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Abstract. This paper examines “batch zero-knowledge” protocols for
communication- and computation-efficient proofs of propositions com-
posed of many simple predicates. We focus specifically on batch pro-
tocols that use Cramer, Damg̊ard, and Schoenmakers’ proofs of partial
knowledge framework (Crypto 1994) to prove propositions that may be
true even when some of their input predicates are false. Our main re-
sult is a novel system for batch zero-knowledge arguments of knowledge
and equality of k-out-of-n discrete logarithms. Along the way, we pro-
pose the first general definition for batch zero-knowledge proofs and we
revisit Peng and Bao’s batch zero-knowledge proofs of knowledge and
equality of one-out-of-n discrete logarithms (Inscrypt 2008). Our anal-
ysis of the latter protocol uncovers a critical flaw in the security proof,
and we present a practical lattice-based attack to exploit it.

Keywords: Batch proof and verification, zero-knowledge, cryptanalysis,
lattice-based attacks, efficiency.

1 Introduction

An interactive zero-knowledge proof is a conversation between two mutually dis-
trusting parties—a prover and a verifier—in which the prover tries to convince
the verifier that some proposition is true. The prover holds evidence (e.g., an
NP witness) but is unwilling to reveal it to the verifier; the verifier, conversely, is
skeptical of the prover and needs convincing. What makes a zero-knowledge proof
special, therefore, is how much extra information the verifier learns: in a zero-
knowledge proof, the verifier learns nothing beyond the veracity of the prover’s
claim. Zero-knowledge proofs have had profound implications for cryptography
since Goldwasser, Micali, and Rackoff introduced them back in 1985 [20]; indeed,
they are integral to many cryptographic protocols in the literature ranging from
end-to-end verifiable voting schemes [11,25], through to anonymous blacklisting
and reputation systems [2,3,33], protocols for priced symmetric private informa-
tion retrieval [24], threshold ring signatures [34], verifiable mix networks [21,31],
and cryptographic auctions [9], among others.

� An extended version of this paper is available [23].
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Alas, zero-knowledge does not come free. Each application above gives rise to
at least one proposition whose “fan-in” scales with a critical system parameter
(e.g., the global user count [11, 25, 34] or the size of a database [2, 3, 24, 33]).
Take for example a prover and a verifier that share generators g, h and a set of
n pairs of group elements {(gi, hi) = (gxi , hyi) | i ∈ [1, n]

}
from some suitably

chosen group G. The prover wishes to prove a proposition about this entire
batch of predicates, such as “For each i ∈ [1, n], I know xi ∈ Z|G| such that
logg gi = logh hi = xi” or “For some i ∈ [1, n], I know xi ∈ Z|G| such that
logg gi = logh hi = xi”. The first (“AND”) proposition naturally arises, e.g.,
in universally verifiable shuffling protocols for mix networks [31, §2.3], while the
second (“OR”) proposition arises, e.g., in coercion-resistant Internet voting when
each voter must prove that she appears on the election roster [11, §3.5]. In both
cases, the standard zero-knowledge protocols scale linearly with the number of
inputs n: the prover and verifier each compute Θ(n) full-length exponentiations
in G, the verifier sends Θ(1) group elements to the prover, and the prover sends
Θ(n) group elements to the verifier. In 1998, Bellare, Garay, and Rabin [4, 5]
suggested batch verification techniques to reduce verification costs. Their “small
exponents” batch verification test [5, §3.3] reduces the verifier’s computation
cost to just Θ(1) full-length exponentiations and Θ(λn) multiplications in G.
The quantity λ is a soundness parameter ; perhaps λ = 40 or 60 in practice.

Inspired by Bellare et al.’s small-exponent batch test, Peng, Boyd, and Daw-
son [30, §4.1] proposed a four-round batch proof of (complete) knowledge for the
above “AND” proposition. The prover and verifier each compute just Θ(1) full-
length exponentiations and Θ(λn) multiplications in G, the prover sends Θ(1)
group elements to the verifier, and the verifier sends Θ(1) group elements and
Θ(λn) additional bits to the prover. More recently, Peng and Bao [28, §5.1] pro-
posed a four-round batch proof of partial knowledge for the above “OR” propo-
sition, which blends small-exponent batch testing with a special case of Cramer,
Damg̊ard, and Schoenmakers’ proofs of partial knowledge [12]. The prover and
verifier each compute just Θ(1) full-length exponentiations and Θ(λn) multi-
plications in G, and they each send and receive just Θ(1) group elements and
Θ(λn) additional bits. A handful of other papers [8, 15, 21, 24, 29, 31] propose
similar “batch proofs” with similar “sublinear” costs.

Our contributions.
1. We propose a novel system for batch zero-knowledge arguments of knowledge
and equality of k-out-of-n discrete logarithms for fixed k ∈ [1, n]. As special
cases, we obtain batch “AND” proofs (n-out-of-n) and batch “OR” proofs (one-
out-of-n). Our protocol has similar costs to the protocols of Peng et al. [30, §4.1]
and of Peng and Bao [28, §5.1].

2. We present a practical, lattice-based attack on the soundness of Peng and
Bao’s protocol for batch zero-knowledge proofs of knowledge and equality of
one-out-of-n pairs of discrete logatarithms. We provide a fix that uses all-but-k
mercurial commitments [22], a variant of mercurial vector commitments [10]
with a strengthened binding property.
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3. We propose formal definitions for batch zero-knowledge proofs and proofs
of knowledge. Prior treatments of batch proofs have been informal and ad
hoc. Our new definitions address this with a conciseness property describing
the asymptotic performance of a “batch” protocol relative to one formed by
sequential composition of corresponding single-instance protocols.

Outline. We examine Peng and Bao’s [28, §5.1] batch “OR” protocol in §2 and
describe a practical attack on its soundness (the full details of which are in the
extended version of this paper [23, Appendix A]). In §3, we discuss using all-
but-k mercurial commitments [22] to repair Peng and Bao’s protocol. In §4, we
propose our formal definitions for batch zero-knowledge proofs and batch zero-
knowledge proofs of knowledge. Our new batch protocol follows in §5. We list
some potential applications in §6 and conclude in §7.

2 Peng and Bao’s Batch Proof Protocol

The following protocol is due to Peng and Bao [28, §5.1]; they call it “batch
ZK proof and verification of 1-out-of-n equality of logarithms”. The protocol
incorporates Bellare et al.’s small-exponent batch testing [5, §3.3] into both the
proof and verification phases of an otherwise standard sigma protocol for proving
knowledge and equality of one-out-of-n pairs of discrete logarithms. Both the
prover P and verifier V know the same two generators g, h of an order-p group
G and a set of n pairs of group elements {(gi, hi) | i ∈ [1, n]}, but only P knows
an index j ∈ [1, n] and exponent xj ∈ Zp

∗ such that logg gj = logh hj = xj . The
goal of the protocol is for P to convince V that she knows such a (j, xj) pair
without revealing any additional information. For ease of notation below, we
define H = [1, n] \ {j} for the (j, xj) pair that honest P is proving knowledge
of. We also introduce a soundness parameter λ ∈ N, which tunes the cost versus
soundness trade off in small-exponent batch testing.

Protocol 1. (Peng&Bao’sBatch Proof of Partial Knowledge [28, §5.1]).
V1: Choose ti ∈R [0, 2λ − 1] for each i ∈ [1, n]. Send (t1, . . . , tn) to P.

P2: Receive (t1, . . . , tn) from V. Choose r ∈R Zp
∗ and ci ∈R [0, 2λ − 1] for each

i ∈ H . Compute a = gr
∏

i∈H
gciti
i and b = hr

∏
i∈H

hciti
i . Send (a, b) to V.

V3: Receive (a, b) from P. Choose c ∈R [0, 2λ − 1] and send it to P.

P4: Receive c from V. Compute cj = c−∑
i∈H

ci mod 2λ and v = r−tjcjxj mod
p. Send (c1, . . . , cn, v) to V.

V5: Receive (c1, . . . , cn, v) from P. Output “true” if and only if a
?

= gv
∏n

i=1
gciti
i ,

b
?

= hv
∏n

i=1
hciti

i , and c
?≡∑n

i=1
ci (mod 2λ), otherwise output “false”.

Some remarks about Protocol 1 are in order. Perhaps surprisingly, we observe
that V speaks before P does. What V sends to P in StepV1 is a list of short expo-
nents for small-exponent batch testing. Step P2 ostensibly forces P to commit to
an index j (such that H = [1, n]\{j}) and to {ci | i ∈ H}; if so, then V choosing
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c ∈R [0, 2λ−1] in StepV3 is equivalent to V choosing the missing cj ∈R [0, 2λ−1]
for P in StepP4, which is exactly what we want for good soundness. It is trivial to
verify that the protocol is complete; i.e., that honest P always convinces honest
V. Theorem 1 in Peng and Bao’s paper [28] states that “Soundness in [the above
protocol] only fails with an overwhelmingly small probability [in the soundness
parameter λ].” Their soundness proof works by computing an upper bound of
1/2λ on the probability that the verification equations hold if logg gj �= logh hj,
given the following two implicit assumptions: 1) P committed to H = [1, n]\ {j}
and to {ci | i ∈ H} in StepP2, and 2) V chose c and (hence, cj) uniformly at
random from [0, 2λ − 1] in StepV3. However, it is easy to see that the pair (a, b)
of “commitments” that P computes and sends to V in StepP2 does not bind her
to using H = [1, n] \ {j}; hence, the first implicit assumption in Peng and Bao’s
soundness proof is not guaranteed to hold when P is dishonest. Dishonest P can
exploit this observation to pass the verification equations even when the claimed
equality of logarithms is false.

We give a high-level description of the attack below; interested readers can
find further details in the extended version of this paper [23, Appendix A].

Overview of the attack. Suppose that P knows several (xj , yj) pairs such that
(gj, hj) = (gxj , hyj ) but xj �≡ yj (mod p) for any of the known pairs. Partition
the interval [1, n] into two sets H and S, where S is a subset of indices for which
P knows the above pair of discrete logarithms and H is a superset of indices for
which she does not. (Note that in some reasonable settings P may know every
such pair.) In Step P2, P computes (a, b) using this new H so that when V sends
c to P in StepV3, P has |S|−1 extra degrees of freedom to compute her response
in StepP4. In particular, to find the missing {cj | j ∈ S} she solves the following
system of two linear equations in k = |S| unknowns:

0 ≡
∑

j∈S

cjtj (xj − yj) (mod p), and (1)

c′ ≡
∑

j∈S

cj (mod 2λ), (2)

where c′ = c−∑
i∈H

ci mod 2λ. Equation (1) implies
∑

j∈S
cjtjxj ≡

∑
j∈S

cjtjyj

(mod p); hence, if P sets v = r−∑
j∈S

cjtjxj mod p in StepP4, then (c1, . . . , cn, v)
will satisfy each verification equation in StepV5. Of course, if P just naively solves
the above system of equations and obtains a solution {cj | j ∈ S} containing
cj′ ≥ 2λ for some j′∈ S, then V may notice that P is cheating. Therefore, what P
really wants to do is find a solution to the above system subject to the additional
restriction that 0 ≤ cj < 2λ for all j ∈ S.

A counting argument suggests that such “suitably small” solutions are plen-
tiful whenever k ·λ is “sufficiently large” compared to lg p.1 If X is an instance

1 Recall that k = |S| is a lower bound on the number of exponent pairs that P knows
and that λ is the soundness parameter. Larger values of λ are supposed to result in
better soundness; however, what we find is just the opposite: larger values of λ only
make suitably small solutions more numerous and easier for P to find.
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of the above system induced by some real interaction between P and honest V,
then we heuristically expect the distribution of solutions of X to be uniform
among all possible 〈cj1 , . . . , cjk〉 ∈ (Zp)k; in particular, we expect the proportion
of solutions that are suitably small to be about (2λ/p)k. Now, only pk−1 of the
〈cj1 , . . . , cjk〉 ∈ (Zp)k can satisfy Equation (1), and of these only about pk−1/2λ

can simultaneously satisfy Equation (2). This leads us to conclude that X has
around (pk−1/2λ) (2λ/p) k = (2λ)k−1/p suitably small solutions. In the extended
version of this paper [23, Appendix A], we discuss how P can find one of these
solutions by solving a short vector search problem in a particular lattice of di-
mension k+3. When k is reasonably small, P can use a standard basis reduction
algorithm, such as Lenstra-Lenstra-Lovász (LLL) [27], to find a suitably small
solution quickly. For example, setting λ = 40 and letting lg p ≈ 160, P only
needs to know about k = 5 exponent pairs to find a suitably small solution, on
average.

3 All-but-k Mercurial Commitments

Our attack on Protocol 1 is possible because P can wait until after she sees the
challenge c in StepP4 to choose k > 1 of the ci. If the “commitment” in StepP2
actually bound P to using H = [1, n] \ {j} and {ci | i ∈ H}, then Peng and
Bao’s upper bound of 1/2λ on the protocol’s soundness error would hold. For
a direct fix, we therefore desire a special commitment that will (i) force P to
commit to all but one component of 〈c1, . . . , cn〉 in Step P2 and (ii) let P specify
an arbitrary value for the missing component—without betraying its position—
when she opens the commitment in StepP4. This, informally, is the binding
and hiding guarantees that all-but-k mercurial commitments [22] provide when
k = 1. More generally, an all-but-k mercurial commitment allows P to commit
to an arbitrary subset of n − k components from a length-n vector so that she
is bound to these n− k components but is still free to choose the k unspecified
components prior to opening. V does not learn which components P chose before
committing and which she chose after committing; V does, however, learn the
total number ‘k’ of non-committed components in the opening.

We refer the reader to Henry and Goldberg’s paper [22] for a more comprehen-
sive exposition of all-but-k mercurial commitments, including formal statements
of the security properties. For our own purposes, we use an abridged notation
that abstracts away certain technical details.

Informal definition. An all-but-k mercurial commitment scheme is a 4-tuple
of probabilistic polynomial-time (PPT) algorithms (ABK-Init, ABK-Commit,
ABK-Open, ABK-Verify) that work as follows:

– ABK-Init outputs a common reference string PK for use in the other proto-
cols.

– ABK-CommitPK outputs commitments to vectors in which some subset of
components is as-of-yet unspecified.
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– ABK-OpenPK opens such commitments to fully specified vectors, explicitly
revealing the number of components k not bound by the commitment.

– ABK-VerifyPK verifies the output of ABK-OpenPK, including the validity
of k.

Repairing Peng and Bao’s protocol. Given secure all-but-k mercurial commit-
ments, it is straightforward to protect Protocol 1 from attacks like the one in
§2. In StepP2, P commits to 〈ci | i ∈ H〉 for H = [1, n] \ {j}. After V sends c
to P in StepV3, P computes the missing cj as usual, then opens the above com-
mitment to 〈c1, . . . , cn〉 as part of StepP4, proving as she does so that she chose
only one of the cj after committing in StepP2. Constructing a simulator and
extractor for this augmented protocol is simple (and we give explicit simulator
and extractor constructions for the generalized version in the extended version
of this paper [23, Appendix B]); furthermore, the augmented protocol is still
intuitively a “batch” protocol provided the all-but-k scheme satisfies certain ef-
ficiency requirements. In §5, we let the parameter k vary and thereby generalize
the repaired Peng-Bao protocol to a system for batch zero-knowledge arguments
of knowledge and equality of k-out-of-n discrete logarithms for any k ∈ [1, n].
Our protocol (including the special case just outlined) appears to be the first
such batch protocol for k �= n.

4 Defining Batch Zero-Knowledge Proofs

Several papers (many of which we listed in the introduction [8,15,21,24,29,31])
propose protocols that implement what their respective authors refer to as
“batch zero-knowledge proofs (of knowledge)”. Regrettably, the community has
no agreed upon definition of what constitutes a “batch” zero-knowledge proof.
Prior works, consequently, justify the terminology using ad hoc arguments that
contrast the communication cost (counted in terms of group elements transfers)
and computation cost (counted in terms of full-length exponentiations) of their
protocols with those of the most “obvious” protocols to implement proofs of
the same propositions. (Peng et al. did suggest one definition for batch zero-
knowledge proofs [30, Definition 1]; however, their definition fails to address
asymptotic communication and computation costs, which we believe to be the
key property differentiating the abovementioned “batch” proofs from their “non-
batch” counterparts.) We therefore offer our own, very general definition for
batch zero-knowledge proofs (of knowledge). We model our new definition after
the standard zero-knowledge definitions (specifically, [18, Definition 3] and [6,
Definition 3.1]), but add a new parameterized conciseness criterion that places
asymptotic restrictions on how the communication and the computation costs
of the interaction scale with respect to the size of the proposition under con-
sideration. In particular, our conciseness criterion characterizes the asymptotic
relationship between the number of predicates under consideration, the sound-
ness (or knowledge) error of the proof, and the communication and computation
cost of the resulting interaction.
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Formal model. We model our prover P and verifier V as a pair of interactive
functions and consider the interaction (Px(y),Vx(z)) that occurs when both func-
tions take x = 〈x1, . . . , xn〉 as common input, P takes y = 〈y1, . . . , yn〉 as private
input, and V takes string z as private auxiliary input. In general, some (possibly
trivial) subset of (xi, yi) pairs satisfy a given witness relation R and z encodes
arbitrary prior knowledge of V, such as a set of transcripts from earlier interac-
tions with P. (The transcript of an interaction (Px(·),Vx(z)), which is denoted
by trP,V(x, z), is the string-valued random variable that records V’s inputs and
all correspondence with P up to the end of an interaction.)

We let ϕR be the function that maps pairs of n-tuples (x, y) as above to n-bit
strings in which the ith bit is 1 if and only if (xi, yi) ∈ R. Intuitively, we are inter-
ested in interactions (Px(y),Vx(z)) that implement zero-knowledge proofs of the
proposition p(x, y) induced by R and a given language L in the following sense:
p(x, y) is true if and only if ϕR(x, y) ∈ L. Note that the pair (L,R) uniquely deter-
mines the proposition p, and vice versa. For ease of notation below, we define the
language of n-tuples induced by (L,R) as LR = {x | ∃ y for which ϕR(x, y) ∈ L}.
We parameterize the lengths of the xi and yi in a given interaction by τ ; in par-
ticular, we assume throughout that the xi are all τ bits long and the yi are all
poly(τ) bits long, where poly(·) is some fixed polynomial. Let T = {({0, 1}τ)n |
τ, n ∈ N≥1} denote set of n-tuples of fixed-length strings.

Example. For propositions p(x, y) asserting knowledge and equality of discrete
logarithms, as in the actual protocols we consider in this paper, R = {(xi, yi) =
((gi, hi), yi) ∈ G

2 × Zp

∣
∣ logg gi = logh hi = yi}. If p(x, y) is the “AND” propo-

sition, then L is the language of strings comprised entirely of 1s; if p(x, y) is
the “OR” proposition, then L is the language of strings with nonzero Hamming
weight. For our own k-out-of-n proofs, L is the language of strings with Ham-
ming weight at least k. Note that in general P is proving partial knowledge of
witnesses for R, with the strings in L reflecting which subsets of witnesses P
might actually know.

We now recall the standard notions of a simulator for verifier V, which we
use to formalize what it means for (Px(y),Vx(z)) to be “zero-knowledge”, and
of a knowledge extractor for P, which we use to formalize what it means for
(Px(y),Vx(z)) to be a “proof of knowledge”.

Definition 1. A probabilistic function SV∗ is a simulator for verifier-language
pair (V∗, LR) if the probability ensembles {trP,V∗(x, z)}x∈LR

and {SV∗(x, z)}x∈LR

are (computationally, statistically, or perfectly [17, Definitions 3,4]) indistinguish-
able, where SV∗(x, z) is the string-valued random variable describing the output
of SV∗ on input (x, z).

An oracle machine for P∗ is a function EP∗
that is endowed with rewinding

black box oracle access to P∗. In other words, EP∗
is able to 1) submit arbitrary

challenges to P∗ and get truthful responses in a single time step, and 2) “rewind”
P∗ to a previous state to get several responses for the same input and random
coin flips but different challenges. (Note that EP∗

is generally not privy to P∗’s
inputs or internal state.)
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Definition 2. Let κ : T → [0, 1] and let q(x) denote the probability that V
outputs “true” in (P∗

x (y),Vx(z)). An oracle machine EP∗
is a knowledge extractor

(with knowledge error κ(·)) for the prover-language pair (P∗, LR) if there exists
a positive polynomial g(·) such that, for all n-tuples x ∈ LR, if q(x) ≥ κ(x)
then, with probability at least q(x)−κ(x)

g(|x|) , EP∗
(x) outputs an n-tuple y′ for which

ϕR(x, y
′) ∈ L.

Given the above definitions, we formally define what it means for a pair of in-
teractive functions to implement a system of batch zero-knowledge proofs or a
system of batch zero-knowledge proofs of knowledge for the language-relation pair
(L,R). What sets our Definition 3 apart from the standard zero-knowledge defi-
nitions is that we include an explicit conciseness condition, which characterizes
the cost of proving ϕR((x1, . . . , xn), (y1, . . . , yn)) ∈ L in terms of the cost of
proving (x1, y1) ∈ R.

For example, consider an interactive protocol A between P and V in which, on
common input x0 ∈ {0, 1}τ , P convinces V that there exists (or, perhaps, that it
“knows”) some y0 such that (x0, y0) ∈ R. Let a0(τ) and a1(τ) respectively denote
the computation cost (for both P and V) and the bidirectional communication
cost of A. Now, consider a second interactive protocol B between P and V in
which, on common input x ∈ ({0, 1}τ)n, P convinces V that there exists (or it
“knows”) some y such that ϕR(x, y) ∈ L. Let b0(τ, n) and b1(τ, n) respectively
denote the computation cost (for both P and V) and the bidirectional commu-
nication cost of B. For a fixed pair of constants α, β ∈ [0, 1], we say that B is
(α, β)-concise if there exists a constant δ > 0 such that, for all ε > 0, we have

b0(τ, n) ∈ O(nαa0(τ) + nβ+εã0(τ)) for some ã0(τ) ∈ o(a0(τ)
1−δ),

and

b1(τ, n) ∈ O(nαa1(τ) + nβ+εã1(τ)) for some ã1(τ) ∈ o(a1(τ)
1−δ).

(That is, the computation cost and communication cost of B grow no faster
than nα times the corresponding cost of A plus at most about nβ times some
function that grows at least polynomially slower than the corresponding cost of
A as τ grows large. The ε and δ factors are present so that we may ignore the
contribution of polylogarithmic terms.) Recalling that α, β ∈ [0, 1], we call B a
batch proof (of knowledge) for (L,R) if it is (α, β)-concise for any α < 1, or, very
roughly, if the cost of the protocol grows slower than n times the cost of A as
we let both n and τ tend to infinity.

Example.

1. Consider Peng et al.’s protocol for proofs of complete knowledge [30, §4.1], our
repaired version of Peng and Bao’s protocol in §3 for proofs of partial knowledge,
and the forthcoming protocol in §5 for proofs of partial knowledge. In each, we
find that a0(τ) ∈ Ω(τ2 lg2 τ) and a1(τ) ∈ Ω(τ) while, for all ε > 0 and for
any soundness parameter λ ∈ N, we find that b0(τ, n) ∈ O(a0(τ) +n1+ελ τ lg2 τ)
and b1(τ, n) ∈ O(a1(τ) + nλ).2 For any fixed δ < 1/2, we have that ã0(τ) =

2 We assume here that multiplication in G requires O(τ lg τ lg lg τ) ∈ O(τ lg2 τ) bit
operations using the Fast Fourier Transform (FFT) [14].
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λ τ lg2 τ ∈ o(a0(τ)
1−δ) and ã1(τ) = λ ∈ o(a1(τ)

1−δ), and therefore each of these
protocols is (0, 1)-concise; moreover, since α = 0 < 1, each protocol satisfies our
conciseness criterion for a batch proof of knowledge.
2. Brands, Demuynck, and De Decker describe a protocol [8, §3.4] to prove that
a given commitment commits to a different value than every other commitment
on a list. As in the previous example, we find that a0(τ) ∈ Ω(τ2 lg2 τ) and
a1(τ) ∈ Ω(τ) but, in this case, we have b0(τ, n) ∈ O(n1/2τ2 lg2 τ) and b1(τ, n) ∈
O(n1/2τ). Thus, letting δ = 1/2 and letting ã0(τ) and ã1(τ) be arbitrary constant
functions, we see that Brands et al.’s protocol is ( 1

2 , 0)-concise; moreover, since
α = 1

2
< 1, it satisfies our conciseness criterion for a batch proof.

Definition 3. (System of batch zero-knowledge proofs (of knowledge)).
Let Λ: N → N be a nondecreasing soundness function and let α, β ∈ [0, 1] be
constants such that α < 1. An interactive protocol (Px(y),Vx(z)) is a system
of (α, β,Λ)-batch zero-knowledge proofs for the language-relation pair (L,R) if
there exists a negligible function ε0 : N → R for which (Px(y),Vx(z)) satisfies
each of the following four conditions.

1. Complete: For any n ∈ N and pair (x, y) such that ϕR(x, y) ∈ L, if y is
input to honest P and x is input to P and honest V, then V outputs “true”.

2. (Unconditionally) sound: For every (possibly malicious) prover P∗, τ ∈ N,
n ∈ N, and x ∈ ({0, 1}τ)n \ LR, if P

∗ and honest V receive x as common
input then, with probability at least 1− ε0(Λ(τ)), V outputs “false”.

3. (General) zero-knowledge: For every (possibly malicious) PPT verifier
V∗, there exists a PPT simulator SV∗ for (V∗, LR).

4. (α,β)-concise: If a0(τ) and a1(τ) respectively denote the computation and
communication cost of (Px(y),Vx(z)) when n is fixed as 1, then there ex-
ists some constant δ > 0 and functions ã0(τ) ∈ o(a0(τ)

1−δ) and ã1(τ) ∈
o(a1(τ)

1−δ) such that, for every ε > 0, we have that
a. for every (possibly malicious) PPT verifier V∗, τ ∈ N, and pair (x, y)

such that ϕR(x, y) ∈ L, if y is input to honest P and x is input to P and
V∗, then P runs in O(nαa0(τ)+nβ+εã0(τ)) time and sends O(nαa1(τ)+
nβ+εã1(τ)) bits to V; and

b. for every (possibly malicious) prover P∗, τ ∈ N, and n-tuple x, if x is
input to P∗ and honest V, then V runs in O(nαa0(τ) + nβ+εã0(τ)) time
and sends O(nαa1(τ) + nβ+εã1(τ)) bits to P∗.

If (Px(y),Vx(z)) additionally satisfies the following condition, then it is a system
of (α, β,Λ)-batch zero-knowledge proofs of knowledge for (L,R).

5. (Unconditionally) knowledge extractable: There exists an oracle ma-
chine E and function κ : T → [0, 1] such that, for every (possibly malicious)
prover P∗, EP∗

is an expected PPT knowledge extractor for (P∗, LR) with
knowledge error κ(·) ≤ ε0(Λ(τ)).

We also consider the following two (standard) relaxations of the above definition.
First, if (Px(y),Vx(z)) satisfies Conditions 1, 2, 4 (and 5) as stated above, but it
only satisfies the weaker Condition 3b as stated below (instead of Condition 3),
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then it is a system of honest-verifier (α, β,Λ)-batch zero-knowledge proofs (of
knowledge) for (L,R).

3b. (Honest-verifier) zero-knowledge: There exists a PPT simulator SV for
(V, LR), where V is the honest verifier.

If there exists a negligible function ε1 : N → R for which (Px(y),Vx(z)) satisfies
Conditions 1, 3[b], and 4 as stated above, but only satisfies the weaker Conditions
2b (and 5b) as stated below, then it is a computationally convincing system
of [honest-verifier] (α, β,Λ)-batch zero-knowledge arguments (of knowledge) for
(L,R).

2b. (Computationally) sound: For every (possibly malicious) PPT prover P∗,
there exists a constant τ0 such that, for every τ > τ0 and n ∈ N, if P∗ and
honest V receive x ∈ ({0, 1}τ)n \LR as common input then, with probability
at least 1− ε0(Λ(τ))− ε1(τ), V outputs “false”.

5b. (Computationally) knowledge extractable: There exists an oracle ma-
chine EP∗

and function κ : T → [0, 1] such that, for every (possibly malicious)
PPT prover P∗, there exists a constant τ0 such that, for every τ > τ0 and
n ∈ N, EP∗

is an expected PPT knowledge extractor for (P∗, LR) with knowl-
edge error κ(·) ≤ ε0(Λ(τ)) + ε1(τ).

5 Batch Proof of Knowledge and Equality of k-out-of-n
Pairs of Discrete Logarithms

Our new protocol draws inspiration from the repaired version of Peng and Bao’s
protocol outlined in §3, but it improves on that protocol by letting k vary in the
all-but-k mercurial commitments, which allows us to prove a more general class
of propositions. More precisely, the new protocol generalizes from a system for
proofs of knowledge and equality of one-out-of-n pairs of discrete logarithms to
a system for arguments of knowledge and equality of k-out-of-n pairs of discrete
logarithms for any k ∈ [1, n]. We defer a formal security analysis of the new proto-
col to the extended version of this paper [23, Appendix B] wherein we prove that,
for any fixed k and soundness parameter λ ∈ N, it is a system for honest-verifier
(0, 1,min{τ, λ})-batch zero-knowledge proofs of knowledge (in the sense of Def-
inition 3). The latter analysis uses efficiency characteristics of the underlying
construction for all-but-k mercurial commitments [22]. Using Henry and Gold-
berg’s all-but-k mercurial commitment scheme [22], which is computationally
binding under the n-Strong Diffie-Hellman assumption [7, §3], yields a system
of honest-verifier batch zero-knowledge arguments. We note that in this partic-
ular instantiation, the prover is assumed to be computationally bounded not in
the bit-length τ but in the security parameter for the all-but-k mercurial com-
mitments. Standard tricks from the literature [19] can relax the honest-verifier
assumption at only a small cost to efficiency. Swapping in unconditionally bind-
ing all-but-k mercurial commitments would yield a system of proofs rather than
arguments.
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Table 1. This table compares the communication cost (in bits) and the computation
cost (in τ -bit multiplications) for four different protocols that each implement honest-
verifier zero-knowledge proofs of knowledge and equality of k-out-of-n pairs of discrete
logarithms for some k in a group with τ -bit order. The “Concise” column indicates
the conciseness of the protocol (in the sense of Definition 3); the “Batch?” column
indicates if the protocol satisfies our definition of a batch proof; the “k-out-of-n”
column lists values of k that the protocol supports; the “Sound?” column indicates
if the protocol achieves overwhelming soundness in the soundness parameter λ. Note
that λ = τ in the protocol by Cramer et al.; for the other protocols, typically λ � τ
and λ is fixed as the smallest value yielding a palatable soundness error.

Prot
oc

ol

Com
mun

i-

cat
ion

Com
pu

tat
ion

Con
cis

e

Batc
h?

k-o
ut-

of-
n

So
un

d?

Cramer et al. [12] Θ(τ n) Θ(τ n) (1, 0) ✗ k ∈ [1, n] ✓

Peng-Bao [28] Θ(τ + λn) Θ(τ + λn) (0, 1) ✓ k = 1 ✗

Peng et al. [30] Θ(τ + λn) Θ(τ + λn) (0, 1) ✓ k = n ✓

This work Θ(τ + λn) Θ(τ + λn lg n) (0, 1) ✓ k ∈ [1, n] ✓

Table 1 compares the cost of our protocol and those arising from a naive
application of Cramer et al.’s framework [12], Peng and Bao’s protocol [28], and
Peng et al.’s protocol [30]. The latter three protocols are all systems for proofs of
knowledge; ours is a system for arguments of knowledge. Observe that Peng et
al.’s protocol is both sound and a batch protocol, but it only handles the simple
k = n case, and that Peng and Bao’s protocol is a batch protocol and handles
the interesting k = 1 case, but it is not sound. Cramer et al.’s framework is sound
and handles every k ∈ [1, n], but it is not a batch protocol.

5.1 The Protocol

Suppose that ABK = (ABK-Init,ABK-Commit,ABK-Open,ABK-Verify) is a
secure all-but-k mercurial commitment scheme. Fix a soundness parameter λ ∈ N

and use ABK- to generate a common reference string PK. Protocol 2 imple-
ments a system for batch zero-knowledge proofs or arguments of knowledge and
equality of k-out-of-n pairs of discrete logarithms for any pair of nonnegative
integers (k, n) with k ≤ n and n ≤ n0. In the protocol, we use Vn×k

q to denote
the column-wise n × k rectangular Vandermonde matrix with entries reduced
modulo q:

Vn×k
q =

⎡

⎢⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
1 2 22 · · · 2k

1 3 32 · · · 3k

...
...

...
. . .

...
1 n n2 · · · nk

⎤

⎥⎥
⎥
⎥
⎥
⎦
mod q.

Note that because q is prime with n < q and k ≤ n, every subset of k rows of
Vn×k

q has full rank and thus forms a non-singular (i.e., invertible) square matrix
modulo q. If desired, one could replace Vn×k

q with any other matrix that has this
property when all arithmetic is modulo q.
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The setting for the new protocol is similar to before. Both P and V know the
same two generators g, h of an order-p group G, the above-generated all-but-k
reference string PK, and a set of n ∈ [1, n0] pairs of group elements {(gi, hi) | i ∈
[1, n]}, but only P knows a size-k subset S ⊆ [1, n] of indices and corresponding
set xS = {xj ∈ Zp | j ∈ S} of exponents such that logg gj = logh hj = xj

for all j ∈ S. The goal of the protocol is for P to convince V that she knows
such a (S, xS) pair without revealing any additional information. For ease of
notation below, we let H = [1, n]\S for the (S, xS) pair that honest P is proving
knowledge of.

Intuitively, our k-out-of-n proof replaces the all-but-one mercurial commit-
ment from the repaired Peng-Bao proof with an all-but-k mercurial commitment.
P commits to {ci | i ∈ H} in Step P2, thus assuring V that she can choose at
most k = |S| of the ci after V sends the challenge in StepV3. Rather than chal-
lenge P to produce ci that sum to c modulo q, V challenges P to produce ci
that obey a system of k non-degenerate linear constraints induced by Vn×k

q and
the k free components in 〈c1, . . . , cn〉. V verifies the constraints in StepV5 by
checking if 〈c1, . . . , cn〉 ·Vn×k

q
?≡ 〈c, 0, . . . , 0〉 (mod q); the all-but-k commitment

ensures that P chose all but k of the ci before she received c. This assures V
that c uniquely determined a size-k subset of the ci, although he learns no in-
formation about which subset. From here, P essentially uses Peng et al.’s batch
“AND” proof for the size-k subset she is proving knowledge of, and “simulates”
the proof for the remaining n − k predicates, as in a standard proof of partial
knowledge.

Protocol 2. (Generalized batch proof of partial knowledge).

V1: Choose ti ∈R [0, 2λ − 1] for each i ∈ [1, n]. Send (t1, . . . , tn) to P.

P2: Receive (t1, . . . , tn) from V. Choose r ∈R Zp
∗ and ci ∈R [0, q− 1] for i ∈ H .

Compute a = gr
∏

i∈H
gci ti
i , b = hr

∏
i∈H

hci ti
i , and C ← ABK- PK(〈c1,

. . . , cn〉). Send (a, b, C) to V.

V3: Receive (a, b, C) from P. Choose c ∈R [0, q − 1] and send it to P.

P4: Receive c from V. Solve for c = 〈c1, . . . , cn〉 ∈ Z
n
q such that c · Vn×k

q ≡
〈c, 0, . . . , 0〉 (mod q), then compute v = r −∑

j∈S
cj tj xj mod p and ω ←

ABK- PK(C, k, c). Send (c, v, ω) to V.

V5: Receive (c, v, ω) from P. Output “true” if and only if a
?

= gv
∏n

i=1
gci ti
i , b

?

=

hv
∏n

i=1
hci ti

i , c ·Vn×k
q

?≡ 〈c, 0, . . . , 0〉 (mod q), and ABK- PK(C, c, k, ω) ?

=
“true”; otherwise, output “false”.

As before, some remarks about this protocol are in order. Protocol 2 follows
the same basic recipe as Protocol 1, with V starting the conversation in StepV1
by sending to P a list of short exponents for small-exponent batching. In fact,
one easily sees by inspection that the repaired version of Protocol 1 is just the
special case of Protocol 2 with k fixed to one. (The only difference being that
the former protocol uses q = 2λ−1 since it does not require a prime q to guaran-
tee linearly independent constraints.) Completeness holds trivially by inspection
and constructing a simulator for honest V is equally straightforward. In the ex-
tended version of this paper [23, Appendix B], we prove that using Henry and
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Goldberg’s all-but-k mercurial commitment construction [22] in our protocol
yields a system for honest-verifier (0, 1,min{lg p, λ})-batch zero-knowledge argu-
ments of knowledge of a size-k subset S ⊆ [1, n] of indices and corresponding set
xS = {xj ∈ Zp | j ∈ S} of exponents such that logg gj = logh hj = xj for all
j ∈ S.

6 Applications

In the introduction, we listed the following example applications in which the
need to prove propositions about large batches of predicates naturally arise: cryp-
tographic voting [11, 25], anonymous blacklisting and reputation systems [2, 3],
priced symmetric private information retrieval [24], threshold ring signatures [34],
verifiable mix networks [21, 31], and cryptographic auctions [9]. We now briefly
discuss how our new protocol can directly speed up and extend two such con-
structions from the literature.

Symmetric private information retrieval. Henry, Olumofin, and Goldberg [24]
describe a symmetric variant of Goldberg’s information-theoretic private infor-
mation retrieval protocol [16] that achieves data privacy by having each client
commit to her query using polynomial commitments [26] and then exhibit a zero-
knowledge proof that the committed query is “well formed”. The final step in
their proof—which dominates the computation cost of their enhancements and
contributes considerable communication overhead to the protocol—is a proof of
equality of one-out-of-r pairs of discrete logarithms, where r is the number of
records in the database. The authors suggest small-exponent batch testing to
speed up the verification at the database servers; however, playing the role of
prover in that interaction still accounts for a significant fraction of a client’s
per-query computational expenditure. Simply swapping in our protocol leads to
significant reductions in both the computation overhead and the communication
overhead of their protocol.

Cryptographic voting systems. The JCJ protocol of Juels, Catalano, and Jakob-
sson [25] underlies a number of protocols for coercion-resistant, receipt-free ver-
ifiable Internet voting [1, 11, 35]; indeed, Spycher et al. [32] opine that “[JCJ is]
the only known protocol for remote e-voting that offers individual verifiability
and receipt-freeness simultaneously under somewhat acceptable trust assump-
tions”. The bottleneck operation in JCJ is its vote authorization phase, which
eliminates fake votes and duplicate votes prior to tallying. The computational
cost of both steps grows quadratically in the number of votes cast: JCJ detects
fake votes by having voters attach zero-knowledge proofs (made non-interactive
via the Fiat-Shamir heuristic [13]) that they are on the registered voters roster,
and it detects duplicate votes by employing a pairwise plaintext equivalence test
on each vote. Several papers suggest strategies that can detect duplicate votes
in linear time [1,32,35]; however, eliminating fake votes in linear time appears to
necessitate a weakening the protocol’s security guarantees. In particular, some
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existing schemes have voters prove membership within some smaller anonymity
set rather than the entire roster [11, 32]. Our batch proof of partial knowledge
may help to reduce the cost of this step and thereby allow for significantly larger
anonymity sets; for smaller elections, it might even make the quadratic algorithm
practical.

A second cryptographic operation that frequently arises in end-to-end verifi-
able voting systems is “proofs of re-encryption” of ElGamal ciphertexts: that is,
given two sets of pairs {(gyi ,mi h

yi) | i ∈ [1, n]} and {(gy′
i ,m′

i h
y′
i) | i ∈ [1, n]} of

ElGamal ciphertexts encrypted under public key h = gx, prove that mi = m′
i for

all i ∈ S (where S is a subset of indices suitably defined by the application). Such
proofs work by considering the quotients (mi h

yi)/(m′
i h

y′
i) = (mi/m′

i
)hyi−y′

i and

gyi/gy′
i = gyi−y′

i and noting that logh(mi/m′
i
)hyi−y′

i = logg g
yi−y′

i if and only if
mi = m′

i. Thus, batch proofs of knowledge and equality for k-out-of-n pairs of
discrete logarithms imply batch proofs of re-encryption of k-out-of-n ElGamal
ciphertexts.

7 Conclusion

We have examined “batch zero-knowledge” protocols for communication- and
computation-efficient proofs of propositions composed of many simple predicates.
Our primary contribution is a novel system for batch zero- knowledge arguments
of knowledge and equality of k-out-of-n discrete logarithms for fixed k ∈ [1, n].
We also suggested the first general definitions for batch zero-knowledge proofs and
arguments (of knowledge). Our new definitions introduce a conciseness property
that describes the asymptotic performance of a protocol relative to one formed by
sequential composition of single-instance protocols. Our new argument system
came about when we analyzed and uncovered a critical flaw in the security
proof for Peng and Bao’s [28] batch proofs of knowledge and equality of one-
out-of-n discrete logarithms. A malicious prover can exploit the flaw to cause
unsuspecting verifiers to accept proofs when the claimed equality of logarithms is
false. Fortunately, we showed that the flaw is not fatal: we sketched a fix based
on all-but-k mercurial commitments with k = 1 and then generalized to our
main result by varying k in the repaired protocol. In addition, we illustrated the
usefulness of our new protocol by sketching some example applications where its
adoption could result in noteworthy speedups.
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