. The latter cards are general-purpose GPUs, rather than standard graphics cards like those
in the GTX series; as such, they possess certain characteristics that make them more suitable for general-purpose computations (for
example, computing modular multiplications). Most significantly, the cards in the Tesla series have more memory than those in the
GTX series do, and the Tesla M2050 can perform true 32-bit multiplication in hardware, whereas the GTX 295 uses a sequence
of 24-bit multiplications to simulate hardware support for 32-bit multiplications. Thus, comparing the relative performance of the
two implementations requires a more nuanced approach than simply comparing per-core throughputs; we omit a more meaningful
comparison, as such a comparison is not the goal of this work.
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index calculus, and it is on this special case that we focus our attention. We do note, however, that Pollard’s
rho method is currently the standard technique for computing discrete logarithms on elliptic curves [4] and
many standard texts (e.g. [25, §3.6.3] or [14, §31.9]) therefore cover it in some depth. We briefly describe
the algorithm below; however, the interested reader is encouraged to consult one of the aforementioned texts
for a more thorough description of the algorithm and analysis of its runtime.

Pollard’s rho method. Pollard’s rho algorithm is essentially just a clever way to exploit the well-known
birthday paradox. In a nutshell, the birthday paradox tells us that, on average, one needs only select about√
πn/2 random elements from a set of n alternatives (with replacement) before encountering a collision

(wherein a previously selected element is selected again). This fact allows one to compute the discrete
logarithm x of h ∈ G with respect to g by repeatedly selecting random exponents ai, bi ∈R [0, n − 1] to
obtain random group elements gaihbi ∈ G. After sufficiently many such random selections, a collision will
occur; in particular, the process eventually yields two triples (ai1 , bi1 , g

ai1hbi1 ) and (ai2 , bi2 , g
ai2hbi2 ) such

that gai1hbi1 = gai2hbi2 and bi1 6≡ bi2 mod n, whence it follows that ai1 + bi1x ≡ ai2 + bi2x mod n,
and therefore x = (a2 − a1)(b1 − b2)−1 mod n. The birthday paradox tells us that an expected number of√
πn/2 random selections suffice to find such a collision; thus, the natural algorithmic instantiation of this

process solves the discrete logarithm problem with an expected runtime in Θ(
√
n), and uses Θ(

√
n) storage.

Pollard’s big idea was to modify the above observation to find the collisions without having to store
Θ(
√
n) such triples. To do this, he proposed using a function f : G→ G, called an iteration function, that is

chosen so that 1) it is efficient to compute, 2) it behaves heuristically like a randomly selected mapping from
G to itself, and 3) it maps a group element ga1hb1 to ga2hb2 in such a way that a2 and b2 are easy to compute
from a1 and b1. The actual instantiation for f that Pollard proposed is

f(x) =


hx if 1 ≤ x < N

3 ,

x2 if N
3 ≤ x < 2N

3 , and
g x if 2N

3 ≤ x <N,

(1)

which is essentially the same function that we use in our implementation.5 The algorithm then proceeds by
starting with a random group element ga0hb0 and iteratively applying f to select the subsequent “random”
group elements. It is easy to see that when a collision eventually occurs (after an expected

√
πn/2 iterations,

assuming perfectly random behaviour of f ), the subsequent iterations of the process form a cycle, which can
be detected using a cycle finding algorithm such as that of Floyd [16] or Brent [10]. Moreover, the group
element gaihbi = f (i)(ga0hb0), where f (i)(·) denotes that f is iteratively applied to the operand i times, is
easily expressed in terms of g and h, so once a cycle (hence, collision) is found, one can use it to compute
the discrete logarithm as above.

The parallel rho method. Regrettably, Pollard’s rho method as presented above does not parallelize well.
The reason for this is that iterative application of f is an inherently serial process that each thread of execution
must perform independently. It turns out that invoking the procedure Ψ times in parallel yields sublinear
expected speedups (in particular, the expected speedup is proportional to

√
Ψ rather than Ψ). Van Oorschot

and Wiener [40] proposed an ingenious way to bypass this limitation using the notion of distinguished points.
(A distinguished point is simply some group element that has an easily testable property, such as a certain

5Teske [39] subsequently proposed a better choice for f , which can reportedly reduce number of iterations by ≈ 20% on average.
It is possible that switching to Teske’s iteration function would lead to speedups in our implementation, although we suspect that
the overhead associated with evaluating the more complicated function on a GPU would increase the cost of an iteration so much
as to negate any purported performance increases. Nonetheless, it would be interesting and worthwhile to experiment with Teske’s
alternative iteration function (or some middle ground between Teske’s function and Pollard’s function) as a direction for future
work.



number of trailing zeros in its binary representation.) Under their regime, one thread acts as a server and
Ψ threads act as clients; each client thread starts the iteration process at a different random group element
with known representation in terms of g and h and iterates until it hits a distinguished point. When a client
thread encounters its first distinguished point gaihbi = f (i)(ga0hb0), it sends the triple (ai, bi, g

aihbi) to
the server thread and starts the iteration process anew with a fresh random group element. Upon receiving
a triple (ai1 , bi1 , g

ai1hbi1 ) from some client such that gai1hbi1 = gai2hbi2 and bi1 6≡ bi2 mod n for some
previously received triple (ai2 , bi2 , g

ai2hbi2 ), the server computes the discrete logarithm just as it did before.
By the same observation used above, if two threads ever encounter a collision (be it at a distinguished point
or not), then all subsequent iterations of those two threads necessarily follow identical trails; thus, the next
distinguished point that either thread encounters is also necessarily a collision. In particular, each of the Ψ
threads is searching for collisions with any group element encountered by any other thread, and the expected
speedup becomes linear in Ψ.

Pollard’s p − 1 method. Pollard’s p− 1 factoring algorithm is a special-purpose factoring algorithm that
uses Fermat’s Little Theorem to find certain, special factors of an integer. The key observation behind the
technique is that working in the multiplicative group of units modulo n is equivalent to working in the
multiplicative groups of units modulo each of n’s prime-power factors. Moreover, Fermat’s Little Theorem
says that if gcd(g, p) = 1 for a prime p, then gk(p−1) ≡ 1 mod p for all k, hence p | gcd(gk(p−1) − 1, n).
This suggests the following algorithm for finding prime factors p of n, subject to the condition that all of
the prime factors of p − 1 are bounded above by some smoothness bound B (in such a case, p − 1 is called
B-smooth): Fix a positive integer B and compute x =

∏
qblogq Bc, where the product is taken over all

primes q less than B, then compute and return d = gcd(gx − 1, n). If 1 < d < n, then d is a product of all
prime factors p of n for which p− 1 is B-smooth. A simple modification involves progressively increasing
B in the computation and computing the gcd at each step to recover the individual prime factors (rather than
their product). Note that this procedure requires between B/ ln 2 and 1.5B/ ln 2 modular multiplications,
depending on whether modular exponentiations are performed with naive square-and-multiply or a somewhat
more efficient algorithm.

3 GPU programming with ‘C for CUDA’ and PTX

To meet the demands of increasing screen resolutions, frame rates, and scene complexity seen in today’s
video games, modern graphics cards have evolved into extremely powerful computing platforms that leverage
a large degree of parallelism compared to regular CPUs. This has led to much interest in harnessing the power
of GPUs as massively parallel co-processors working alongside regular CPUs in applications outside of
graphics processing. To facilitate such uses, Nvidia has developed the Compute Unified Device Architecture
(CUDA) parallel computing platform and programming model and the Parallel Thread eXecution (PTX)
instruction set architecture, which together form the basis for their GeForce (for consumer PCs), Quadro
(for professional workstations), and Tesla (for high-performance general-purpose computing) lines of GPU
devices [29].

Nvidia GPUs. The architecture of Nvidia GPU devices exhibit fundamental differences from most CPU-
based systems, and effectively utilizing their computational power necessitates an understanding of these
differences. §1.1.1 of Nvidia’s CUDA C Best Practices Guide [31] describes the most important differences,
which mostly pertain to how GPU devices handle threading and memory access; for completeness, we
summarize the key architectural features of CUDA GPU devices.

A typical Nvidia GPU contains several streaming multiprocessors (SMPs), each of which consists of
several streaming processors (SPs) and special function units (SFUs), an instruction decoder, and some
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(b) The internal structure of one SMP in the Fermi archi-
tecture.

Figure 1: The internal structure of a streaming multiprocessor (SMP) in the Fermi architecture and an ex-
ploded view of a single streaming processor (SP), or “CUDA core”. This diagram is adapted from Nvidia’s
documentation [30].

shared memory. The SPs are known colloquially as CUDA cores. The Tesla M2050 cards that we use
in our experiments are based on the Nvidia Fermi architecture, which has 32 CUDA cores and 4 SFUs
per SMP (the M2050 itself is comprised of 14 SMPs). Each SMP in the GPU is capable of executing a
single instruction at a time, which means that the 32 CUDA cores in that SMP must each execute the same
instruction simultaneously, albeit on different data (this is called single instruction/multiple data or SIMD).
Nvidia calls a bundle of 32 threads executing in parallel on an SMP a warp, which constitutes the smallest
executable unit of parallelism on a CUDA device. All Nvidia GPUs can support at least 24 active warps (768
active threads) per SMP — and some higher-end GPUs can support 32 active warps per SMP — where each
warp has its own set of registers; once the GPU allocates registers to a warp, those registers stay allocated
to that warp until it finishes execution. This makes threads on the GPU extremely lightweight compared to
their counterparts on a regular CPU. An application can queue up thousands of threads and when the GPU
must wait on one warp of threads, it simply begins executing work (at the next clock pulse) on another warp
of threads, with no intervention from the host device and no swapping of register state. However, getting
good performance out of threads in CUDA still requires the software developer to keep several caveats in
mind. For example, if there is a conditional branch and some threads in a warp take this branch while others
do not (called warp divergence), then the other threads will just idle until the branch is complete and they
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Figure 2: The memory hierarchy in CUDA GPU devices based on the Nvidia Fermi architecture. This
diagram is adapted from Nvidia’s documentation [30].

all converge back together on a common instruction. The situation is even worse when two or more threads
from a warp each take a a different conditional branch: only one branch is executed at a time, and the overall
execution time becomes the sum of the execution times of each branch taken (rather than the maximum
execution time across all branches, as one might intuitively expect).

Figure 1 illustrates the structure of SMPs in the Nvidia Fermi architecture; 1(a) gives an exploded view
of a single CUDA core within the SMP, while 1(b) shows the internal structure of the entire SMP. Each
CUDA core resembles a regular CPU core but is much simpler, reflecting its heritage as a pixel shader. It has
a pipelined floating-point unit (FPU), a pipelined integer unit (INT), some logic for dispatching instructions
and operands to these units, and a queue for holding results, but it lacks its own general-purpose register file,
L1 cache, function units for each data type, and load/store units for retrieving and saving data.

The other important difference between CUDA GPU devices and CPU-based systems is the memory
hierarchy. Memory on the GPU is segmented, both physically and virtually, into several different types, each
of which has its own special purpose and performance characteristics. For one thing, the GPU has a very
large frame buffer, which Nvidia calls local RAM, on which application developers can store their data; the
local RAM is further subdivided into read-write global memory, read-only constant memory, and read-only
texture memory. There is also a small shared memory and some L1 cache that is local to each CUDA core,
and an L2 cache that all SMPs on the GPU device share. Figure 2 illustrates the memory hierarchy in CUDA
GPU devices based on the Nvidia Fermi architecture. Carefully managing these different types of memory
is important, as the latencies experienced when a thread reads from or writes to memory depends on that
memory’s proximity to the CUDA core running the thread. In the extreme case of fetching data from the
host device’s memory, these data must travel along the PCIe bus to get to the GPU device, thus incurring
extremely high latencies and throughputs that are an order of magnitude or more slower than fetching data
from memory on the device. According to Nvidia’s documentation [30], access to local RAM requires 200 –
300 clock cycles, while access to on-chip memory (registers, shared memory, L1 cache) requires only one
clock cycle. Thus, when reading blocks from (or writing blocks to) local RAM or memory on the host device,
it is imperative to use a coalesced access pattern, wherein the blocks occupy consecutive memory addresses;



this allows CUDA to batch many small transfers into a single larger transfer. To facilitate effective use
of shared memory, cache, and local RAM, CUDA-enabled programming languages such as ‘C for CUDA’
(see below) include new variable-type qualifiers (__device__, __constant__, and __shared__),
allowing programmers to specify where to store the data referenced by a variable.

C for CUDA. Software developers can use CUDA-enabled variants of several industry-standard program-
ming languages to access the virtual instruction set and memory of the parallel computing elements in CUDA
GPUs. The most common CUDA-enabled language, and the one used in this work, is a variant of C with
some additional Nvidia extensions called ‘C for CUDA’. CUDA applications are partitioned into completely
encapsulated GPU kernels with C statements interleaved; the kernels are executed on the GPU and the C
statements on the host CPU. Function-type qualifiers (analogous to the aforementioned variable-type qual-
ifiers) specify where a function should run: the __host__ function-type qualifier specifies that the host
device both invokes and runs the function; the __global__ function-type qualifier specifies that func-
tion is a kernel, meaning that the host device invokes the function, but it runs on the GPU device; and the
__device__ function-type qualifier specifies that code on the GPU device invokes the function and the
function runs on the GPU. CUDA imposes a two-tier hierarchical structure on its threads, which the ap-
plication developer specifies using a new <<<· · · , · · ·>>> syntax; groups of threads form thread blocks, and
groups of thread blocks form a thread grid. For example, an invocation of the form kernel<<<1, N>>>(· · · );
executes kernelN times in parallel by N different threads, where each of these threads has a unique thread
ID that is accessible within the kernel through the built-in threadIdx variable. Threads within a block
always run on a single CUDA core, which ensures that synchronization and cooperation between threads
within a block is inexpensive, whereas different thread blocks may run on different MPs and therefore run
independently. This design simplifies scaling, since it enables GPUs with more SMPs to process more blocks
in parallel without requiring changes to the program or kernel configuration. Nvidia’s nvcc compiler trans-
lates C for CUDA device source code into device-independent PTX code.

The PTX ISA. PTX is a device-independent pseudo-assembly language for CUDA GPU devices. It pro-
vides a means for software developers to make fine-grained optimizations to their code before the ptxas
compiler converts it into the final device-specific binary file, which is later loaded and executed on the
GPU. PTX exposes several useful instructions that the nvcc compiler fails to utilize; most relevant to our
implementation of modular multiplication are the instructions for add-with-carry-in and optional carry-out
(ADDC{.cc}), subtract-with-borrow-in and optional borrow-out (SUBC{.cc}), and the fused integer multiply-
and-add instruction (MAD{.hi, .lo, .wide}). The latter instruction enables our implementation to multiply
two 32-bit unsigned integers, and then add a third 64-bit integer, placing the full 64-bit result in a 64-bit
register. The PTX ISA also gives developers some control over the allocation and use of registers, which is
helpful in minimizing unnecessary copying of register values when the input to one instruction is the output
of some earlier instruction.

4 Arbitrary-precision modular multiplication and parallel rho on GPUs

Montgomery multiplication. Our implementation of arbitrary-precision modular multiplication uses the
well-known Montgomery multiplication and reduction techniques [26]. We briefly recall how ordinary
Montgomery multiplication and reduction work, before discussing the coarsely-integrated operand scan-
ning (CIOS) algorithm for modular Montgomery multiplication, which is the variant that we found to give
the best performance in our CUDA implementation.

LetN be a fixed, odd k-bit integer, letR = 2k (so 2k−1 < N < 2k andR > N with gcd(N,R) = 1) and
let x and y be two integers in the range [0, N − 1]. Montgomery multiplication allows for the computation



of xy mod N without explicitly carrying out the costly classical modular reduction step. To do this, the
multiplicands x and y must first be “Montgomerized” to N -residues: x̃ = xR mod N and ỹ = yR mod N .
The Montgomery multiplication algorithm computes the N -residue z̃ of z = xy from x̃ and ỹ, which turns
out to be much faster than computing xy mod N directly from x and y (because modular reduction and
division by R = 2k in binary reduces to truncation and rightward bit-shifts). Define R′ (= R−1 mod N )
and N ′ to be integers that satisfy Bézout’s identity [20, §1.2], R · R′ + N ·N ′ = 1; these values are easily
computed with the extended Euclidean algorithm [25, §2.4]. The Montgomery product of x̃ and ỹ is

z̃ = x̃ỹR′ mod N

= (xR)(yR)R−1 mod N

= (xy)R mod N.

The cost savings come from the observation that one can evaluate the above expression using the following
procedure. Compute t = x̃ỹ, then u = (t+ (tN ′ mod R)N)/R; if u > N then return u−N , else return u.
The desired product z is then obtained by computing z = z̃R′ mod N . Note that the Montgomery method
incurs some overhead in computing R′ and N ′, and that conversion to and from N -residues each require a
reduction modulo N . However, if an algorithm computes many modular multiplications with respect to the
same modulus to produce only a small set of outputs (such as modular exponentiation, or — in our case —
the iterative collision search in parallel rho), the more efficient Montgomery multiplication step results in
significant cost savings.

Coarsely-integrated operand scanning. Several alternative algorithms exist for computing the Mont-
gomery multiplication step. In our implementation, we use the coarsely-integrated operand scanning (CIOS)
method due to Koç et al. [21]. The algorithm is integrated because it alternates between multiplication and
reduction steps in the computation (that is, it integrates the two procedures into one). The coarsely- prefix
refers to the frequency with which the algorithm alternates between the two steps; CIOS alternates after
processing an array of words, which is in contrast to a finely-integrated method, which alternates after pro-
cessing a single word. Finally, operand scanning refers to the fact that the outer loop in the algorithm is over
the words of the operands (an alternative approach is product scanning, wherein the outer loop is over the
words of the product itself). The reader should consult Koç et al.’s paper [21, §5] for full details of the CIOS
algorithm.

Interestingly, Bernstein et al. report that “schoolbook” (Montgomery) multiplication gave the best per-
formance in their CUDA implementation of 192-bit modular multiplication [5]; however, our experiments
indicate that the CIOS algorithm gives superior performance. This is likely due to its smaller auxiliary stor-
age requirements (the integrated nature of the CIOS method means that it requires just s+2 words of auxiliary
storage for an s-word modulus, contrasted with 2s+ 2 words for the schoolbook method; this enables more
threads to run in parallel on the GPU without exhausting the register pool). Neves and Araujo [28] suggest
that the finely-integrated product scanning (FIPS) Montgomery multiplication method (also from Koç et
al. [21]) yields better performance on GPUs than CIOS does, since each word of the final product can be
calculated individually in parallel (whereas the long carry chains in CIOS can make instruction-level paral-
lelism difficult). However, as Bernstein et al. have pointed out [5], using a single thread to compute an entire
s-word multiplication leads to improved compute-to-memory-access ratios and eliminates synchronization
overhead, thus resulting in better overall performance.

Implementing CIOS with CUDA and PTX. Our implementation of CIOS Montgomery multiplication
follows the algorithm given by Koç et al. in §5 of their paper almost exactly, including the suggested im-
provement for integrating the shifting into the reduction. Our initial implementation looked much like the
pseudocode in that paper; however, its performance was underwhelming, and a mysterious bug caused it to



// x <- x - y; x and y are both WORDS words long
__device__ void _sub(uint32_t *x, const uint32_t *y)
{

asm("sub.cc.u32 %0, %1, %2;"
: "=r"(x[0]) : "r"(x[0]), "r"(y[0]));

for (int i = 1; i < WORDS; i++)
{

asm("subc.cc.u32 %0, %1, %2;"
: "=r"(x[i]) : "r"(x[i]), "r"(y[i]));

}
asm("subc.u32 %0, %1, %2;"

: "=r"(x[WORDS]) : "r"(x[WORDS]), "r"(y[WORDS]));
}

Figure 3: PTX-based implementation of arbitrary-precision subtraction.

// return x * y + c
static inline __device__ uint64_t mad_u32(

const uint32_t x, const uint32_t y, const uint64_t c)
{

uint64_t out;
asm("mad.wide.u32 %0, %1, %2, %3;"

: "=l"(out) : "r"(x), "r"(y), "l"(c));
return out;

}

Figure 4: PTX-based implementation of fused multiply-and-add.

produce random results in some invocations. (Rather frustratingly, the exact same code always succeeded
when we ran it in the now deprecated CUDA device emulator.) Eventually, we traced the root of the problem
to our use of memset to zero the auxiliary array; a race condition was occurring wherein subsequent lines
of code sometimes used that memory before the GPU had finished zeroing it. To avoid this, we factored the
first iteration out of the outer CIOS loop and modified it to work regardless of the state of the auxiliary array.
This modification had the fringe benefit of making the code slightly faster (by entirely avoiding the call to
memset and several unnecessary additions of 0). Likewise, we factored the last iteration of the outer CIOS
loop to place the result directly into the return value, thus avoiding an unnecessary copy at the end of the
algorithm.

By far the greatest performance gains occurred when we replaced arithmetic that used standard C-like
syntax with inline PTX assembly. For example, rewriting our arbitrary-precision subtraction code to use
the subtract-with-borrow-in and optional borrow-out PTX instruction shaved several nanoseconds off the
average execution time of each modular multiplication. Figure 3 shows the optimized arbitrary-precision
subtraction function; note that in our final implementation, the for loop is unrolled to save a few more
clock cycles. Similarly, we used PTX’s fused multiply-and-add instruction to get significant speedups in the
inner CIOS loops (see Figure 4).

Manual loop unrolling proved to be another crucial optimization; at first glance, this optimization appears
to be somewhat incompatible with implementing arbitrary-precision arithmetic. We solved this by writing a
simple Perl script that generates completely unrolled PTX assembly for a given modulus size, which we then
link into the binary at compile time. The output of the Perl script also operates entirely on registers instead



of arrays, which is much faster in CUDA, and not possible using an ordinary for loop.

Parallel rho with GPUs. We leverage our arbitrary-precision modular multiplication code to implement
the parallel rho method. We run the “server thread” on the CPU and each of the “client threads” on one
of two Nvidia Tesla M2050 GPU cards (cf. §2). Using Nvidia’s CUDA Occupancy Calculator6 and some
experimentation, we found that launching each kernel with 16 warps = 512 threads per thread block and 50
total thread blocks per card (which is 25,600 threads per thread grid) provides reasonably good occupancy
when our implementation is run to solve discrete logarithms with a 768-bit modulus on our Tesla M2050
cards.

Because there is no lightweight way to interrupt a kernel once it is invoked, we instead have each thread
perform some fixed number of iterations before it returns; in particular, each of the 25,600 threads performs
1000 iterations. For the iteration function, we use a “Montgomerized” version of Pollard’s original iteration
function (Equation (1)), but we note that our use of the iteration function differs somewhat from its regular
usage in van Oorschot and Wiener’s parallel rho method. When a client thread encounters a distinguished
point, it simply outputs the triple (ai, bi, g

aihbi) to the server thread on the host and then continues iterating
from that element rather than starting over from a new random group element. We do this to avoid having to
initialize a new random element from the server between invocations, and to avoid having all of the threads
in the same warp stall for the remainder of the current kernel invocation.7 If the server does not receive any
collisions during a kernel invocation, it simply relaunches the kernel without having to reinitialize or modify
any memory on the GPU, and the threads continue iterating from where they left off. This keeps overhead
low, but it also means that some client threads could get caught in cycles that do not contain any distinguished
points (using a cycle-finding algorithm to detect this would be detrimental to overall performance). However,
the expected cycle size is about

√
n, where n is the order of the group G; thus, if the frequency F of

distinguished points is such that F � 1√
n

, then the probability that this happens is low enough that we
can safely ignore it. We define our distinguished points to be elements of x ∈ G such that the binary
representation of the N -residue of x (i.e., of the Montgomery representation of x) has at least ten trailing
zeros, so that about one in every 1024 iterations yields a distinguished point. Since each thread performs
1000 iterations per invocation, the server thread receives about 214.6 distinguished points — or one per client
thread — each time it invokes the kernel. In the case that n ≤ 220 (so that 1

1024 �
1√
n

does not hold), we
change the definition of distinguished points to make them more numerous. In each kernel invocation, the
client threads perform a combined total of about 224.6 multiplications; thus, for n up to about 250 a single
kernel invocation usually suffices to solve the discrete logarithm.

5 Performance evaluation

For our performance benchmarks, we used a server running an Intel Xeon E5620 quad core processor
(2.4 GHz) and 2×4 GB of DDR3-1333 RAM, which is equipped with 2×Tesla M2050 GPU cards. Table 1
below summarizes the per-card performance of our arbitrary-precision modular multiplication implementa-
tion; that is, it displays the number of modular multiplications with a k-bit modulus that our implementation
can compute on a single Tesla M2050 card for various choices of k, as well as the (amortized) time required

6http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
7Of course, this is not the only strategy for efficient handling of distinguished points in a GPU environment. For instance, one

of the anonymous SHARCS 2012 reviewers points out that “[there] are good reasons not to continue walking from a distinguished
point: One can skip all bookkeeping for counting the a and b and instead store only the starting value together with the distinguished
point found. If two points collide the server can redo the computations, this time keeping track of the coefficients. For that to work
each walk should be reasonably short. See Bernstein et al. [4] and Bernstein, Lange and Schwabe [6], for details on how to handle
this in a SIMD environment”.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


to do each modular multiplication. We point out that as k increases, the execution time increases not only be-
cause it naturally takes longer to multiply larger numbers, but also because larger moduli use more registers,
and so each core can compute fewer multiplications in parallel.

Table 1: Number of k-bit modular multiplications per second and (amortized) time re-
quired per k-bit modular multiplication on each Tesla M2050 GPU card, for various k.

Bit length Modmults Number Number Time per trial Amortized time Modmults
of modulus per thread of threads of trials ± std dev per modmult per second

192 100,000 256,000 100 30.538 s± 4 ms 1.19 ns ≈ 840,336,000
256 100,000 256,000 100 50.916 s± 5 ms 1.98 ns ≈ 505,050,000
512 100,000 256,000 100 186.969 s± 4 ms 7.30 ns ≈ 136,986,000
768 100,000 256,000 100 492.6 s± 200 ms 19.24 ns ≈ 51,975,000
1024 100,000 256,000 100 2304.5 s± 300 ms 90.02 ns ≈ 11,108,000

Table 2 shows the average time required to compute a discrete logarithm with a 1536-bit RSA modulus
N = pq such that p − 1 and q − 1 are both 768-bit B-smooth integers, for various choices of B. Our
implementation uses the approach of Pohlig and Hellman [32] to solve the discrete logarithm independently
modulo p and modulo q using the parallel rho method, and then combines the results via the Chinese Re-
mainder Theorem [25, §2.4.3] to get the final discrete logarithm moduloN . In particular, each of the discrete
logarithm computations in Table 2 consists of 2 · d768/lgBe smaller discrete logarithm computations, each
at a cost proportional to

√
B. We therefore expect the total cost of the larger discrete logarithm compu-

tation to be proportional to
√
B/lgB = B0.5−(lg lgB/ lgB). When B ≈ 253, as in Table 2, we have that

lg lgB/ lgB ≈ (lg 53)/53 ≈ 0.108, so that the total running time should be near c ·B0.39 for some constant
of proportionality c.

Figure 5 plots data from Table 2. The exponent on the trend line is slightly less than the expected value of
0.39 because of overhead that is more significant at lower smoothness bounds. One source of overhead is the
Chinese remaindering step that we perform after computing the discrete logarithm modulo p and modulo q.
Another source of overhead comes from processing “remainder” submoduli of p− 1 and q − 1: to generate
N we choose all but one prime factor of p − 1 and q − 1 to be kB bits long, and the last prime factor is
about 768 mod kB bits. Since our implementation is not optimized for these smaller submoduli, they tend
to introduce some additional, nearly constant overhead to the computation time.



Table 2: Time to compute discrete logarithms modulo a productN = pq of two 768-bit
primes, such that ϕ(N) is B-smooth, for various choices of B. The discrete logarithm
is solved independently modulo p and q using Pohlig-Hellman [32] and parallel rho,
and the results are combined via the Chinese Remainder Theorem [25, §2.4.3]. The
runtime reported in the final column is the time required to compute all three steps.

Bit length Smoothness Number Time to compute
of modulus of group order of trials discrete logarithm

1536 = 2× 768 248 100 23 s ± 1 s
1536 = 2× 768 250 100 32 s ± 2 s
1536 = 2× 768 251 100 41 s ± 3 s
1536 = 2× 768 252 100 49 s ± 4 s
1536 = 2× 768 253 100 63 s ± 5 s
1536 = 2× 768 254 100 85 s ± 7 s
1536 = 2× 768 255 100 110 s ± 10 s
1536 = 2× 768 256 100 140 s ± 20 s
1536 = 2× 768 258 100 270 s ± 30 s
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Figure 5: Plot of data from Table 2. The exponent on the trend line is slightly less than
0.39 because of overhead that is more significant at lower smoothness bounds.

By extrapolating to B = 280, we see that it should be feasible to solve discrete logarithms in groups
whose order is 280-smooth in approximately 23 hours.

6 Analysis

6.1 Implications to existing cryptosystems

The idea of exploiting the smoothness of a group’s order for attacking cryptosystems whose security relies on
the hardness of factoring or computing discrete logarithms is not new. In fact, many cryptographers advocate
the use of safe primes (primes of the form p = 2q + 1 for another prime q) specifically to avoid such attacks
(since p − 1 = 2q is not B-smooth for any B � p). However, the celebrated elliptic curve factorization
method [23] (ECM) renders these defenses ineffective by considering random elliptic curves over Zp, which,
by Hasse’s theorem [38, §V], have orders that are (essentially randomly) distributed between p + 1 − 2

√
p

and p+ 1 + 2
√
p. Thus, one can argue that, due to ECM, explicitly choosing safe primes is not helpful, since



to ensure security we must already assume that p − 1 is non-smooth for a random prime p. Pomerance and
Shparlinski [36] study the distribution of smooth integers, and derive rigorous upper bounds on the number
of k-bit prime numbers p for which p− 1 is smooth or has a large smooth factor. Their findings suggest that
a randomly selected, cryptographically large number is not “sufficiently smooth” to make smoothness-based
attacks feasible.

We point out, however, that a bad actor could choose the modulus for a discrete-logarithm-based cryp-
tosystem with malice, inserting a trapdoor for his own use. Our experiments in §5 indicate that computing
discrete logarithms in groups of B-smooth order, for B up to at least ≈ 280, is entirely realistic with under
24 hours of computation on readily available commodity hardware. For a prime modulus N such that N − 1
is 280-smooth, one could use ECM (or some other related technique) to factor N − 1 and thus learn about its
insecurity (although this would require substantial computational effort on the part of the would-be victim).
On the other hand, detecting insecure composite moduliN is not so simple, since even determining the value
of ϕ(N) is equivalent to factoring N [25, §8.2.2]. Our analysis in the next subsection suggests that the mas-
sive parallelism afforded by GPUs only helps to widen the gap between the feasibility and detectability of
such attacks. Fortunately, most cryptosystems that base their security on the difficulty of computing discrete
logarithms work over prime moduli; however, below we point out a concrete — and realistic — attack on
zero-knowledge range proofs, which uses a difficult-to-detect composite modulus with smooth totient.

An attack on zero-knowledge ‘range proofs’. At Eurocrypt 2000, Boudot proposed a novel zero-know-
ledge proof that allows a prover to convince a verifier that a committed value is in a specific interval [9].
Boudot’s range proof relies on Lagrange’s four-square theorem [37], which states that an integer can be
expressed as a sum of (at most) four squares if and only if it is nonnegative. Suppose that a prover wishes to
convince a verifier that a commitment, say C = gx mod p, is to a value x in the interval [a, b]. To do this, the
prover and verifier each compute Ca = C/ga = gx−a mod p and Cb = gb/C = gb−x mod p, and then the
prover engages the verifier in a zero-knowledge proof of knowledge of two tuples of integers (c, d, e, f) and
(h, i, j, k) such that Ca = gc

2+d2+e2+f2 mod p and Cb = gh
2+i2+j2+k2 mod p. Of course, for soundness

the proof assumes that the prover does not know the group order, since otherwise the prover could simply
find, say, (c, d, e, f) such that c2 + d2 + e2 + f2 = x − a + ϕ(p) and thereby fool the prover. Therefore,
when p is prime (which it usually is), the verifier chooses a composite modulus N for which the prover does
not know the factorization, then the prover commits to x modulo N and proves in zero knowledge that this
new commitment is to the same x as the original commitment. Finally, the prover and verifier do the above
range proof using the commitment modulo N . If the verifier chooses a modulus N with smooth totient (thus
violating one of the assumptions needed to prove computational zero-knowledge), then when the prover
commits to his secret x in the group modulo N , the verifier can compute the discrete logarithm to learn x.8

6.2 Trapdoor discrete logarithm groups

In earlier work [18], we discussed using a CPU-based implementation of parallel rho to construct trap-
door discrete logarithm groups; that is, groups in which computing discrete logarithms is easy for anyone
in possession of a special trapdoor key, but cryptographically hard for everybody else. The GPU-based
implementation of parallel rho that we consider in this work allows for the same construction, but with a
considerably improved margin of security.

Construction. The idea behind the trapdoor discrete logarithm group construction is to work in the mul-
tiplicative group of units modulo a kN -bit RSA modulus N = pq such that p ≈ q, and both p − 1 and

8Of course, one can thwart this attack by having the verifier prove to the prover that the composite modulus is the product of two
safe primes, for example by using the technique of Camenisch and Michels [12].



q − 1 are products of distinct kB-bit primes; here kN and kB are carefully selected parameters. The public
key is N and the private (trapdoor) key is the factorization of ϕ(N) into kB-bit primes. Computing discrete
logarithms with knowledge of the trapdoor key requires Θ

(
kN
kB
· 2kB/2

)
highly parallelizable work, whereas

the most efficient way to compute discrete logarithms without knowledge of the trapdoor key seems to be
factoring N into p and q, and then factoring p − 1 and q − 1 to recover the trapdoor key. In our original
application [18], we actually wanted trapdoor discrete logarithm groups such that computing the discrete
logarithm with the trapdoor key is tunably costly, but feasible; other applications might wish to set the cost
as low as possible subject to the construction staying secure.

Security analysis. Using the parallel rho method, the expected number of kN -bit modular multiplications
needed to compute the discrete logarithm in such a trapdoor group is c ·

(
kN
kB

)
· 2kB/2, for some constant of

proportionality c. (Note that these multiplications are almost completely parallelizable.) Given a parallelism
factor of Ψ cores, this takes about

kN
kB
· c · 2

kB/2

Ψ · µ
seconds, (2)

where µ is the number of multiplications modulo an (kN/2)-bit modulus that are computable per core-
second. Thus, to tune the parameters such that discrete logarithm computations require a specific time Γ on
average, we solve for kB in the expression

2kB/2

kB
≈ Γ · µ ·Ψ

kN · c
. (3)

Through experimentation, we observe that it takes the “progressively increase B” variant of Pollard’s
p − 1 method at least about 3

5 · 2
kB modular multiplications with a kN -bit modulus to factor N . (Note that

this is fewer multiplications than the estimate given in §2, since we only need to consider those primes q
such that 2kB < q < 2kB+1, and since we can assume each prime has multiplicity one in ϕ(N), given our
prior knowledge about N .) We stress that — in contrast to the case of general exponentiation, which can
potentially benefit from some parallelism — the adversary must perform these multiplications in a sequential
manner [11]; even with a very large degree of parallelism, only a very small speedup is obtainable.9 It
may be possible to parallelize the “non-progressive” variant of Pollard’s p − 1; however, this variant will
output the product of all prime factors p of N such that p − 1 is B-smooth, which in the trapdoor discrete
logarithm case is just N itself. Therefore, when kB � 85, an adversary requires about 3

5 ·
2kB
µ seconds to

factor N . We ran some experiments on an Intel Q9550 quad core CPU (2.83 GHz) that indicate a value of
µ = 385,000 mults/second on that device (which has considerably faster individual cores than our Tesla machine
does). Thus, setting kB as low as 55 yields over 1500 years of (non-parallelizable) wall-clock time to factor
N using the Pollard p − 1 method on this CPU, while requiring less than two minutes to compute trapdoor
discrete logarithms with our two M2050 cards.

Maurer and Yacobi [24, §4] point out that, since the cost of factoring increases with 2kB , while the cost of
computing discrete logarithms increases with

√
2kB , faster cores and more parallelism only help to increase

security. In particular, if µ and Ψ increase by a factor f and g, respectively, then we can revise the parameters
such that security increases by a factor of fg2.

9Other factoring algorithms, such as ECM [23] or the quadratic sieve algorithm (QS) [35], are highly parallelizable and can
factor a general modulus with sublinear asymptotic complexity; however, the linear cost of Pollard’s p − 1 factoring algorithm is
by far the most efficient method for factoring N , given its special form and our parameter selection. In other words, while both of
the aforementioned algorithms have superior asymptotic complexity to Pollard’s p− 1 factoring algorithm (depending on how one
asymptotically relates kB and kN ), the actual position on the O(2kB ) cost curve in our case is much smaller than the corresponding
position on the cost curves for these asymptotically faster algorithms. For reference, factoring a 1536-bit RSA modulus using more
efficient algorithms requires about 285 (parallelizable) work; thus, the cost curves intersect when Ψ · 2kB ≈ 285 and Pollard’s p− 1
algorithm ceases to be most efficient for larger values of Ψ · 2kB [22].



Zero-knowledge proofs of costliness. Using a straightforward generalization of the zero-knowledge proof
that a number is a product of two safe primes, due to Camenisch and Michels [12], one can prove in zero-
knowledge that the prime factors q of ϕ(N) each satisfy 2kB < q < 2kB+1. Given some assumptions about
available computing power, Equation (2) lets us estimate how long an average trapdoor discrete logarithm
computation takes. While the validity of this proof relies on assumptions about the available computational
capacity, it does give a reliable estimate of the computational — and thus economic — cost of being able
to compute discrete logarithms, which is useful in applications such as partial key escrow [3] or our own
anonymous blacklisting [18].

7 Conclusion

In this paper, we discussed our experiences with using GPUs and Nvidia’s CUDA framework to accel-
erate the computation of discrete logarithms with respect to a special class of moduli. In particular, we
presented our approach to implementing fast, arbitrary-precision modular multiplication on GPUs using
C for CUDA and the PTX instruction set architecture, and then described how we were able to leverage
this modular multiplication to implement a parallel version of Pollard’s rho algorithm. We also exam-
ined the implications to existing cryptosystems whose security is based on the presumed intractability of
computing discrete logarithms, and pointed out that efficient implementations of Pollard’s rho for groups
with smooth order enables the construction of cryptographically secure trapdoor discrete logarithm groups.
All of our source code is open source and is freely available online from the CrySP group’s website at
http://crysp.uwaterloo.ca/software/.
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