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We study scale-free networks constructed via a cooperative Achlioptas growth process. Links between

nodes are introduced in order to produce a scale-free graph with given exponent � for the degree

distribution, but the choice of each new link depends on the mass of the clusters that this link will merge.

Networks constructed via this biased procedure show a percolation transition which strongly differs from

the one observed in standard percolation, where links are introduced just randomly. The different growth

process leads to a phase transition with a nonvanishing percolation threshold already for � > �c � 2:2.

More interestingly, the transition is continuous when � � 3 but becomes discontinuous when � > 3. This

may have important consequences for both the structure of networks and for the dynamics of processes

taking place on them.
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The modern science of networks [1–3] has opened new
perspectives in the study of complex systems. The simple
graph representation, where the elementary units of a
system become nodes and their mutual interactions links
connecting the nodes pairwise, enables one to understand a
lot of properties about the structure and dynamics of a
system. In particular, the degree distribution PðkÞ, i.e.,
the probability distribution of the number of neighbors k
of a node, plays an important role. Real networks often
display skewed degree distributions, where many nodes
with low degree coexist with some nodes with high degree
(hubs). The presence of the hubs is responsible for a
number of striking properties, like a high resilience against
random failures or attacks [4] and the absence of an
epidemic threshold [5]. Resilience is determined by check-
ing the fraction of nodes or links that need to be removed in
order to split the network into a set of microscopic disjoint
connected components. This is closely related to the pro-
cess of percolation [6], where one studies the conditions
leading to the formation of a macroscopic (giant) compo-
nent of the network. Here one starts from a set of nodes and
no links; links are added randomly or according to a certain
rule until a giant component is formed. On networks hav-
ing power law degree distributions (scale-free networks)
with exponent � smaller than 3, the fraction of nodes or
links to be removed from the graph for it to have no giant
component tends to 1 in the limit of infinite network size
[7]. In the spirit of percolation and focusing on links, this
can be read the other way around: a scale-free network
with � < 3 is kept connected by a vanishing fraction of
randomly chosen links; i.e., the percolation threshold is
zero. For � > 3, instead, a finite threshold appears. Indeed,
a giant component exists if the average number z2 of next-
to-nearest neighbors of a node exceeds the average number
z1 ¼ hki of its nearest neighbors [8]. On networks without
degree-degree correlations [9], z2 ¼ hk2i � hki, which di-
verges when the exponent � of PðkÞ is smaller than 3,
whereas it is finite when � > 3. The divergence of the

second moment hk2i is generally a sufficient condition to
ensure the absence of a percolation threshold on a scale-
free graph, with or without degree-degree correlations [10],
although in the case of large disassortativity, a finite per-
colation threshold may emerge [11].
In any case, whether there is a finite threshold or not, the

percolation transition in networks is continuous: the order
parameter, represented by the relative size of the giant
component with respect to the whole system, varies con-
tinuously from zero starting from the critical point. This is
due to the fact that links are (usually) randomly placed on
the network. Recent work by Achlioptas and co-workers
has shown that, for networks similar to Erdös-Rényi ran-
dom graphs [12], the percolation transition becomes dis-
continuous (first order) if links are placed according to
special nonrandom rules [13]. Such growth processes for
graphs are meanwhile known as Achlioptas processes and
the resulting connectedness transition as explosive perco-
lation. Discontinuous transitions triggered by similar
mechanisms were previously observed in the jamming of
information packets on communication networks [14]. In
this Letter, we want to explore what happens if one grows a
scale-free network via an Achlioptas growth process. We
will see that the resulting scenario is very different than in
the case of ordinary percolation.
Let us first define an Achlioptas growth process. The

goal is to construct a random network ofN nodes and given
degree sequence fk1; k2; . . . ; kNg. If links are placed ran-
domly, the procedure can be carried out with the configu-
ration model [15]. Here instead, the criterion to add links is
different. At the beginning of the algorithm (i.e., stage t ¼
0), we set ksð0Þ ¼ ks for each node s (the only condition
needed is that

P
sks should be an even number). The

variables ksðtÞ act as sorts of counters: whenever a stub
incident on node i is connected to another stub incident on
node j, kiðtþ 1Þ ¼ kiðtÞ � 1 and kjðtþ 1Þ ¼ kjðtÞ � 1.

The construction proceeds until T ¼ 1
2

P
sks links have

been drawn, which stands for ksðTÞ ¼ 0, 8s (i.e., there
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are no more stubs to be connected between node pairs).
At each stage t of the growth, two pairs of vertices (i1, j1)
and (i2, j2) are selected as candidate links: these nodes
are randomly selected among all vertices in the network
with probabilities pi1ðtÞ ¼ ki1ðtÞ=

P
sksðtÞ, pj1ðtÞ ¼

kj1ðtÞ=
P

sksðtÞ, pi2ðtÞ ¼ ki2ðtÞ=
P

sksðtÞ, and pj2ðtÞ ¼
kj2ðtÞ=

P
sksðtÞ, respectively, which basically means that

the candidate links (i1, j1) and (i2, j2) are, respectively,
selected with probabilities pði1;j1ÞðtÞ ¼ pi1ðtÞpj1ðtÞ and

pði2;j2ÞðtÞ ¼ pi2ðtÞpj2ðtÞ. In order to decide which of the

two candidate links should be selected to become a real
link to be added to the network, one computes the quanti-
ties Lði1;j1ÞðtÞ ¼ Mi1ðtÞMj1ðtÞ and Lði2;j2ÞðtÞ ¼ Mi2ðtÞMj2ðtÞ,
expressing the product of the sizes of the clusters that the
two selected links would merge (Fig. 1). Finally, one draws
the link for which the quantity L is lower. The former
selection rule is called product rule (PR). In principle,
other different reasonable criteria may be used instead of
the PR, e.g., taking the sum instead of the product, max-
imizing instead of minimizing, etc. During the construction
of the network, one should avoid the presence of multiple
links (links connecting pairs of nodes already connected)
and self-loops (links starting and ending at the same node).
Scale-free networks may have a significant number of
multiple links and self-loops [16], but in the transition
regime we are interested in here, they are essentially tree-
like (most links have to be still placed), so multiple links
and self-loops are very unlikely. In fact, we have verified
that results do not change whether one allows or avoids
them.

On Erdös-Rényi graphs, the process we have described
generates a discontinuous percolation transition [13]. More
recently, Ziff has studied the same process for bond perco-
lation on two-dimensional square lattices [17], finding
again a discontinuous transition.
A natural parameter which allows us to follow the

construction of the network is p ¼ t=T, which expresses
the fraction of links added to the network during its growth.
Following the construction of the network as a function of
p allows us to study the formation of the giant component
and the associated percolation transition of the network.
This technique allows us to create the whole phase diagram
of the transition through a single simulation [18].
Let us define as order parameter the percolation strength

Sð1Þ ¼ Mð1Þ=N, whereMð1Þ indicates the mass (i.e., number
of nodes) belonging to the largest connected component in
the network. If the transition is continuous (i.e., second
order), the theory of finite size scaling tells us that the
percolation strength of a network composed of N nodes
obeys the relation

Sð1Þ ¼ N��=�F½ðp� pcÞN1=�� ; (1)

where pc is the percolation threshold (in the limit of
systems of infinite size), � and � are critical exponents
of the transition, and Fð�Þ is a universal function. Similar
laws of finite size scaling may be written for other observ-
ables. Here we consider the susceptibility � ¼
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSð1Þ2i � hSð1Þi2

q
, which quantifies the amplitude of the

fluctuations of the percolation strength. The susceptibility
� obeys the relation

� ¼ N�=�G½ðp� pcÞN1=�� ; (2)

where � is another critical exponent which characterizes
the transition and Gð�Þ is a universal function. The suscep-
tibility � is directly related to the order parameter Sð1Þ.
From the definition of � and the scaling behavior of Sð1Þ at
pc [Eq. (1)], we deduce that �=� ¼ 1� �=�. The suscep-
tibility � can be used for the determination of the critical
point pc. The percolation threshold pcðNÞ of a system of
finite size N obeys the relation

pcðNÞ ¼ pc þ bN�1=�: (3)

pcðNÞ can be determined by finding the value of p for
which the absolute maximum of � occurs. Then a simple
linear fit (based on the maximization of Pearson’s correla-

tion coefficient) of pcðNÞ versus N�1=� allows us to simul-
taneously compute both values of pc and �. The same kind
of analysis may be performed by determining pcðNÞ as the
value of p at which one observes the absolute maximum of

Sð2Þ (i.e., the relative size of the second largest component)
[19]. In our numerical simulations, we find a perfect agree-
ment between the two different approaches.
When the transition is discontinuous (i.e., first order),

finite size scaling does not work. The scaling relations (1)

FIG. 1 (color online). Scheme of the construction process of a
network via an Achlioptas process with product rule (PR). Two
pairs of stubs are taken at random (each pair is indicated by the
dotted lines), and the products of the sizes of each pair of clusters
merged by joining the stubs are computed. The stubs that are
finally joined are those minimizing the product of the corre-
sponding cluster sizes. In the case illustrated, one would join the
nodes i1 and j1, which yield a smaller product cluster size than i2
and j2 (2� 5 ¼ 10 versus 3� 4 ¼ 12).
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and (2) trivially apply with �=� ¼ 0 and �=� ¼ 1. The

curves Sð1Þ versus p corresponding to different system sizes
do not scale and pcðNÞ approaches pc faster than as a
power law in the limit of large N.

We consider scale-free networks with degree exponent �
[i.e., PðkÞ � k��, where PðkÞ is the probability that a node
has a degree equal to k]. We examined two main scenarios
by setting the networks’ cutoff (i.e., largest degree) equal

to
ffiffiffiffi
N

p
and to N1=ð��1Þ. The results, however, do not quali-

tatively depend on this choice (the results shown refer to

the cutoff
ffiffiffiffi
N

p
).

When a scale-free network is constructed via an
Achlioptas growth process, the formation of the giant
component is delayed. One needs to add a fraction of links
much larger than in a standard random process before
seeing the emergence of the giant component.
Interestingly, for � < 3, it is already possible to measure
a nonvanishing value of the percolation threshold. As an
illustrative example, in Fig. 2 we show the behavior of the

order parameter Sð1Þ and the susceptibility � as a function
of p. We see that for � ¼ 2:5, the scenario is the one
expected for a continuous transition, as confirmed by the

scaling behavior of Sð1Þ of Fig. 2(c), whereas for � ¼ 3:5
the situation is different.

We have carried out a detailed finite size scaling analysis
of the percolation transition in the range of exponents 2 �
� � 5. For each value of �, we have determined the

pseudocritical point at a given system size N and derived
the infinite size limit of the threshold by using Eq. (3). In
Fig. 3, we plot the lines of the pseudocritical points for
various network sizes as a function of �. The black line
indicates the extrapolation to the infinite size limit. The
threshold is essentially zero up to �c � 2:2 and becomes
nonzero for � > �c. From our analysis, we cannot exclude
that for 2 � � � �c the threshold is nonzero but very
small; in order to clarify the situation, one should use
systems of orders of magnitude larger than the ones we
studied, which already lie at the boundary of what one
could do without using supercomputers.
Interestingly, for � > 3 the pseudocritical point ap-

proaches the actual threshold faster than as a power law,
and the relation (3) does not hold, which hints to a first-
order phase transition. We have confirmed the result by
performing the test suggested by Achlioptas et al. [13].
In the region of � values where we observe the second-

order phase transition, we also computed the critical ex-
ponents by performing a finite size scaling analysis of the

two main variables Sð1Þ and � at the critical point according
to Eqs. (1) and (2). We have used such analysis to also
double check in an independent way the extrapolated
values of the thresholds as a function of �, which we had
previously obtained from the scaling of Eq. (3): the agree-
ment is very good. The results are illustrated in Fig. 4. We
plot the values of the exponents’ ratios �=�, �=�, and the
sum �=�þ �=�. We see that �=�, �=� are always in the
range between 0 and 1, but their values depend on �. The
sum �=�þ �=� is always 1 with good approximation, as
expected. We also remark that around �c, the exponents
display a jump. This is due to the fact that the threshold
goes to very small values for � < �c (consistent with zero)
and that finite size scaling cannot be accurate. For � > 3,
the exponents take trivial values: � ¼ 0, as the order
parameter at criticality does not vanish in the infinite size

FIG. 2 (color online). Explosive percolation transition in scale-
free networks. For � ¼ 2:5, the transition is continuous. In (a)
and (b), we show the percolation strengths corresponding to
different system sizes and their rescaling Sð1ÞN�=�, respectively.
The validity of Eq. (1) can be proved by plotting Sð1ÞN�=� versus
ðp� pcÞN1=� (c). The peak of the susceptibility � moves gradu-
ally towards pc as the system size increases (d). Instead, for � ¼
3:5 the transition is discontinuous: percolation strengths corre-
sponding to different system sizes do not have a scaling form (e).
The location of the peaks of the susceptibility is essentially the
same for any system size (f). The network sizes go from 256 000
to 16 384 000 via successive doublings.
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FIG. 3 (color online). Percolation threshold pcðNÞ as a func-
tion of the degree exponent � for various network sizes N. The
black line represents the infinite size limit extrapolation of the
critical threshold. This extrapolation is made by using Eq. (3) for
� � 3, while for � � 3 one uses the value of the plateau to
which the pseudocritical points converge.
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limit; � ¼ �, as the susceptibility is an extensive variable,
as it should be if the transition were discontinuous. The
insets show the finite size scaling analysis on both expo-

nents’ ratios for three values of �. For Sð1Þ we see that,
while for � < 3 there is a clear power law scaling, as it
should be for a continuous transition, for � > 3 there is a
saturation. Similarly, for the susceptibility �, we see that
the scaling is nonlinear with N for � < 3, whereas for � >
3, it becomes linear, as it happens for extensive quantities.

We have studied the percolation transition on static
scale-free networks built with an Achlioptas process with
product rule. We have found striking differences with
standard percolation, from the existence of a finite thresh-
old for � < 3 to the discontinuous character of the tran-
sition for � > 3. We stress that, since links are not placed
completely at random in an Achlioptas process, during the
process, the network generally has a different degree dis-
tribution; only at the end of the process, when all links are
placed, does one restore the original imposed distribution
[20]. We have verified that the networks at the percolation
transition still have a power law degree distribution, but
with a different exponent than the imposed one. In particu-
lar, we have verified that � ¼ 2:2 corresponds to the ef-
fective exponent �0 ¼ 3. This may explain the existence of
a finite threshold for � > 2:2 (it would correspond to �0 >
3 for the actual networks at the threshold), but not the
origin of the discontinuous transition, which remains yet to
be uncovered.

Our findings show that the building mechanism of scale-
free networks may strongly affect dynamic processes tak-
ing place on the network, along with structural features
(e.g., resilience to failures or attacks), even if the degree
distribution is predefined. So, very different phenomena
can occur on networks with exactly the same degree dis-
tribution. The process we have studied here deserves fur-
ther investigation, from both the numerical and the

analytical points of view, and it may reveal new and excit-
ing perspectives in the field of complex networks and in the
theory of critical phenomena. Moreover, this finding may
open new perspectives in other fields where networks are
important, such as computer science and engineering. In
particular, the issues of robustness and information trans-
mission are inextricably linked to percolation.
We are indebted to J. J. Ramasco for bringing this

problem to our attention. S. F. gratefully acknowledges
ICTeCollective, Grant No. 238597 of the European
Commission.
Note added.—At the moment of submission of this

manuscript, we noticed a recently published Letter by
Cho et al. posted in the electronic archive [20]. Their paper
deals with the same problem, but the model used to build
the network is not the same as ours, which leads to signifi-
cant discrepancies in the results. We apologize to Cho et al.
for this unlucky and unwanted coincidence.
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[12] P. Erdös and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci.
5, 17 (1960).

[13] D. Achlioptas, R.M. D’Sousa, and J. Spencer, Science
323, 1453 (2009).
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FIG. 4 (color online). Critical exponents’ ratios �=� and �=�
as a function of the degree exponent �. The insets show the
scaling at pc of the quantities Sð1Þ � N��=� [inset (a)] and ��
N�=� [inset (b)] for � ¼ 2:5, 3.0, and 3.5 (from bottom to top).
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