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Reconstruction of multiplex networks via graph embeddings
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Multiplex networks are collections of networks with identical nodes but distinct layers of edges. They are
genuine representations of a large variety of real systems whose elements interact in multiple fashions or
flavors. However, multiplex networks are not always simple to observe in the real world; often, only partial
information on the layer structure of the networks is available, whereas the remaining information is in the form
of aggregated, single-layer networks. Recent works have proposed solutions to the problem of reconstructing
the hidden multiplexity of single-layer networks using tools proper for network science. Here, we develop a
machine-learning framework that takes advantage of graph embeddings, i.e., representations of networks in
geometric space. We validate the framework in systematic experiments aimed at the reconstruction of synthetic
and real-world multiplex networks, providing evidence that our proposed framework not only accomplishes its
intended task, but often outperforms existing reconstruction techniques.
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I. INTRODUCTION

It has been shown several times over that applying clas-
sical network models to systems with several dimensions of
interactions is an unfaithful representation of reality, often
dangerously so [1–6]. Examples range from cascading power
outages [7–9] and models of the brain [10–13], to efficient
transportation with several modalities [14–18] and efficient
epidemic mitigation [19–21]. Problematically, it is sometimes
the case that only a monoplex of interactions can be observed;
perhaps with some partial, incomplete observations of the
truly multidimensional ways in which some entities interact.
Hence, there is want of a method to infer likely multiplexes
from these incomplete observations. Researchers have only
recently begun to approach this problem, which we shall
broadly call the multiplex reconstruction problem (MRP).

Several approaches to the MRP have been considered so
far. Tarrés-Deulofeu et al. [22] and De Bacco et al. [23]
utilized statistical inference techniques grounded in the ten-
sorial formulation of multilayer networks by De Domenico
et al. [24]. Their work allowed for attacking the more clas-
sical link prediction task in multiplexes with a well-defined
block-modelesque generative prior, potentially even including
layerwise correlation. While very general and quite powerful,
both methods were designed with link prediction in the usual
sense in mind and, hence, utilized training sets that are sig-
nificantly larger than the test set of edges to actually predict.
They consequently suffer from inefficiencies and biases in the
face of sparse a priori information [22]. Zhang et al. [25]
instead considered two-layer multiplex networks and did not
necessitate a notion of partial observations. Their work em-
ployed a simulated annealing algorithm to reconstruct layers
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maximizing an objective function inspired by clustering mea-
sures, hence, they were able to reconstruct multiplex networks
with sufficiently layer-endogenous motifs. Similarly to other
approaches, Zhang et al.’s work also suffered some in the
face of edge sparsity [25]. Kaiser et al. [26] and Wu et al.
[27] both leveraged partial observations of the underlying true
multiplex structure that may be available a priori along with
assumptions on a layerwise generative model of the system
grounded in the layerwise degree sequences. Wu et al. utilized
an expectation-maximization framework to approximate the
layerwise degree sequence [27], whereas Kaiser et al. con-
structed an approximating multiplex network from which they
extracted degree sequences [26]. Both techniques, then, were
able to use their generative models to sample likely recon-
structions of the true multiplex structure. These approaches
also have limitations. Wu et al.’s technique made no use of
mesoscale structure, instead relying entirely on global degree
sequence structure [27]. Kaiser et al. improved on this insofar
as considering assortative block structure at all in their work;
however, the techniques they leveraged were able to be con-
founded by improperly assuming assortative block structure
where they may be none [26]. If the system attempting to
be reconstructed is sufficiently unknown, then it might be
difficult to assess if there is assortative community structure
in the true multiplex that one is attempting to reconstruct.

In this paper, we propose a methodology of reconstruct-
ing multiplex networks that account for both global degree
sequence and mesoscale block structure information; further-
more, our proposed methodology is able to regulate between
these two sources of information without the need of in-
troducing too much prior knowledge about the system. Our
approach is inspired by the work of Kaiser et al. [26], albeit
with an added focus on the needed robustness and flexibility.
We design a similar reconstruction algorithm centered around
calculating the likelihood of an edge in the observed aggregate
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network of a multiplex to have originated from a particular
layer of the underlying true multiplex. As in both Kaiser
et al. and Wu et al., in the absence of further information,
the principle of parsimony guides us to assume a configu-
ration modelesque likelihood on the basis of a multidegree
sequence [26,27]. We extend this likelihood to include geo-
metric representation of the mesoscale structure, however, by
further utilizing graph embeddings to encode this structure.
The rationale for using an embedding-aided approach to the
MRP naturally stems from the well-established usefulness of
these graph representations in the task of predicting missing
links in single-layer networks [28–30]. In our method, we
calculate two sources of information that contribute to each
edge’s likelihood to have originated from a particular layer
of the underlying multiplex, namely, multidegree sequence
under a generative model assumption and distance in a latent
embedding space. To flexibly utilize these data, we train a
logistic regression model on suitably normalized features and
retrieve a distribution of multiplex reconstructions.

We examine the resultant reconstructed multiplex networks
in this paper and explore the potency of the proposed method-
ology. That is, we apply the developed method to a corpus
of multiplex systems consisting of both synthetic models and
real-world systems. In our investigations on synthetic models,
we push the method to its limits and characterize structures
that are more or less capable of being reconstructed. When
applying the method to real-world systems, we find compa-
rable reconstruction performance of current methods but with
significantly more stable reconstructions. Furthermore, we are
able to reconstruct systems where previous methods struggle
and are confounded by mesoscale structure.

II. METHODS

A. The multiplex reconstruction problem

We consider multiplex networks with two layers, namely,
α and β. The graph representing layer α is denoted by G (α) =
{N (α), E (α)}, where N (α) is the set of nodes of the layer and
E (α) is the set of its edges. N (β ) and E (β ) are, respectively,
the sets of nodes and edges of layer β. Being a multiplex,
we assume that N = N (α) = N (β ), and we indicate the size
of the network with N = |N |. We exclude the possibility that
the edge (i, j) belongs to both layers α and β simultaneously,
i.e., E (α) ∩ E (β ) = ∅. We define the MRP as the binary clas-
sification of the individual edges in the multiplex layers, i.e.,
predicting whether the generic edge (i, j) belongs to either
E (α) or E (β ) [26].

Similar to Refs. [26] and [27], we perform the classification
using partial knowledge of the multiplex network. We assume
to know the elements of the union E (α) ∪ E (β ); however, we
also assume to know the layer which individual edges belong
to only for a fraction of them, namely, the training sets E (α)

train ⊆
E (α) and E (β )

train ⊆ E (β ), respectively. We train a classification
model on these sets and use it to classify all edges (i, j) ∈
E (α)

test ∪ E (β )
test , with E (α)

test = E (α) \ E (α)
train and E (β )

test = E (β ) \ E (β )
train.

We measure the classifier’s performance using the area under
the receiver operating characteristic curve (ROC-AUC), i.e., a
standard metric in binary classification tasks.

Results of the classification model proposed in this pa-
per are contrasted to those obtained using the degree- and

community-based classifier (DC) by Kaiser et al. [26]. The
DC classifier takes advantage of the community structure
of the multiplex network to predict the flavor of its edges.
Virtually, any community detection algorithm can be used in
the DC classifier. Results reported in this paper are based on
communities detected using the Louvain algorithm [31].

B. Classification model

We illustrate the reconstruction workflow proposed in this
paper in Fig. 1. All code is available at Ref. [32]. The input
of the workflow is a partially observed multiplex network.
Outputs are probabilities for individual, nonobserved edges
to belong to either one or the other layer of the multiplex
network.

In the framework, we employ a logistic regression model
that relies on features defined for the remnant networks of the
available partial information, i.e., the networks obtained from
the edges belonging to the test set, but not in the training set
of the other layer. Formally, the remnant networks for layers α

and β are, respectively, given by G (α)
R = {N , Etest \ E (β )

train} and
Gβ

R = {N , Etest \ E (α)
train}, where Etest = E (α)

test ∪ E (β )
test .

First, we compute the edge-balance feature as

ζ = 2

∣∣E (α)
train

∣∣
∣∣E (α)

train

∣∣ + ∣∣E (β )
train

∣∣ − 1. (1)

The above feature is based on the assumption that observed
edges are randomly selected from the set E (α) ∪ E (β ). We have
−1 � ζ � 1. Positive values of ζ indicate propensity of an
edge to be classified in layer α, whereas negative values of ζ

indicate that the edge is more likely to belong to layer β.
Second, we associate to each edge (i, j) the score

κi, j = 2
k(α)

i k(α)
j

k(α)
i k(α)

j + k(β )
i k(β )

j

− 1, (2)

where k(α)
i denotes the degree of node i in the remnant network

for layer α, and similarly for k(β )
i . We have −1 � κi, j � 1.

Positive values of κi, j indicate propensity of the edge (i, j)
to be classified in layer α, whereas negative values of κi, j

indicate that the edge (i, j) is more likely to belong to layer
β. Except for a linear transformation, this is the same score
already considered in the multiplex classifiers by Wu et al.
[27] and Kaiser et al. [26].

Finally, given the remnants G (α)
R and G (β )

R , each node i in the
graph is mapped to two points x(α)

i and x(β )
i , respectively, into

d-dimensional Euclidean spaces. Both layer-wise mappings
rely on the same embedding technique, but they are performed
separately, meaning that the mapping x(α)

i uses only infor-
mation from the graph G (α)

R and the mapping x(β )
i uses only

information from the graph G (β )
R . Once the embeddings x(α)

i
for all nodes i are performed, we manipulate them as follows.
We transform the embedding vectors in each connected com-
ponent C (α) ⊆ G (α)

R such that

∑

i∈C(α)

x(α)
i = 0, (3)
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FIG. 1. Schematic of the proposed workflow for multiplex reconstruction. Beginning from an observed single-layer network with partial
observation of the true dimensionality of some edges, we first construct the remnant networks. We then extract features from the constructed
remnants to inform a classification model. Here, the features we extract are functions of the distances of embedded nodes incident to each edge
in each remnant layer [i.e., Eq. (5)] as well as the product of degrees in each remnant layer [i.e., Eq. (2)]. We also extract an edge-balance
feature [i.e., Eq. (1)] that, however, serves only to properly establish the offset of the classifier. From these features, we train a logistic regression
model to classify each edge within one of the two layers [i.e., Eq. (6]). The result of the reconstruction workflow is a weighted network where
the weight of each edge indicates its likelihood to have originated from a particular layer.

where 0 is the vector with components all equal to zero, and
then renormalize them such that

∑

i∈C(α)

∥∥x(α)
i

∥∥ = 1, (4)

where ‖x‖ is the L2 norm of the vector x. A similar procedure
is also applied to the embeddings x(β )

i obtained from the graph
G (β )

R . Finally, for any edge (i, j), we define the score

δi, j = 2

∥∥x(α)
i − x(α)

j

∥∥−1

∥∥x(α)
i − x(α)

j

∥∥−1 + ∥∥x(β )
i − x(β )

j

∥∥−1 − 1, (5)

where ‖x − x′‖ is the Euclidean distance between the
points x and x′ as long as x 	= x′; we set instead ‖x −
x′‖ = 2−32 if x = x′ to avoid numerical overflow. Also
here, we have −1 � δi, j � 1. Positive values of δi, j in-
dicate propensity of the edge (i, j) to be classified in
layer α, whereas negative values of δi, j indicate propensity
of the edge (i, j) to be classified in layer β.

We note that each connected component is mapped
independently from the others, hence the per-component
transformations described in Eqs. (4) and (5) serve to suppress
eventual dependencies of the embeddings on the components’
sizes.

Finally, we train a logistic regression model using the edges
in the training set E (α)

train ∪ E (β )
train. We rely on the Python library

SCIKIT-LEARN [33]. The model allows us to estimate for each
edge (i, j) ∈ Etest the likelihood of originating from layer α as

P((i, j) ∈ E (α) ) = 1

1 + exp [−(aζ + bδi, j + cκi, j )]
. (6)

The coefficients a, b, and c weigh the importance of the var-
ious features in the classification task. Specifically, a proxies
the importance of the balance between the sizes of the training
sets E (α)

train and E (β )
train; b and c, respectively, quantify the rele-

vance of the features κ and δ in the reconstruction problem.
The complexity of the necessary calculations in Eqs. (1)–

(6) are dominated by the chosen graph embedding method.

We report asymptotic time complexity of our workflow in
Appendix B.

C. Graph embedding techniques

We consider four popular methods to embed the remnants
G (α)

R and G (β )
R of a multiplex network in Euclidean space:

Node2Vec (N2V) [34], a modified version of Laplacian eigen-
maps (LE) [35], high-order proximity preserved embedding
(HOPE) [36], and Isomap [37]. Below, we provide some brief
descriptions of these method, and report on the choice of
parameters that we used to perform the graph embeddings.

In all methods, the dimension d of the embedding space
is a free parameter. We fix d = min{N, 128} throughout this
paper.

1. Node2Vec

N2V [34] involves creating multiple node sequences
through random walks of fixed length and then optimizing the
representations of the nodes in the Euclidean space to max-
imize the likelihood of node cooccurrence in the sequences.
N2V has several tunable parameters including walk length,
window size, bias parameters p and q for the random walk,
and the embedding dimension d . Throughout the paper, we
set the window size to be 10, the walk length to be 80, and
p = q = 1. We take advantage of the systematic analysis of
embedding methods conducted in Ref. [38] to appropriately
choose these values of the parameters.

2. Laplacian eigenmaps

LE [35] is an embedding method based on the spectrum
of the normalized Laplacian operator of the graph to be em-
bedded. Indicate with 0 < λ1 � . . . � λr � . . . � λd the d
smallest, nontrivial eigenvalues of the normalized Laplacian,
and with v1, . . . , vr, . . . , vd the corresponding eigenvectors.
The standard implementation of LE maps node i to point
xi = (v1,i, . . . , vr,i, . . . , vd,i ), where vr,i is the ith compo-
nent of the eigenvector associated with λr . In this paper,
we modify the standard LE embedding by suppressing the
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TABLE I. Summary statistics of real-world multiplex networks. From left to right, we report the name of the data set and reference where
the data set was introduced, the number of nodes within the two layers, the number of edges for each of the two layers, the number of edges
shared by the two layers, and the average ROC-AUC of reconstruction at 30% training set size of Kaiser et al.’s previous reconstruction method
[26] and our proposed method. The reconstruction method with best average performance for each multiplex is bolded among five repetitions.
For the genetic interaction systems (italicized), we consider the layers for direct and suppressive gene interactions. For the European Airlines
system, we consider the airlines for the companies Lufthansa and Ryanair.

Data set N |E (α)| |E (β )| |E (α,β )| DC HOPE Isomap LE N2V

R. norvegicus [40] 2520 2610 832 178 0.69 0.71 0.72 0.70 0.73
S. pombe [40] 2577 1038 6622 445 0.67 0.63 0.62 0.61 0.65
H. sapiens [40] 17415 37361 72004 12284 0.91 0.91 0.91 0.92 0.93
European airlines [40] 128 244 601 0 0.92 0.94 0.94 0.94 0.95

contribution of each eigenvector by the value of its corre-
sponding eigenvalue. We basically embed node i as xi =
(v1,i/λ1, . . . , vr,i/λr, . . . , vd,i/λd ). The modification allows to
properly weigh the importance of the various modes of the
normalized Laplacian operator to represent the eventual mod-
ular structure of the network layer. We empirically verified
that such a modification greatly improves the performance in
the downstream reconstruction problem.

3. HOPE

HOPE [36] tries to preserve a given similarity matrix S in
the Euclidean space of the desired dimension d by minimizing

EH =
∑

i, j

∥∥Si j − xT
i x j

∥∥. (7)

Although HOPE has the flexibility to utilize various node
similarity matrices, we adopt the common practice of using
the Katz index in this paper.

4. Isomap

The objective function in Isomap aims to preserve the pair-
wise shortest-path distances between nodes [37]. The shortest
path-distance matrix D is computed for a network in the first
step. Then multidimensional scaling is applied to D to obtain
a vector representation of the nodes in the Euclidean space of
desired dimension d that minimizes the following objective
function:

EI =
∑

i, j

(Di j − ‖xi − x j‖)2. (8)

III. DATA

A. Synthetic multiplex networks

We generate network layers using the Lancichinetti-
Fortunato-Radicchi (LFR) model [39]. We begin by gener-
ating an instance of the LFR model with a given set of
parameters. We fix the value of the community size power-
law exponent τ = 1.0 and the maximum degree kmax = √

N
for both layers. We vary the degree exponent γ and the
mixing parameter μ, although we consider only experiments
where these parameters are identical for both layers. Instead,
we vary the average degree 〈k(α)〉 and 〈k(β )〉 at the level of
the individual layers. We do not impose any constraints on
the size and number of communities. The two network layers

are generated independently, thus edge overlap and correlation
among the layerwise community structures are negligible. If
any edge is shared by the two layers, we remove it from the
system.

B. Real multiplex networks

We analyze several real-world multiplex networks. Even if
some data sets consist of more than two layers, our tests are
performed considering two layers at a time and all possible
pairings of the layers. For each combination of the layers,
edges shared by both layers are deleted and no information
on their existence is considered in the MRP. Then, the set of
nodes in the corresponding multiplex is given by the union
of the sets of nodes of the two individual layers. Details on
real data sets analyzed beyond those present in the figures are
reported in Table I.

IV. RESULTS

A. Synthetic networks

1. Performance on synthetic networks

We begin by seeking to understand the fundamental ca-
pabilities and limitations of the proposed framework. To
this end, we sample synthetic multiplexes as described
in Sec. III A and conduct a systematic investigation. Our
intention is to elucidate how performant the proposed recon-
struction workflow can be in scenarios with known assortative
community structure and degree distribution, hence, to ex-
plore how applicable multiplex reconstruction is in broad
strokes.

Using the LFR benchmarks, we consider four possible sce-
narios that can capture the structure of real-world systems:

(i) Strong communities and heterogeneous degrees, i.e.,
μ = 0.1 and γ = 2.1.

(ii) Strong communities and homogeneous degrees, i.e.,
μ = 0.1 and γ = 4.0.

(iii) Mediocre communities and moderately heteroge-
neous degrees, i.e., μ = 0.3 and γ = 2.7.

(iv) Weak communities and heterogeneous degrees, i.e.,
μ = 0.5 and γ = 2.1.

In addition to these parametrizations of mesoscale-global
structure, we fix the network size to N = 10 000 and the av-
erage degrees of the layers 〈k(α)〉 = 〈k(β )〉 = 6. We then apply
the proposed reconstruction methods to samples of these mod-
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FIG. 2. Reconstruction of synthetic multiplex networks. Each
panel depicts the performance as a function of training in-
formation available on LFR duplexes with fixed parameters
N = 10 000, 〈k(α)〉 = 〈k(β )〉 = 6, kmax = 100, τ = 1.0. We vary μ, γ

across panels as (a) μ = 0.1, γ = 2.1; (b) μ = 0.1, γ = 4.0; (c) μ =
0.5, γ = 2.1; (d) μ = 0.3, γ = 2.7. Different combinations of colors
and symbols correspond to different reconstruction methods. The
horizontal dashed line indicates the performance value of a random
classifier. All points depict the mean of ten realizations with error
bars displaying the standard error.

els and quantify the reconstruction performance as a function
of the size of the training set. See Appendix C for more on the
effect of network size on reconstruction. Please note that the
experimental condition 〈k(α)〉 = 〈k(β )〉 immediately implies
that the balance feature ζ  0, thus we also have that a  0 in
the logistic regression model of Eq. (6).

Several interesting behaviors are immediately observable
in the reconstruction performance as illustrated in Fig. 2,
where each panel corresponds to a different scenario as de-
scribed above. Examining N2V’s performance first, it is clear
that, regardless of the values of μ and γ in these panels,
N2V-based reconstruction consistently performs well; with
especially notable performance in Figs. 2(a) and 2(c), where
there is strong degree heterogeneity, outperforming every
other method for a majority of training sets. Indeed, Fig. 2 is
highly suggestive of the stability in the performance of N2V.
While generally second to N2V, except at small sizes of the
training set, HOPE also displays potent consistency across the
varied scenarios examined here.

LE is able to surpass the other methods only in the case
of Fig. 2(b), where there is strong degree homogeneity. Oth-
erwise, both LE and Isomap are generally poor choices for
reconstruction. Especially concerning is the performance of
Isomap, where there is a strong community structure but ex-
ceptionally homogeneous degrees as seen in Fig. 2(b). Here
we see the only case of a reconstruction method consistently
performing worse than a random classifier. A random bi-
nary classifier on balanced classes should yield an ROC-AUC
 0.5, as shown by the dashed gray line. Isomap’s lesser
performance than this guideline may not be entirely unex-

pected, however, as Isomap generally does not perform well
for graph clustering.

Perhaps the most notable comparison in Fig. 2 is against
the DC reconstruction method by Kaiser et al. [26]. The
DC method utilizes assortative mesoscale structure to inform
its reconstruction, however, using the community structure
obtained from the remnant networks. Thus, it struggles to pro-
duce valuable predictions when such structure is impossible
to infer or noisy. The currently proposed method, however,
uses the more flexible technique of graph embeddings to learn
network structure; this, in combination with its regularization
from the logistic regression, offers a reconstruction method
that is noticeably more stable.

2. Dissecting reconstruction models

The proposed reconstruction method utilizes more than an
embedded graph’s node vectors alone, however, in making its
classifications. To examine the contribution of the informa-
tion provided by the graph embedding to the reconstruction
procedure, we compare the magnitude of the coefficients’
values learned by the logistic regression models. Specifically,
we measure the magnitude of the coefficients b and c, re-
spectively, associated to the features κ and δ in the logistic
regression model [see Eqs. (2), (5), and (6)] and estimate the
relative contribution of the embedding feature δ to the recon-
struction of the multiplex, i.e., |b|/(|b| + |c|). Please note that
the coefficient a  0, as these networks have approximately
identical number of edges in layers α and β. With these mea-
surements, in the same controlled settings and panel ordering
as Fig. 2, we see some immediate results.

We have placed a guideline indicating an even contribu-
tion of embedding features and degree features (dashed gray
horizontal line) in every panel of Fig. 3. From here, it takes
only a moment to see that N2V and HOPE always rely on
the embedding feature for the majority of the reconstruction
calculations. These methods are also those which perform
best according to Fig. 2. This is even the case in Figs. 3(c)
and 3(d), where community mixing is μ = 0.5 and μ = 0.3,
respectively. Even in the presence of what is generally con-
sidered to be a weak community structure, then, N2V and
HOPE are shown to be accurately reconstructing synthetic
multiplex networks while gaining several insights from these
embeddings as a feature in said reconstruction.

Interestingly, the spectral embedding LE appears to ap-
proach an approximately equal contribution of embedding
and degree features as the training set grows in relative size.
This behavior is present in all panels; however, recall we are
embedding the remnants of the multiplex. As the training set
grows, the graphs being embedded shrink in total size, hence
spectrum information and degree sequence information must
necessarily converge, as it is known that the extremities of a
graph’s spectra are highly correlated with connectedness and
degree information of a graph [41]. Note that in Figs. 3(a)
and 3(c), LE’s embedding feature has a minority share in
the classification model’s coefficients, suggesting the degree
heterogeneity has a stronger effect on the usefulness of LE
embeddings than community strength.

Isomap presents a special case as foreshadowed by
its behavior in Fig. 2. Indeed, Fig. 3 clearly shows a
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FIG. 3. Relative impact of the embedding feature in the recon-
struction of synthetic multiplex networks. Each panel depicts the
relative impact of the embedding feature in the reconstruction model,
calculated as |b|/(|b| + |c|), with b and c coefficients of the logistic
regression model of Eq. (6), as a function of training information
available. Results are obtained on the same set of experiments as in
Fig. 2. All points depict the mean of ten realizations with error bars
displaying the standard error.

nonexistent or barely noticeable contribution of the em-
bedding feature from Isomap in reconstruction—effectively,
utilizing Isomap in these scenarios was an inefficient use of
only the degree feature shared by all reconstruction models.
This is elaborated on further in Appendix D. Furthermore,
Isomap is, in comparison, an expensive embedding method as
described in Appendix B. Consequently, we would caution the
interested researcher against using Isomap to reconstruct mul-
tiplexes with a strong suspected community structure. Isomap
is not without its merits, however; in real systems with more
nuanced mesoscale structure, it is able to provide valuable
insights, as discussed further in Sec. IV B.

3. Reconstruction of synthetic networks with variable community
strength and degree heterogeneity

There may be an elbow in the performance measure-
ments of our reconstruction method, regardless of embedding
method, at a relative training set size of approximately 0.3
as suggested in Fig. 2. While this elbow is weak in some
cases, it nonetheless sets itself as a potential threshold for
which we can expect diminishing performance returns beyond
it with respect to returns made before this pseudoelbow. We
leverage this observation to conduct additional reconstruction
experiments on benchmarks with a higher resolution than
given in Figs. 2 and 3. Specifically, we explore samples of
our synthetic duplex space over μ ∈ [0.1, 0.5], γ ∈ [2.1, 3.9]
with the same fixed size and degree distribution constraints as
above.

We display the average reconstruction performance and
relative feature importance in Fig. 4. Given the insights on
reconstruction with Isomap made available in Figs. 2 and 3,

FIG. 4. Reconstruction of synthetic multiplex networks. In all
panels, we display a heat map of 10 × 10 cells as μ varies in
equal steps between 0.1 and 0.5 (inclusive) along the vertical axis
and γ varies in equal steps between 2.1 and 3.9 (inclusive) along
the horizontal axis. Rows separate measurements of reconstruction
performance via ROC-AUC (top) and relative magnitude of the
embedding vector distance feature (bottom). Columns separate em-
bedding methods; from left to right, we report results for HOPE,
LE, and N2V. That is, the panels are as follows: (a) performance
with HOPE, (b) performance with LE, (c) performance with N2V,
(d) embedding feature importance with HOPE, (e) embedding fea-
ture importance with LE, (f) embedding feature importance with
N2V. Throughout all panels, the training set is 30% of its maximum
possible size. Each cell is furthermore reporting the mean value of
five repetitions.

we have elected not to report it in this figure; the reader may
find a similar visualization for Isomap in Appendix D.

As one may intuitively expect, reconstruction is gener-
ally easier in the presence of structural heterogeneity—that
is, with strong community structure and heterogeneous de-
grees. With strong community structure but weakening degree
heterogeneity, HOPE and N2V are generally able to yield
mostly correct reconstructions; LE, however, appears to suffer
from a worsened performance gradient with respect to γ .
From the top row of Fig. 4, one can see our prior interpre-
tation of N2V as the most stable of the tested embeddings
more clearly—namely, the average gradient throughout μ − γ

space of ROC-AUC is smallest with N2V.
Furthermore, from the perspective of relative feature con-

tributions to the classification model, N2V remains the most
stable method, as seen by the bottom row of Fig. 4 for sim-
ilar reasons as above. LE utilizes its embedding feature for
classifications strikingly less intensely than either HOPE or
N2V, regardless of community strength or degree heterogene-
ity. However, all methods share an increasing contribution
of embedding feature contributions as degree heterogeneity
weakens.

B. Real networks

1. Performance on real networks

While our results so far illuminate reconstruction potential
in ideal scenarios, real-world systems are, of course, more
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FIG. 5. Reconstruction of real multiplex networks. (a) Recon-
struction of cond-mat.dis-nn and cond-mat.stat-mech of the arXiv
collaboration network, (b) electric and chemical monadic synaptic
junctions in the C. Elegans connectome, (c) direct and suppressive
genetic interactions in the Drosophila genome, and (d) overground
trolley and Docks Light Railway transport lines in London. In all
panels, we plot the ROC-AUC as a function of the relative size of the
training set. All points depict the mean of ten realizations with error
bars displaying the standard error.

nuanced. We analyze a collection of real-world multiplexes
previously considered in related works; these are described
further in Sec. III B. These networks host a variety of in-
teresting structures and are drawn from several domains. As
with the synthetic multiplexes, we train our reconstruction
algorithm on random training sets of increasing size and report
the performance of the algorithm in Fig. 5.

We generally observe good reconstruction performance in
these real-world multiplexes. In all cases, it is easily seen in
Fig. 5 that graph embeddings in multiplex reconstruction out-
perform the DC method. Within the estimated error (standard
error of the mean), N2V, in particular, consistently performs
better than the DC method in all cases here, except with
exceptionally large training sets on the arXiv collaboration
multiplex as shown in Fig. 5(a). The absolute error of the
reconstruction performances is also significantly smaller than
for the DC algorithm, suggesting that the proposed framework
is able to produce more self-consistent reconstructions in a
variety of systems.

In addition to the improved stability of the proposed re-
construction framework, there is a steady improvement in
performance as well. While marginal in some systems, the
improvement is undeniably more significant in others. The
rail transportation multiplex in London is easier to reconstruct
with the proposed method than with the DC method, as seen in
Fig. 5(d). This multiplex has a nontrivial latent spatial embed-
ding and very pathlike topology in each layer. This topology
confounds modularity maximization techniques, however,
random-walk and geodesic-based embedding methods, such
as N2V and Isomap, are able to uncover this topology and

FIG. 6. Relative impact of edge-balance, embedding, and degree
features in the reconstruction of multiplex networks. We show the
model coefficients for reconstructing real systems at a fixed rela-
tive training set size of 30%, as well as four synthetic duplexes of
varying imbalances (triangles). The coefficients are displayed in a
two-dimensional simplex, hence, the coefficients must add to 1 along
the three dimensions. Values can be read by taking the line parallel
to the guidelines to a given point—the intersection with the axes
gives the coordinates. The intersection of guidelines in the center of
the figure represents a model with equal contribution of embedding,
degree, and edge-balance features. (a) Coefficients for the HOPE
embedding, (b) Isomap, (c) LE, and (d) N2V. Different symbols
correspond to different real systems (nontriangles) or synthetic mul-
tiplex networks (triangles) as given by the legend. For the synthetic
multiplex networks, we replicate parameters as in Fig. 2(a) with the
exception of the average degree of layer β, noted in the legend. Each
point is the average of five repetitions.

leverage it effectively to approximate the true multiplex struc-
ture.

2. Dissecting reconstruction models

In a similar normalization as presented in Fig. 3 we dis-
play the coefficients of models applied to real systems in
Fig. 6. Noticeably, since these systems are not necessarily
balanced—that is, |E (α)| 	= |E (β )|—we no longer have null
intercepts. We report the normalized model coefficients in
Fig. 6, with panel structure now delineating graph embed-
ding and symbols showing different real-world multiplexes,
as well as some synthetic multiplex networks with varying
edge balance between the layers. Both the real-world systems
and synthetic multiplex networks display, despite varying de-
grees of imbalance, an edge-balance coefficient smaller in
magnitude than either the embedding feature or degree feature
coefficients. This suggests that the use of these features is truly
informative for multiplex reconstruction in these settings.

Consider the real-world systems (nontriangular symbols).
There are some clear differences from the synthetic cases seen
in Fig. 3. Perhaps most noticeable is the nontrivial contribu-
tion of Isomap in all cases as seen in Fig. 6(b). Reexamining
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Fig. 5(d), we were able to leverage Isomap to reconstruct a rail
transportation multiplex more faithfully than with other em-
beddings. This speaks to one of the strengths of incorporating
graph embeddings into multiplex reconstruction, namely, that
we are able to inherit advantages of the graph embeddings
themselves. Isomap acts on shortest-path distances of the
graph, extracting similarities on the basis of geodesic distance.
Since, in a transportation system such as London’s rail trans-
portation multiplex, these geodesic distances are correlated
with spatial distances of the corresponding locations, Isomap
is able to grasp additional information than the other methods.
This is especially clear in Fig. 6(b), where we see the embed-
ding feature coefficient for London (orange x) constitutes the
majority of the feature contributions.

Another stark difference from the synthetic case of Fig. 3
can be seen with HOPE and N2V’s embedding feature con-
tributions, Figs. 6(a) and 6(d). In the synthetic case, these
enjoyed a significant majority of reconstruction model con-
tributions over degree, as seen in all panels of Fig. 3 However,
in these real systems, the contribution of these embedding
features, as in all systems and embeddings, is a noticeably
smaller portion. This is perhaps not entirely surprising, as
real-world systems have a mesoscale structure than is less neat
than that of synthetic models. This does not seem to deter from
N2V and HOPE’s generally good reconstruction performance,
however, as can be seen from their relative closeness to the
other methods’ performances in Fig. 5, with the exception of
London’s rail transportation as discussed above.

Regardless of embedding method, the real systems yield
model coefficients with nonnegligible contributions from the
embedding feature.

Now consider the imbalanced synthetic multiplex net-
works. As in Fig. 3, we see that HOPE and N2V make
extensive use of the embeddings to do the reconstruction,
as can be seen in Figs. 6(a) and 6(d) (triangular symbols).
Interestingly, there does not seem to be a strong effect from the
edge imbalance of the two layers, evident from the small value
of the edge balance coefficient across all embedding methods.
We suspect this is due to the strong mesoscale structure and
degree heterogeneity yielding informative features, lowering
the utility of edge balance for reconstruction purposes. Also
similar to Fig. 3, Fig. 6(b) displays a generally uninformative
embedding feature when embedding with Isomap. Likewise,
Fig. 6(c) displays a weaker contribution of the LE-based
embedding feature than HOPE or N2V for reconstructing
strongly structured synthetic multiplex networks.

V. DISCUSSION

We have presented a technique to reconstruct multiplex
networks from their single-layer aggregates and demonstrated
several notable improvements over the current state of the art.
By relying on graph embeddings, we have been able to recon-
struct multiplexes in a similar setting as in Refs. [26,27] but
more accurately and with greater self-consistency. Further-
more, by extending the classification model into a regression
framework, we have demonstrated that the proposed frame-
work is also able to account for a variety of different
mesoscale structures useful to infer the hidden multiplex
structure of a network. Given that it has been brought to

light that there are dangers to modeling real-world systems
as single-layer networks when they are, in reality, multiplex
networks [1,4,5], we believe our framework could represent a
valuable tool for many researchers.

Despite our presented method making several assumptions
that are not representative of all real-world systems, our re-
sults are nonetheless promising enhancements of multiplex
network modeling. We are able to faithfully reconstruct sev-
eral multiplexes fitting the problem statement. We make no
pretense on the ubiquity of our modeling assumptions, how-
ever, which should be considered carefully by the interested
practitioner. The likelihood model chosen for individual edge
placements is a noticeable example of this. However, much
like recent calls to action in network science [42], this appar-
ent shortcoming is, in truth, capable of being a great strength.
Researchers in need of multiplex reconstruction must be in-
tentional in their hypotheses of the prior of multiplex structure
before our reconstruction method can be adequately utilized.
This places more work on the interested researcher, but not
for nothing; clearer, more specific hypotheses are the basis
of rigorous, reproducible science and should be embraced,
not viewed as a barrier to progress. We have provided ample
evidence that the baseline generative models we assume in this
investigation are still informative in a variety of systems and
hence that the reconstruction approach described has potential
in further applications and this, in itself, is an interesting
observation.

The investigation presented here should not be considered
a complete solution to the MRP. There are avenues of future
research readily available to extend the developed framework
for both pragmatic use in data collection and processing, and
also in foundational understanding in the limitations of mul-
tidimensional network compression. Some examples of the
former are generalizations of the method to directed multi-
plexes and treatment of multiplexes with overlapping layers.
We suspect directedness to provide mathematically plain but
useful insights; however, addressing overlapping layers may
increase the dimensionality of the underlying classification
problem in unpredictably complicated ways. Also, consider-
ing the possibility that the training set is biased, meaning
that the observed edges are not uniformly selected from the
layers rather preferentially picked from one layer instead of
the others, is a realistic and interesting avenue for future
research. Lastly, further investigations on the fundamental
reconstructability of multiplexes give insight into the reverse
problem of multiplex aggregation as well. There are many
well-done studies on compressing the layer dimension of
multiplex systems and when this compression irretrievably
loses information [4,40,43,44]; further work in the MRP may
illuminate attempted error correction on disaggregating com-
pressed multiplex data.

VI. CONCLUSION

We have described and systematically investigated a
method of reconstructing multiplex networks from single-
layer aggregate data and partial multidimensional observa-
tions. This so-called MRP, while not discussed for the first
time in this paper, is nonetheless in its infancy and promises
a rich source of inquiry in contemporary network science.
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FIG. 7. Reconstruction performance on an imbalanced synthetic
duplex. We reconstruct a synthetic duplex with layers formed as de-
scribed in Sec. III A, albeit where one layer has average degree 6 and
the other has average degree 20. The test edges are approximately
twice as likely to have originated from the denser layer than the

sparser ( |E (α)|
|E (β )| ≈ 0.3229 ⇒ ζ ≈ −0.5118). We display the accuracy,

area under the receiver operating characteristic, and area under the
precision-recall curve as different perspectives on the reconstruc-
tion’s performance.

Our current work has suggested an inference framework for
solving the MRP under certain conditions. In favor of rigorous
future science, the proposed method also makes improve-
ments over the current literature in hypothesis testing and
generative modeling. As scientists continue recent discover-
ies in the hidden or confounded multiplexity of real-world
systems, we hope our proposed methodology can serve as a
valuable tool in ensuring network data sets are faithful to the
systems they describe.

All code is available at Ref. [32].
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APPENDIX A: IMBALANCED LAYERS

Many real-world multiplexes have layers with widely vary-
ing sizes, as measured by the number of their edges. It is
well-known that classification models can be misled by im-
balanced classes; to ensure we have not been mislead by class
imbalance in our own classification setting, we explored re-
construction of duplex models with highly imbalanced layers
under common metrics of a binary classifier’s performance.
Precision recall is known to be preferred to ROC-AUC in
imbalanced classification tasks [45] and indeed we confirm

TABLE II. Asymptotic time complexity of graph embeddings.
E represents the total number of edges in the graph, d represents
the embedding dimension, and C represents the cost to compute the
shortest paths between any pair of nodes.

Embedding Time complexity

HOPE O(d2E )
Isomap O(CN2 + dN2)
LE O(d2E )
N2V O(dN )

this in the reconstruction setting of Fig. 7. We also observe,
however, that ROC-AUC, while strongly affected by imbal-
ance, is nonetheless monotonic as a function of the size of the
training set.

APPENDIX B: WORKFLOW TIME COMPLEXITY

The reconstruction workflow we have presented here con-
sists of several independent calculations on the layers of the
induced remnant multiplex. One may rightly be concerned
with the computational complexity of multiplex reconstruc-
tion in this framework. The dominating complexity of the
workflow, however, is that of the selected graph embedding
method. The reconstruction workflow is no more expensive,
asymptotically, than the selected graph embedding method—
of which, considerable effort has been placed into quantifying
and optimizing. According to a recent review [38], graph em-
bedding complexities for these methods can be summarized as
in Table II. We show the total reconstruction workflow time on
synthetic duplexes of varying sizes in Fig. 8.

FIG. 8. Algorithmic complexity of reconstruction workflow. We
generate synthetic networks as in Sec. III A with varying sizes but
fixed γ = 2.1, τ = 1.0, 〈k(α)〉 = 〈k(β )〉 = 6, and kmax = 100. Each
point is the average of ten repetitions. Error bars of the standard
error are obscured by markers at this scale and removed from the
figure. Workflow complexity is dominated by the embedding method
ranging between linear and quadratic scaling for these methods.
Simulations were run on an Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60 GHz. All simulations were restricted to a single core.
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FIG. 9. Reconstruction of synthetic multiplex networks of differ-
ent sizes. Using the same synthetic model as throughout the rest of
this paper, albeit with N ∈ {1000, 10000}, we show the difference of
the average ROC-AUCs as the training set grows. The dashed gray
line represents no performance difference in average performances.
We see the absolute performance of N2V and HOPE’s performance is
relatively small, potentially negligible. LE and Isomap, however, dis-
play robust, noticeably worse or better performance with N = 10000
than N = 1000, respectively. Each point depicts the difference of ten
repetitions in each network size, with standard error given by the
error bars.

APPENDIX C: SIZE EFFECTS

Synthetic multiplex networks of a fixed size are investi-
gated in Figs. 2–4. We fixed the size in these analysis so as
to better facilitate comparison in other variables of interest.
Now, however, we turn to examine the effect on reconstruction
performance the size of the multiplex may have as illustrated
in Fig. 9.

In particular, we show the difference of average ROC-
AUCs for synthetic models with 10 000 and 1000 nodes.
From the scale of the y axis, it is clear that N2V and HOPE
have differences as network size increases at these scales,
but Isomap and LE display yet more noticeable differences.

FIG. 10. Reconstruction performance on synthetic multiplex net-
works with Isomap. We display the equivalent of the ROC-AUC heat
maps of Fig. 4 albeit with Isomap as the graph embedding. The
embedding feature importances for Isomap here are all near zero and
indistinguishable with most color maps, hence that corresponding
heat map for Isomap is not shown.

This may not strike the reader as unexpected; Isomap, in
particular, is an embedding of geodesic distances and even
under normalization we would expect increasing network size
to nontrivially affect the reconstruction. LE’s reconstructions
get less performant as network size increases.

APPENDIX D: ISOMAP ON LFRS

We conducted a sweep over μ − γ space using Isomap as
in Fig. 4. Isomap, however, does a poor job in reconstructing
multiplexes as tested here.

This is made clearer by observation that the color gradi-
ent in Fig. 10 differentiated primarily, up to random noise,
horizontally. The average relative importance of the Isomap
embedding feature in all cases was near 0, hence, we have not
included its corresponding heat map.

[1] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-
Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M.
Zanin, Phys. Rep. 544, 1 (2014).

[2] G. Dong, J. Gao, R. Du, L. Tian, H. E. Stanley, and S. Havlin,
Phys. Rev. E 87, 052804 (2013).

[3] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev.
Lett. 107, 195701 (2011).

[4] M. Zanin, Physica A 430, 184 (2015).
[5] G. Bianconi, Multilayer Networks: Structure and Function

(Oxford University Press, Oxford, 2018).
[6] S. Osat, A. Faqeeh, and F. Radicchi, Nat. Commun. 8, 1540

(2017).

[7] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.
Havlin, Nature (London) 464, 1025 (2010).

[8] X. Liu, H. E. Stanley, and J. Gao, Proc. Natl. Acad. Sci. 113,
1138 (2016).

[9] K.-M. Lee, C. D. Brummitt, and K.-I. Goh, Phys. Rev. E 90,
062816 (2014).

[10] F. Battiston, V. Nicosia, M. Chavez, and V. Latora, Chaos 27,
047404 (2017).

[11] M. De Domenico, GigaScience 6, gix004 (2017).
[12] K. Mandke, J. Meier, M. J. Brookes, R. D. O’Dea, P.

Van Mieghem, C. J. Stam, A. Hillebrand, and P. Tewarie,
NeuroImage 166, 371 (2018).

[13] M. Vaiana and S. F. Muldoon, J. Nonlinear Sci. 30, 2147 (2020).

024313-10

https://doi.org/10.1016/j.physrep.2014.07.001
https://doi.org/10.1103/PhysRevE.87.052804
https://doi.org/10.1103/PhysRevLett.107.195701
https://doi.org/10.1016/j.physa.2015.02.099
https://doi.org/10.1038/s41467-017-01442-2
https://doi.org/10.1038/nature08932
https://doi.org/10.1073/pnas.1523412113
https://doi.org/10.1103/PhysRevE.90.062816
https://doi.org/10.1063/1.4979282
https://doi.org/10.1093/gigascience/gix004
https://doi.org/10.1016/j.neuroimage.2017.11.016
https://doi.org/10.1007/s00332-017-9436-8


RECONSTRUCTION OF MULTIPLEX NETWORKS VIA … PHYSICAL REVIEW E 109, 024313 (2024)

[14] C. Ferrari and M. Santagata, Eur. Transport Res. Rev. 15, 6
(2023).

[15] J. Wu, C. Pu, L. Li, and G. Cao, Digital Commun. Networks 6,
58 (2020).

[16] M. De Domenico, A. Solé-Ribalta, S. Gómez, and A. Arenas,
Proc. Natl. Acad. Sci. 111, 8351 (2014).

[17] R. Gallotti and M. Barthelemy, Sci. Rep. 4, 6911 (2014).
[18] E. Strano, S. Shai, S. Dobson, and M. Barthelemy, J. R. Soc.

Interface 12, 20150651 (2015).
[19] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova,

S. Merler, A. Pastore y Piontti, K. Mu, L. Rossi, K. Sun, C.
Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini Jr., and
A. Vespignani, Science 368, 395 (2020).

[20] H. Sanhedrai and S. Havlin, Commun. Phys. 6, 22 (2023).
[21] L. G. Alvarez-Zuzek, M. A. Di Muro, S. Havlin, and L. A.

Braunstein, Phys. Rev. E 99, 012302 (2019).
[22] M. Tarrés-Deulofeu, A. Godoy-Lorite, R. Guimerà, and M.

Sales-Pardo, Phys. Rev. E 99, 032307 (2019).
[23] C. De Bacco, E. A. Power, D. B. Larremore, and C. Moore,

Phys. Rev. E 95, 042317 (2017).
[24] M. De Domenico, A. Solè-Ribalta, E. Cozzo, M. Kivelä, Y.

Moreno, M. A. Porter, S. Gòmez, and A. Arenas, Phys. Rev.
X 3, 041022 (2013).

[25] A. Zhang, A. Zeng, Y. Fan, and Z. Di, New J. Phys. 23, 073046
(2021).

[26] D. Kaiser, S. Patwardhan, and F. Radicchi, Phys. Rev. E 107,
024309 (2023).

[27] M. Wu, J. Chen, S. He, Y. Sun, S. Havlin, and J. Gao, Commun.
Phys. 5, 163 (2022).

[28] H. Cai, V. W. Zheng, and K. C.-C. Chang, IEEE Trans. Knowl.
Data Eng. 30, 1616 (2018).

[29] P. Goyal and E. Ferrara, Knowledge-Based Syst. 151, 78
(2018).

[30] W. L. Hamilton, R. Ying, and J. Leskovec, IEEE Data Eng. Bull.
40, 52 (2017).

[31] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
J. Stat. Mech.: Theory Exp. (2008) P10008.

[32] D. Kaiser, S. Patwardhan, M. Kim, and F. Radicchi,
proj_naive-embedded-reconstruction (Version 4.0.0) [Com-
puter software]. https://github.com/kaiser-dan/proj_naive-
embedded-reconstruction.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, J. Mach. Learn. Res. 12, 2825
(2011).

[34] A. Grover and J. Leskovec, in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’16), San Francisco, California, USA
(Association for Computing Machinery, New York, 2016), pp.
855–864.

[35] M. Belkin and P. Niyogi, Adv. Neural Inf. Process. Syst. 14, 585
(2001).

[36] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, California,
USA (Association for Computing Machinery, New York, 2016),
pp. 1105–1114.

[37] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, Science 290,
2319 (2000).

[38] Y.-J. Zhang, K.-C. Yang, and F. Radicchi, Phys. Rev. E 104,
044315 (2021).

[39] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys. Rev. E 78,
046110 (2008).

[40] M. De Domenico, V. Nicosia, A. Arenas, and V. Latora, Nat.
Commun. 6, 6864 (2015).

[41] C. Sarkar and S. Jalan, Chaos 28, 102101 (2018).
[42] L. Peel, T. P. Peixoto, and M. De Domenico, Nat. Commun. 13,

6794 (2022).
[43] A. Ghavasieh and M. De Domenico, Phys. Rev. Res. 2, 013155

(2020).
[44] A. Ghavasieh, G. Bertagnolli, and M. De Domenico, Phys. Rev.

Res. 5, 013084 (2023).
[45] T. Saito and M. Rehmsmeier, PLoS One 10, e0118432 (2015).

024313-11

https://doi.org/10.1186/s12544-023-00580-7
https://doi.org/10.1016/j.dcan.2018.10.011
https://doi.org/10.1073/pnas.1318469111
https://doi.org/10.1038/srep06911
https://doi.org/10.1098/rsif.2015.0651
https://doi.org/10.1126/science.aba9757
https://doi.org/10.1038/s42005-023-01138-8
https://doi.org/10.1103/PhysRevE.99.012302
https://doi.org/10.1103/PhysRevE.99.032307
https://doi.org/10.1103/PhysRevE.95.042317
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1088/1367-2630/ac136d
https://doi.org/10.1103/PhysRevE.107.024309
https://doi.org/10.1038/s42005-022-00928-w
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1016/j.knosys.2018.03.022
http://sites.computer.org/debull/A17sept/p52.pdf
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://github.com/kaiser-dan/proj_naive-embedded-reconstruction
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1103/PhysRevE.104.044315
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1038/ncomms7864
https://doi.org/10.1063/1.5040897
https://doi.org/10.1038/s41467-022-34267-9
https://doi.org/10.1103/PhysRevResearch.2.013155
https://doi.org/10.1103/PhysRevResearch.5.013084
https://doi.org/10.1371/journal.pone.0118432

