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Estimating the influence that individual nodes have on one
another in a Boolean network is essential to predict and
control the system’s dynamical behaviour, for example,
detecting key therapeutic targets to control pathways in
models of biological signalling and regulation. Exact
estimation is generally not possible due to the fact that the
number of configurations that must be considered grows
exponentially with the system size. However, approximate,
scalable methods exist in the literature. These methods can be
divided into two main classes: (i) graph-theoretic methods that
rely on representations of Boolean dynamics into static graphs
and (ii) mean-field approaches that describe average
trajectories of the system but neglect dynamical correlations.
Here, we compare systematically the performance of these
state-of-the-art methods on a large collection of real-world
gene regulatory networks. We find comparable performance
across methods. All methods underestimate the ground truth,
with mean-field approaches having a better recall but a worse
precision than graph-theoretic methods. Computationally
speaking, graph-theoretic methods are faster than mean-field
ones in sparse networks, but are slower in dense networks.
The preference of which method to use, therefore, depends on
a network’s connectivity and the relative importance of recall
versus precision for the specific application at hand.
1. Introduction
Understanding the influence that individual elements have on
other elements in a complex dynamical system is essential for
the prediction and control of the system’s behaviour. Such a
notion of influence is studied broadly on Boolean networks.
Examples include studies concerning perturbations [1–4], causal
inference [5–10] and control [11–14].

Some papers focus on the effects that pinning specific
variables to invariant values has on the rest of the system’s
dynamics without having knowledge of the exact configuration
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that the system is in [7,14–19]. Pinning a set of seed nodes may drive other nodes to deterministic long-
term dynamical states. This set of controlled nodes is named as the domain of influence of the seed set
[15]. The identification of domains of influence is useful in target control, whereby partial knowledge of a
system’s state can be used to infer the state of an uncontrolled, target set of variables, e.g. driving a cancer
cell towards an apoptotic state. Unfortunately, the exact determination of the domain of influence of a
seed set is a computationally infeasible task because of the exponentially large number of
configurations that a Boolean network can assume.

Some approximate methods exist in the literature. These include graph-theoretic models such as the
logical interaction hypergraph (LIH) [5], the expanded network [8] and the dynamics canalization map
(DCM) [9]. The three methods above provide static graphs that represent the dynamics of a Boolean
network. Specifically, the LIH represents a Boolean network as a signed directed hypergraph by
adding signs to each interaction and hyperarcs to represent logical AND relationships. The expanded
network uses composite nodes to represent AND relationships and complementary nodes to represent
variable negation for interactions involving NOT operations (figure 1c). Finally, the DCM is a
threshold network built from the minimized version of Boolean functions using Blake’s canonical
form [20], which uses s-unit nodes to represent both states of each Boolean variable and thresholds
(t-unit nodes) to represent AND and OR relationships present in a node’s redescribed look-up table
(LUT; figure 1d ).

Inference is performed by evaluating the transfer functions that determine a node’s state update,
which may be written as a logical mapping between possible input vectors to the node’s output or as
Boolean expressions (figure 2). Any LUT can be converted to a Boolean expression, and any Boolean
expression can be converted to disjunctive normal form (DNF). In this way, the Boolean expression
can be described only by AND, OR and NOT operators, and the logical satisfaction of any clause
guarantees the entire expression to be true. Klamt et al. [5] use DNF of Boolean functions to infer
propagation of downstream signals based on the perturbation of certain input nodes. Similarly, Wang
et al. use DNF of Boolean functions to infer cascading failures by removing certain nodes in the
network [8]. Alternatively, the Quine–McCluskey Boolean minimization algorithm [21] can be used to
reduce a Boolean expression to its prime implicants [22]. Marques-Pita & Rocha [9] take advantage of
it in a process called schema redescription to remove redundancy from node transfer functions and
infer downstream influence of controlled nodes. This algorithm is also used to reduce transfer
functions to DNF in the expanded network [10,15].

An additional method for the estimation of domains of influence is the individual-based mean-field
approximation (IBMFA) proposed by Parmer et al. [16]. In their work, the IBMFA is used to estimate
the probability of a node’s state given a pinning perturbation of a seed set. Parmer et al. leverage
the IBMFA to optimally identify the minimal sets of nodes able to drive a Boolean network towards
fixed-point attractors. However, their method immediately adapts to the estimation of domains of
influence.

Despite the availability of these different methods, it is unclear which is the best to determine
domains of influence. At the same time, there is a large amount of similarity between the various
methods. All of the graph-theoretic approaches mentioned above, for example, are exact in their
description of the network dynamics; the difference lies only in how transfer functions are
represented. However, the specific representations of the transfer functions are important as they
determine how much inference can be made in estimating a node’s domain of influence.

The goal of the present paper is to fill these gaps of knowledge. We first introduce a framework called
the generalized threshold network (GTN), which allows us to cast the graph-theoretic approaches of [8,9]
in the same formalism, without sacrificing their representation of exact dynamics. Next, we show that a
simple search algorithm on the GTN can be used to estimate the domain of influence of a node; this is
similar to the calculation of the logical domain of influence on the expanded network [15] and the
calculation of pathway modules on the DCM [17]. Finally, we estimate the domain of influence of
nodes using the IBMFA [16]. We test the performance of the various methods on the corpus of
biological signalling and regulatory networks obtained from the Cell Collective repository [23]. We
find that graph representations based on DNF or schema redescription of transfer functions perform
very similarly to one another and very similarly to the IBMFA method. All three methods
underestimate the true domain of influence, but outperform naive methods based on LUT
representations. The IBMFA performs somewhat better at recall of node states found within the
domain of influence when compared with the other methods, but performs worse in terms of
precision. The computational cost of each method also varies; the IBMFA takes longer than the other
methods to run in sparse networks but it runs quicker than the other methods in dense networks.
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Figure 1. Static representations of the dynamics on a Boolean network. (a) We consider a toy example of a Boolean network. A
direct connection indicates that a variable’s state depends on the state of the other variable. In this network for example, the state of
node e depends on the states of nodes d and f. Nodes a and f are instead inputs in this network, in the sense that their state is time
invariant. (b) The transfer functions are represented in logical form for each node based on the states of its neighbours. (c) Expanded
network representation of the Boolean network. Each node of the original network of panel (a) is denoted by its label plus its state.
For example, ‘e-1’ indicates the state σe = 1 of node e; the composite node with label ‘f-1 and d-1’ denotes instead the
simultaneous appearance of the states σf = 1 and σd = 1. In the visualization, nodes representing active states are denoted in
black, nodes representing inactive states are displayed in white, and composite nodes representing AND relationships are
denoted in grey. (d ) Dynamics canalization map representation; s-units representing active nodes are denoted with black circles
and s-units representing inactive nodes are denoted with white circles. T-units representing redescribed schemata are displayed
with grey diamonds. The label appearing in each of the t-units represents the specific value of the threshold that they
represent. T-units with threshold equal to one that represent schemata with no permutation redundancy are left out of the
figure for simplicity. Additionally, self-loops are left out of panels (a), (c) and (d ).
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2. Boolean networks
A Boolean network B is composed of N nodes, with each node i having an associated binary state
variable σi(t) = 0, 1 at time t. Nodes are connected via directed edges, as defined by an adjacency
matrix A with element Aij if node j has a dynamical dependence on node i (figure 1a). The network
can contain self-loops. We consider synchronous update rules, so that time is represented by a
discrete, integer variable. At time t, node i updates its state based on the states of its neighbours N i at
time t− 1 and the transfer function Fi that uniquely maps every possible combination of the input
values to an output state. This map is called the look-up table, or LUT, of node i. Clearly, the transfer
function Fi can also be written as a logical expression; for example, we can use si ¼ sj _ sk to specify
a logical OR dependency of node i on neighbours j and k (figure 1b).

A network’s dynamical configuration at an arbitrary time t is represented by the vector
sðtÞ ¼ ½s1ðtÞ, s2ðtÞ, . . . , sNðtÞ�. Since we consider synchronous update, where all nodes
simultaneously update their state at each time step t, the dynamics of the system is deterministic.
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Figure 2. Representations of transition functions and associated generalized threshold networks. (a) A Boolean network composed of
four nodes. The network contains three input nodes, a, b and c. The logical expression of the transfer function of node d is provided
and converted to disjunctive normal form (DNF). (b) The corresponding generalized threshold network (GTN) of the DNF is displayed as
a graph with 6 nodes and 5 edges. To keep the visualization compact, we display only the portion of the GTN that concerns the
activation of node d. (c) The transition function of node d is shown as a look-up table (LUT). (d ) The GTN representation of the LUT is
displayed as a graph with 9 nodes and 12 edges. Also here, we display only the portion of the GTN that concerns the activation of
node d. (e) The transition function of node d is shown as the two-symbol schema redescription. The wildcard symbol (#) indicates a
node that can have either state value; the position-free symbol (°) denotes that the two indicated state values can switch; that is,
either a or b may be active to ensure that node d is in the active state, while the state of the other input does not matter. ( f ) The
GTN representation of the two-symbol schema redescription is displayed as a graph with 6 nodes and 5 edges. Here too, only the
portion of the GTN that concerns the activation of node d is displayed.
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Also, irrespective of the initial condition sðt ¼ 0Þ, the network is guaranteed to eventually reach an
attractor, either a fixed point or a limit cycle.

In this work, we consider biological signalling and regulatory networks from the Cell Collective
repository [23]. Biological networks are useful case studies to understand node influence in nonlinear
systems as nodes generally have reversible states and transfer functions are heterogeneous, making
analytical approaches difficult.
3. Domain of influence of a seed set
We consider the effect on the system’s dynamics of pinning perturbations consisting of imposing
and keeping invariant the state of a subset of nodes in the Boolean network. We refer to the set of
pinned nodes as the seed set, and we indicate it using the notation X ¼ fði1, ŝi1Þ, ði2, ŝi2Þ, . . . ,
ðijX j, ŝijX j Þg, that is, siðtÞ ¼ ŝi ¼ 0, 1 for all ði, ŝiÞ [ X and for all t≥ 0. Note that, to avoid
contradiction, ði, ŝiÞ [ X implies that ði, 1� ŝiÞ � X . By contrast, the unperturbed nodes are allowed
to change state over time.

If a configuration is sampled at random from the dynamical state space of B at time t given an initial
set of pinned nodes X , each node i has probability P(σi(t) = 1) to be found in the state σi = 1 at time t. We
refer to this as the activation probability of node i at time t [16]. Here, we assume that the state of each
node i is initialized with maximally uncertain probability P(σi(t = 0) = 1) = 1/2 if i � X . If i [ X , instead
PðsiðtÞ ¼ 1Þ ¼ ŝi for t≥ 0. This assumption leaves us with a total of 2N�jX j possible initial configurations,
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each having the same probability to occur due to the imposed condition on the initial state of the N � jX j
nodes that are outside the seed set. After a transient time period, the dynamics started from each of these
configurations settles down into an attractor. As a result, the long-term activation probability of node i
converges to a fixed value or oscillates, depending on the nature of the attractors being averaged over.

For networks with N≤ 10, we calculate the true activation probabilities by brute-force evaluation over
all R ¼ 2N�jX j possible initial configurations; otherwise, we sample R = 100 randomly chosen initial
configurations to obtain an estimate of the ground-truth activation probabilities. The average state
value of a node i at time t based on the R sampled initial configurations is computed as

siðtÞ ¼ 1
R

XR

r¼1

s
ðrÞ
i ðtÞ, ð3:1Þ

where s
ðrÞ
i ðtÞ is the state of node i in the rth sampled configuration at time t.

Given the perturbation of the seed set X , the state of another variable i � X in the network may
eventually become certain, i.e. P(σi(t) = 1) = 0, 1 for all t≥ T. All nodes with deterministic long-term
behaviour compose the domain of influence of the seed set X , i.e.

DðXÞ ¼ fði, siðTÞÞji [ B ^ siðTÞ ¼ 0, 1g, ð3:2Þ
where T is a finite number of iterations after which the network dynamics is not expected to change, and
that can be therefore considered as representative for the long-term dynamics of the network. As in [16],
we use T = 10 to estimate the long-term states of the nodes. This value is in fact sufficient to reach a
stationary state under synchronous updating for the set of networks under consideration in this paper.
Note that the set D automatically includes all elements of the seed set X .
4. Approximating the domain of influence of a seed set
Determining the ground-truth domain of influence of the seed set X is generally infeasible, as the task
requires to test if nodes reach long-term invariant states for all possible 2N�jX j initial configurations.
There are, however, several approaches that can be used to approximate the ground-truth solution in
a computationally feasible manner. Below, we provide a brief description of the various approximate
methods considered in this paper.

4.1. The individual-based mean-field approximation
The IBMFA introduced by Parmer et al. [16] provides a computationally feasible algorithm to
approximate the activation probability of individual nodes in Boolean networks. The approximation is
inspired by the one generally used in the study of spreading processes on complex networks [24]. The
approximation neglects dynamical correlation among state variables to produce predictions in a time
that grows as 2kmax N, where kmax indicates the maximum degree of the network. The approximation
works as follows. Indicate with si(t) the activation probability of node i at time t under the IBMFA.
Based on the framing of the problem of identifying the domain of influence of the seed set X , we
have si(t = 0) = 1/2 if i � X and siðt � 0Þ ¼ ŝi if i [ X . Then, the activation probability of each node
i � X is computed at each time step t > 0 according to

siðtÞ ¼
X

fn j : j[N ig
d1,FiðnN i

Þ
Y

j[N i

½s jðt� 1Þ�n j ½1� s jðt� 1Þ�1�n j , ð4:1Þ

whereN i ¼ fjðiÞ1 , . . . , jðiÞki g ¼ fj [ BjAji ¼ 1g is the neighbourhood of i and FiðsN i
Þ is the transfer function

of i that depends on the network configuration at time t− 1 restricted to i’s neighbourhood. We use the
IBMFA to estimate the domain of influence of the seed set X as

DIBMFAðXÞ ¼ fði, siðTÞÞji [ B ^ siðTÞ ¼ 0, 1g: ð4:2Þ
4.2. Graph-theoretic approximations
We consider a class of approximations based on static graph representations of Boolean dynamical
systems. The various methods are presented within a unified framework based on the so-called GTN,
which allows us to study different graph representations of the node transfer functions. The GTN is a
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thresholded network [9,25] that represents the entire dynamics of a Boolean network B. As with the LIH
[5], the expanded network [8], and the DCM [9], the GTN is also dynamically and logically complete in
that every possible dynamical interaction is represented and state transitions are unambiguous; however,
it is ambivalent towards the representation of the transfer function used.

The GTN of a Boolean network B is composed of three sets: the set of state nodes, the set of threshold
nodes, and the set of direct edges connecting state and threshold nodes. If B contains N nodes, its GTN
has 2N state nodes. Each of the state nodes represents a specific state of the nodes in the Boolean network.
The state node with label i–0 indicates the state σi = 0 of node i∈ B; the state node with label i–1 stands for
the state σi = 1 of node i∈ B. The set of state nodes is thus functionally equivalent to the set of original and
complementary nodes in the expanded network or to the set of s-units in the DCM. State nodes interact
through threshold nodes; threshold nodes determine the logic that allows for state transitions. For
example, a composite node in the expanded network representing an AND relationship between k
inputs is replaced by a threshold node with threshold equal to k. Threshold nodes are used in the
same manner as t-units in the DCM. However, rather than using hyperedges, the GTN uses the
alternate representation of Boolean functions in [9] where multiple layers of threshold nodes are
possible (as is used, for example, to represent permutation redundancy). Thus, the GTN does not
restrict how threshold nodes are connected or how many layers of threshold nodes are used, as long
as the underlying transition logic is valid, offering full flexibility in the representation of the transfer
function.

One major limitation of using the LIH or the expanded network is that these network constructions
rely on a simplified representation of the transfer functions, such as DNF of the logical expression
dictating a node’s update. However, for large Boolean expressions, determining DNF of the expression
is infeasible and does not lead to a concise description; additionally, not all networks have their
update functions in logical rule format, requiring the logical rules to be determined from the nodes’
LUTs. The DCM, by contrast, is constructed via redescribed transfer functions that are in general more
concise; however, the process of redescription is also NP-hard and impossible to do for expressions
with a large number of inputs. Thus it is unclear how to best represent transfer functions in the
optimal way that is both concise and computationally efficient.

The GTN has several advantages. First, it offers a generalization of the expanded network and the
DCM where transfer functions are not restricted in their construction. Second, it allows a shared
description for different types of dynamical networks, so that expanded networks and DCMs can be
compared directly. Third, it can naturally accommodate variables with any discrete number of values,
not just two as in the case of Boolean networks; further, not all variables need to have the same
number of states. Finally, it allows for the exploration of studies on which transfer function
representations are most useful for predicting dynamics in different types of networks.

4.2.1. Transfer function representations

The exact structure of a GTN depends on how transfer functions are represented. More precisely, the set
of state nodes is always the same; however, the set of edges and the set of threshold nodes may change
depending on the specific choice for the representation of the transfer functions. There are many such
possible representations, and we do not attempt to enumerate them all here. Here, we consider a
representation based on disjunctive normal form (DNF) as this is used in studies of the LIH and the
expanded network [5,7,10,15]. Also, we consider a representation based on schema redescription (SR)
as this is used in studies of the DCM [9,17]. Finally, we consider a naive representation that relies only
on the LUT of each node without any additional logical reduction. GTNs based on LUT
representations provide worst-case baselines in terms of size and performance compared to GTNs that
rely on other more sophisticated representations.

To construct a GTN from DNF, we first find the DNF of the logical update expression of each node
and also the DNF of the negation of the logical update expression. Note that each network in the Cell
Collective repository already has these logical expressions available. These logical expressions are not
reduced from their given form in the Cell Collective; therefore, their DNF may or may not be
composed of prime implicants (see electronic supplementary material for details). For a given logical
expression of node i, each disjunctive clause is separated; the state node for every input in that clause
is connected to a threshold node whose threshold is equal to the number of inputs in the clause. The
threshold node is then connected to the state node i–1 if the logical expression implies σi = 1 or to the
state node i–0 otherwise. For example, in figure 2a, the logical DNF expression dictating the state of
node d is sd ¼ ðsa ^ scÞ _ ðsb ^ scÞ. There are two separate clauses in this expression, and each one is
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represented in the GTN using a threshold node. Each clause has two literals and thus each associated
threshold node has threshold equal to 2 (figure 2b).

To construct a GTN from the SR form, we first find the two-symbol schema redescription of each node’s
LUT and construct the DCM [9,26]. All s-units are kept as state nodes, and all t-units are kept as threshold
nodes. Then, we add other threshold nodes wherever two edges are fused together to remove all hyperedges
in the network. Thus, the GTN transfer functions become equivalent to the intermediate threshold network
representation of the canalysing maps mentioned in [9]. In figure 2e, the redescribed LUT shows that either a
or b can be active (σa = 1 or σb = 1) while the state of the other does not matter; in addition, c must also be in
state σc = 1 in order for d to have state σd = 1. The corresponding GTN representation in figure 2f has two
threshold nodes: the first indicates that either a-1 or b-1 must be present, and the second indicates that
the first threshold must be met and c-1 must be present to reach d-1.

Finally, to construct a GTN from a LUT form, we first find the LUT mapping of each node’s transfer
function. Then, we split the LUT of node i into rows with output σi = 1 and rows with output σi = 0. Next,
we create a single Boolean expression for the rows with output σi = 1 using OR expressions between each
row. We do the same for all rows with output σi = 0. After that, we create AND expressions between each
input in each row. Thus, the expression is automatically in DNF and can be converted into the GTN
representation in the same way as described above for the DNF method. In figure 2c, the LUT of node
d has three rows that result in state σd = 1, and each row has three inputs. This can be converted to the
logical expression sd ¼ ð:sa ^ sb ^ scÞ _ ðsa ^ :sb ^ scÞ _ ðsa ^ sb ^ scÞ, which is automatically in
DNF. As there are three separate clauses, the corresponding GTN representation has three threshold
nodes; each clause has three literals and so each threshold node has threshold equal to 3 (figure 2d ).

The LUT representation provides upper bounds on the number of threshold nodes M and edges E
needed in a GTN to represent the dynamical system of a Boolean network B with N nodes. We recall
that the number of state nodes in the Boolean network is 2N, while the number of threshold nodes M
and edges E depends on the number of LUT entries as

M ¼
XN

i¼1

2ki ð4:3Þ

and

E ¼
XN

i¼1

ðki þ 1Þ 2ki , ð4:4Þ

where ki is the degree of node i∈ B. Equation (4.4) can be derived by noting that there are 2ki rows in the
LUT for node i; each row requires ki edges from the neighbours of node i to a threshold node, plus an
additional edge from the threshold node to node i. We note an exponential dependence on the nodes’
degree for the size of the GTN. However, the GTN representation can be much more concise by using
the DNF or SR forms (see electronic supplementary material, figure S1).
4.2.2. Identification of the domain of influence

Given a GTN representation Z of a Boolean network, with Z ¼ SR, DNF or LUT, we estimate the
domain of influence DZðXÞ of the arbitrary seed set X via a breadth-first-search (BFS) algorithm. This
algorithm is similar to the one used in [15] to find the so-called logical domains of influence. The
algorithm works as follows.

We indicate with r the stage of the algorithm, with Qr the queue of stage r, and with S the set of
already visited nodes in the GTN. We set r = 0, and we include all elements of the seed set X in the
initial queue, i.e. Qr¼0 ¼ fi-ŝijði, ŝiÞ [ Xg. Further, we initialize the set S ¼ ; and the domain of
influence DZðXÞ ¼ ;. We then iterate the following instructions:

1. We create an empty queue for the next stage of the algorithm, i.e. Qrþ1 ¼ ;.
2. While the queue Qr is not empty, we pop one element e out of the queue Qr. We add e to the set S.

If e is a state node, we add the corresponding element to the domain of influence, i.e. if e = i-σi then
element (i, σi) is included in DZðXÞ. Next, for each neighbour n of e in the GTN, if n � S, we consider
the following options:

— We add n to Qr if n is a threshold node and its threshold is met by state nodes currently in S.
— We add n to Qrþ1 if n is a state node that does not contradict any state nodes already in S.
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3. If Qrþ1 = ;, we increase r→ r + 1, and we go back to point 1. Otherwise, we terminate the algorithm.

The necessity of having two queues Qr and Qrþ1 is so that state nodes are updated in discrete iterations
(i.e. BFS levels). Threshold nodes, by contrast, are dealt with immediately so that transfer functions can be
evaluated before the next stage of the algorithm. Note that the two sets S and DZðXÞ differ since the
former is composed of (state and threshold) nodes of the GTN, whereas the latter contains nodes of
the original graph, along with their corresponding state.

Note that although different GTN representations all give a complete mapping of the network’s
dynamics, they give different estimates in general for the domain of influence of a seed set X . For
example, in figure 2, the domain of influence of the seed set X ¼ fða, sa ¼ 1Þ, ðc, sc ¼ 1Þg is {a-1, c-1,
d-1} for the DNF or SR representations but only {a-1, c-1} for the LUT representation. This is because
no logical reduction is done on the node LUTs in this representation, and so inference on the state of
d requires knowledge of all three inputs, rather than only two. As such, performance of this method
should be a lower bound for the performance of other representations, such as DNF or SR.
Furthermore, although the DNF and SR representations predict the same domain of influence in this
example, note that the SR representation is slightly more concise.
 Open

Sci.10:230542
4.3. Metrics of performance
Given a Boolean network and a seed set X , we obtain various approximations of the domain of influence,
namely DIBMFAðXÞ, DDNFðXÞ, DLUTðXÞ and DSRðXÞ. Also, we find the estimate the ground-truth domain
of influence DðXÞ via equations (3.1) and (3.2). For compactness of notation, we remove the explicit
dependence on X , so that we write DZ to denote the generic approximate set DZðXÞ and D to denote
the ground-truth set DðXÞ.

We take advantage of multiple metrics to compare the various sets. Specifically, we compare each
approximate solution DZ against the ground-truth D in terms of precision and recall. We determine
the set of true positives defined as ATP ¼ fði, ŝiÞ [ D ^ ði, ŝiÞ [ DZg, the set of true negatives as
ATN ¼ fði, ŝiÞ � D ^ ði, ŝiÞ � DZg, the set of false positives as AFP ¼ fði, ŝiÞ � D ^ ði, ŝiÞ [ DZg, and
the set of false negatives as AFN ¼ fði, ŝiÞ [ D ^ ði, ŝiÞ � DZg. We compute precision as the ratio
jATPj=ðjATPj þ jAFPjÞ and recall as the ratio jATPj=ðjATPj þ jAFNjÞ. Also, we measure the similarity of
the approximation Z with the ground truth using the Jaccard index, i.e. JD,DZ ¼ ðD>DZÞ=ðD<DZÞ.
Such a metric of similarity is used also in the straight comparisons between pairs of approximations,
i.e. we rely on JDY,DZ ¼ ðDY >DZÞ=ðDY <DZÞ to contrast approximations Y and Z.
5. Results
In order to test which methods best elucidate influence on biological signalling and regulatory networks,
we create GTN representations of networks from the Cell Collective repository [23]. For each of these
networks, we consider only seed sets of size 1, 2 and 3. Specifically, we consider all possible seeds sets
of size 1 (in a Boolean network with N nodes there are 2N possible seed sets of size 1). We instead
randomly sample 1000 seed sets of size 2 and 3. For each of these sets, we determine the approximate
and ground-truth domains of influence. We limit the analysis to seed sets of size smaller than or
equal to 3 for computational reasons, and because it is unlikely that a researcher will have the ability
or desire to control more than a few variables (e.g. proteins or genes) within an actual laboratory
setting making control strategies based on larger interventions impractical.

Comparison between the various approximations of the domain of influence and the ground-truth
domain of influence are displayed in figure 3. All methods underestimate the true size of the domain
of influence (figure 3a). The LUT method performs the worst, while the DNF and SR methods are
nearly identical. The IBMFA performs slightly better than the other approximate methods. These
results hold for Jaccard similarity and recall as well (figure 3b,c): the IBMFA performs the best, while
DNF and SR are nearly identical, and LUT is much worse than the others. For precision, by contrast,
all GTN-based methods perform very well and only the IBMFA method makes some small mistakes
(figure 3d ). We also measure the Spearman’s rank correlation coefficient, across the entire corpus of
Boolean networks in the Cell Collective repository, between the size of the domain of influence DZ

predicted by approximation Z and its ground-truth counterpart D. The above results are again
confirmed (electronic supplementary material, figure S2). The DNF, SR and IBMFA methods are
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Figure 3. Ground-truth versus approximate domains of influence in real-world networks. (a) Average size of the domain of influence
for networks in the Cell Collective repository. Data are grouped based on the size of the seed set, and displayed results are obtained
by taking the average over all sets of a given size included in our analysis. The figure contains results for the ground-truth estimate
of the domain of influence (GT), its individual-based mean-field approximation (IBMFA) and its three approximations obtained from
the GTN representations based on the transfer functions defined by the node look-up tables (LUT), disjunctive normal form (DNF) of
logical functions and schema redescription (SR). We remark that GT estimates are obtained by sampling R = 100 random
configurations from the state space of the network. The size of the state space, however, grows exponentially fast with the
network size. Thus, the sample used in estimating the GT can be considered sufficiently large only if the network under study
is small enough. The sample becomes instead less representative for the state space as the size of the network increases.
(b) Average value of the similarity (i.e. Jaccard index) between approximations of the domain of influence and the ground-
truth domain of influence. (c) Same as in panel (b), but for the average recall of approximate domains of influence as
compared to the ground-truth. (d ) Same as in panel (c), but for the average precision of approximate domains of influence
when compared with the ground-truth.
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nearly identical, and they all perform well in ranking the seed sets, whereas the LUT method performs
poorly.

The poor performance of the LUT method is expected, as this method naively creates a representation
from the node LUTs without any logical reduction taking place (as happens instead with the DNF or SR
methods). The similarity between the DNF and SR methods is interesting; the two-symbol redescription
of the SR method generally reduces transfer functions further than the DNF method is able to. However,
it appears that this does not have a large impact on the results. Thus, for many networks, it appears that
the DNF description is sufficient for good inference of the domain of influence. Furthermore, it is
noteworthy that the IBMFA performs better than the GTN methods on all measures other than
precision, even though it approximates node activation probabilities and does not make exact, causal
inferences, as the GTN methods do. However, the IBMFA does not have perfect precision, unlike the
GTN methods, meaning that sometimes bad inferences are made. There is therefore a trade-off
between recall and precision when choosing methods: DNF and SR methods have better precision but
worse recall, on average, than the IBMFA.

We measure the similarity between the domains of influence obtained through the various
approximations in figure 4. We see that SR and DNF generate almost identical predictions; those
predictions are also pretty similar to those obtained with the IBMFA method (see also electronic
supplementary material, figure S3). By contrast, the LUT method makes predictions of the domain of
influence quite different from those of the other methods.



LUT DNF SR IBMFA GT

LUT 1.00 0.652 0.648 0.583 0.409

DNF 0.652 1.00 0.990 0.910 0.678

SR 0.648 0.990 1.00 0.910 0.679

IBMFA 0.583 0.910 0.910 1.00 0.708

GT 0.409 0.678 0.679 0.708 1.00

LUT DNF SR IBMFA GT

LUT 1.00 0.714 0.711 0.616 0.372

DNF 0.714 1.00 0.994 0.880 0.577

SR 0.711 0.994 1.00 0.882 0.579

IBMFA 0.616 0.880 0.882 1.00 0.616

GT 0.372 0.577 0.579 0.616 1.00

LUT DNF SR IBMFA GT

LUT 1.00 0.633 0.629 0.569 0.407

DNF 0.633 1.00 0.990 0.914 0.691

SR 0.629 0.990 1.00 0.915 0.693

IBMFA 0.569 0.914 0.915 1.00 0.721

GT 0.407 0.691 0.693 0.721 1.00

LUT DNF SR IBMFA GT

LUT 1.00 0.608 0.604 0.563 0.447

DNF 0.608 1.00 0.988 0.935 0.765

SR 0.604 0.988 1.00 0.934 0.766

IBMFA 0.563 0.935 0.934 1.00 0.788

GT 0.447 0.765 0.766 0.788 1.00

(a)

(b)

(c)

(d)

Figure 4. Comparison between approximate domains of influence in real-world networks. (a) We consider the same set of results as
in figure 3 and measure the Jaccard index between approximate domains of influence obtained by the various identification
methods. Each entry in the table reports the average value of the similarity score across all networks in the data set, and for
all values of the size of the seed set. GT estimates are obtained by sampling R = 100 random configurations. (b) Same as
panel (a), but results are calculated only for seed sets of size 1. (c) Same as panel (a), but results are calculated only for seed
sets of size 2. (d ) Same as panel (a), but results are calculated only for seed sets of size 3.
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We further analyse the dependence of our results on the network size in electronic supplementary
material, figure S4. Interestingly, the size of the domain of influence of a seed set increases with the
network size, regardless of the size of the seed set (Pearson’s correlation coefficient r = 0.46 for seed
set sizes equal to 3). This property is valid for the DNF, SR and IBMFA methods, but not for the LUT
method which shows no positive correlation with network size. This finding suggests that the LUT
method performs worse as the network size increases, which is shown also by decreased similarity
and recall scores in larger networks. However, the performance of the DNF, SR and IBMFA methods,
as measured by similarity and recall, also decreases as network size increases.

We note an important limitation of our ground-truth estimate of the domain of influence in that the
percentage of the dynamical state space sampled by R = 100 random configurations becomes vanishingly
small as N increases (see electronic supplementary material, figure S5). Under-sampling of the state space
can cause our ground-truth predictions to overestimate the size of the domain of influence by predicting
false positives, and this could be an alternative explanation as to why the performance of the DNF, SR
and IBMFA methods appears to decrease as network size increases. It is important, therefore, to verify
that our estimated domain of influence accurately reflects the true dynamics of the various networks
under study. Toward this end, we select six networks from the Cell Collective that have size 10≤N≤
14. We calculate the true domain of influence for seed sets on these networks via brute-force
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Figure 5. Computational time for the estimation of the domain of influence in real networks. (a) We measure the time required to
estimate domains of influence in the Drosophila melanogaster single-cell segment polarity network [9,27]. The size of this network is
N = 17, while its maximum degree is kmax = 4. Results are averaged over all seed sets of a given size. GT estimates are obtained by
sampling R = 100 random configurations. (b) Same as panel (a), but for the tumour cell migration EGFR and ErbB signalling network
(N = 104, kmax = 14) [28]. (c) Time required to estimate the domains of influence in all networks within the Cell Collective. Results are
averaged over all seed sets of size 1. Each point in the plot is a network; time is plotted as a function of the network size N. (d ) Same
as in panel (c), but time is plotted as a function of the total size of the look-up tables in the network, i.e.
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enumeration of all possible configurations. We then compare the estimated ground-truth domain
of influence D p based on sampling a fraction p of the state space to the true domain of influence D.
This is done by randomly sampling R = p2N initial configurations. We test five values:
p ¼ 0:01, 0:10, 0:25, 0:50 and 0:75.

As the results of electronic supplementary material, figure S6, show, the accuracy of the estimate D p

depends on the metric being used and the value of p. In this problem, there are no false negatives;
therefore, similarity is equal to precision and recall is always 100%. As such, we show only size and
similarity in the figure. For size and similarity/precision, all p-values perform very similarly except
for p = 0.01 which performs worse than the other values. The value p = 0.10 also deviates from the
true value, although this deviation is small and decreases as seed set size is increased. By contrast, the
deviation of p = 0.01 increases as the seed set size increases. However, even in this case, the similarity/
precision is high at about 90% for seed sets of size 3. Nevertheless, we find that small samples do
indeed overestimate the size of the domain of influence and have lower precision (i.e. they have more
false positives). This suggests that our results for the ground-truth estimates in figure 3 may similarly
overestimate the size of D and the number of true positives, and this may contribute to the decreased
scores of the DNF, SR and IBMFA methods in terms of size, similarity and recall.

Finally, we compare the computational time required by the various methods to generate
approximations of the domain of influence; see figure 5. Times are calculated per network over all
seed sets of a given size (computations were performed using an Intel Core i5 3.2 GHz processor). For
the GTN-based approximations, the time necessary to create the GTN is added into the calculation
and similarly averaged over the number of seed sets. Depending on the sparsity of the Boolean
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network, and the representation of the transfer functions, it may take a long time to create a GTN;
however, the advantage to using such a graph dynamical approach is that this operation only has to
be performed once. Afterwards, the domain set can be approximated in a time that grows linearly
with the number of edges of the GTN, upper-bounded by equation (4.4). Runtime for the creation of
the GTN is especially noticeable for SR graph representations (figure 5). In networks with low degree,
like the Drosophila melanogaster single-cell segment polarity network [27], the average time to
approximate domain sets is lower than other methods considered; however, in networks with high
degree, like the EGFR and ErbB signalling network [28], the average runtime is much higher for the
SR method than for the other methods.

When we consider all networks in the Cell Collective, we see that the time to calculate domains of
influence for the IBMFA method grows linearly with the network size (figure 5c). This time is on
average greater than the time to find domains of influence using the DNF or LUT methods on a GTN,
while the time to approximate domains of influence using the SR method is more variable and is
sometimes much greater than for the IBMFA. None of the GTN-based methods are characterized by a
clear relationship between computational time and network size. If we consider the total LUT size for
each node in the network, however, we see a clear relationship between this quantity and the
runtimes of GTN-based approximations, as running time tends to increase exponentially based on
total LUT size (figure 5d ).
i.10:230542
6. Discussion
In this paper, we presented results of a systematic analysis aiming at comparing the performance of
different types of approximate methods in estimating the domain of influence of seed nodes in
Boolean networks. The analysis was carried out on a corpus of 74 real-world biological networks
from the Cell Collective repository [23]. Seeds are nodes in the Boolean network with pinned
dynamical state. The domain of influence is defined as the set of nodes (seed and non-seed nodes)
whose long-term dynamical state becomes deterministic as a consequence of the external perturbation
that pins the state of the seed nodes. Approximate methods considered in this paper belong to two
classes: (i) graph-theoretic methods and (ii) mean-field methods. Methods in class (i) are based on
representations of the Boolean dynamics into static graphs; methods in class (ii) rely instead on
descriptions of average trajectories of the Boolean dynamics where fluctuations are ignored. In spite of
the different spirit of the approximation performed, one of the main findings of our systematic study
is that methods from the two classes display similar performance, and they can perform quite well if
the goal is to determine the seed sets that have the greatest influence on a network. More in detail, all
approximate methods underestimate the ground truth, with mean-field approaches having a better
recall but a worse precision than the other class of methods. Computationally speaking, graph-
theoretic methods are faster than mean-field ones in sparse networks, but are slower in dense networks.

An important theoretical byproduct of the present study was the introduction of the so-called GTN,
i.e. a graphical representation of the state space of a discrete dynamical system taking place on a network
structure. The GTN serves as a generalization of the existing approaches by Wang & Albert [8] and
Marques-Pita & Rocha [9], but it offers a unified framework that can be applied regardless of the
specific representation. In this paper, we considered three different representations: those based on
disjunctive normal form of node logical expressions, those based on schema redescription of node
look-up tables, and those based naively on nodes’ look-up tables without further logical inference
being made.

We stress that the results of this paper are affected by some limitations. First, all our analysis is based
on the assumption that the dynamics of a biological network is faithfully represented by the
corresponding Boolean model at our disposal. If not, the domain of influence will be incorrect as
predicted by any method; however, efficiently finding an incorrect domain of influence can help to
further improve the model by allowing researchers to spot inconsistencies and modify the underlying
dynamical rules to better match the biological reality. In this sense, the methods here may still be
useful for model validation and correction. Second, our conclusions are valid only for synchronous
dynamics, and do not necessarily generalize to other updating schemes, e.g. deterministic
asynchronous, stochastic asynchronous and block deterministic updating schemes. In fact, the fixed
points are invariant to the choice of the updating scheme; however, the size of the basin of attraction
of a fixed point is generally affected by the specific rules of the dynamics at hand [29–31]. However,
previous research suggests that the IBMFA is robust to the order of update in predicting control sets
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towards particular attractors [16] and should therefore also be robust in predicting target control. The
graph-theoretic approximations are also robust to the order of update. As pointed out in [15], the
predicted domain of influence will have prefect precision as long as the updating scheme preserves
the level order of the breadth-first search on the GTN.

Even under the assumptions that only one high-fidelity Boolean model exists for a given biological
network and that dynamics is synchronous, additional limitations are present. For example, our
estimates of the ground-truth domain of influence of a seed set depend on sampled configurations
that constitute only a small fraction of the actual state space, therefore leading to the appearance of
false positives in the ground-truth estimates of the domain of influence. Although our results were
confirmed also in small networks where ground-truth estimates are exact (see electronic
supplementary material, figure S6c,d), some of the gaps in size, similarity and recall seen by the
methods tested here may be due to this systematic bias. Another major limitation is that these
methods were tested only on biological networks of moderate size from the Cell Collective repository,
and we considered seed sets of maximum size equal to three. It is unclear how different methods
would perform in larger and/or non-biological networks, and for larger seed sets. Further research is
needed for this purpose. Finally, we note that we relied on pre-existing logical expressions in the Cell
Collective for the DNF method, and that such expressions are not in general available for all
networks. However, as an alternative, it is possible to find disjunctive normal form of the prime
implicants of node LUTs using the Quine–McCluskey algorithm [21]; we find that both methods for
finding DNF of node expressions make nearly identical predictions (see electronic supplementary
material, figure S7), suggesting that the results seen here are also valid for networks that do not have
such pre-existing logical expressions available.

Despite such limitations, this work is a step towards understanding how the behaviour of Boolean
networks can be effectively and efficiently predicted, which is essential in target control problems. This
work further elucidates the type of strategy to be used depending on the network, i.e. sparse versus
dense, and/or the specific application at hand, i.e. when recall is favoured over precision or vice versa.

Data accessibility. Network data can be retrieved at https://cellcollective.org and https://github.com/rionbr/CANA/
tree/master/cana/datasets/cell_collective. The 74 networks we used for our analysis are listed at https://github.
com/tjparmer/node_influence/blob/main/list_of_networks_analyzed.txt.

Data examples and relevant code for this research work are stored in GitHub: https://github.com/tjparmer/
node_influence and have been archived within the Zenodo repository: https://doi.org/10.5281/zenodo.8404905 [32].

Supplementary material is available online [33].
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