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Influence maximization: Divide and conquer
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The problem of influence maximization, i.e., finding the set of nodes having maximal influence on a network,
is of great importance for several applications. In the past two decades, many heuristic metrics to spot influencers
have been proposed. Here, we introduce a framework to boost the performance of such metrics. The framework
consists in dividing the network into sectors of influence, and then selecting the most influential nodes within
these sectors. We explore three different methodologies to find sectors in a network: graph partitioning, graph
hyperbolic embedding, and community structure. The framework is validated with a systematic analysis of real
and synthetic networks. We show that the gain in performance generated by dividing a network into sectors
before selecting the influential spreaders increases as the modularity and heterogeneity of the network increase.
Also, we show that the division of the network into sectors can be efficiently performed in a time that scales
linearly with the network size, thus making the framework applicable to large-scale influence maximization
problems.
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I. INTRODUCTION

The spread of news, ideas, rumours, opinions, and aware-
ness in social networks is generally analyzed in terms of
processes of information diffusion [1–4]. A well-established
feature of this type of processes on real, heterogeneous
networks is that a small fraction of nodes may have a dis-
proportionately large influence over the rest of the system
[3,5,6]. Therefore, influence maximization (IM)—the prob-
lem of finding the optimal set of nodes that have the most
influence or the largest collective reach on the network—is
central for potentially many applications [3,7].

Kempe et al. were the first to formalize the IM problem
[8]. They showed that the problem is NP-hard, and that so-
lutions to the IM problem can only be approximated. Also,
they proposed a greedy optimization algorithm guaranteeing
a solution that is within a factor (1 − 1/e) � 0.63 from the
optimal solution for two main classes of spreading models.
Greedy optimization consists in building the set of influential
spreaders in a network sequentially by adding one spreader
at a time to the set. At each stage of the algorithm, the
best spreader is chosen as the node, among those outside the
current set of optimal spreaders, that generates the largest
increment in the influence of the set of spreaders. Importantly,
the gain in influence that a candidate spreader could bring is
estimated by adding it to the current set of already selected
spreaders, and simulating numerically the spreading process.
This procedure, although computationally expensive, allows
for properly assessing the combined influence that multiple
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spreaders usually have in a network. The original recipe by
Kempe et al. can be applied to relatively small networks only.
Followup studies further improved upon the complexity of the
greedy algorithm proposed by Kempe et al., allowing for the
study of IM problems in larger settings [3,9–13]. Speedup
is also possible by first dividing the network into sectors,
and then performing greedy optimization within each sector
separately [3,10–13]. In these approaches, sectors are gen-
erally identified in terms of network communities. Finding
communities in networks is a task that can be performed in
a time that grows linearly with the network size [14]. How-
ever, since these algorithms still rely on the estimation of the
influence function via numerical simulations, they can only
be used to deal with IM problems on networks of moderate
size.

As more efficient alternatives, several purely topological
metrics of node centrality were proposed to quantify the
influence of the nodes [5,9,15–17]. The assumption behind
this approach is that a topological centrality metric is a
good proxy for dynamical influence. As the computation of
a network centrality metric does not involve simulating the
actual spreading process, centrality-based algorithms can be
applied to study the IM problem in large-scale networks.
However, their performance in approximating solutions to the
IM problem is systematically worse than that of the greedy
algorithm [6].

A common drawback of centrality-based algorithms is as-
suming that each seed acts as an independent spreader in the
network so that the influence of a set of spreaders is given by
the sum of the influence of each individual seed. This is clearly
a weak assumption. For example, it is well known that, even in
the case of simple contagion models like the independent cas-
cade model, solutions of the IM problem consist of influential

2470-0045/2023/107(5)/054306(12) 054306-1 ©2023 American Physical Society

https://orcid.org/0000-0002-7355-355X
https://orcid.org/0000-0002-9039-4730
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.054306&domain=pdf&date_stamp=2023-05-24
https://doi.org/10.1103/PhysRevE.107.054306


PATWARDHAN, RADICCHI, AND FORTUNATO PHYSICAL REVIEW E 107, 054306 (2023)

nodes that are sufficiently far apart in the network [18,19].
Two main ways of alleviating this issue are considered in
the literature. A first way consists in defining an adaptive
version of the centrality metric at hand, so that the effect of the
already selected spreaders is discounted from the estimation
of the influence of the nodes under observation. This trick is
able to greatly improve the performance of even basic degree
centrality, whose adaptive version excels in performance [6].
A second way proposed by Chen et al. is first partitioning
the network into sectors, and then estimating nodes’ influence
within their own sectors [20]. The rationale behind this pro-
cedure is that sectors represent relatively independent parts of
a network, thus selecting seeds from different sectors repre-
sents a straightforward way of reducing the overlap between
portions of the network that multiple spreaders are able to
influence. The rationale is similar to the one used in greedy
optimization performed on network communities [3,10–13];
however, sectors in Chen et al. are obtained by clustering
nodes on the basis of the node2vec algorithm embedding
[21]. One of the advantages of using geometric embedding
instead of community structure is the possibility of having
full control on the number of sectors used in the division
of the network. On the other hand, identifying sectors in a
high-dimensional space as the one generated by node2vec is
computationally expensive. Further, in the procedure by Chen
et al., the number of sectors is set equal to the number of
spreaders that should be identified, requiring therefore finding
sectors afresh whenever the size of the seed set is varied. The
result is an algorithm that does not scale well with the system
size. More recently, an approach similar to the one by Chen
et al. was also considered by Rajeh and Cherifi [22]. Instead
of relying on graph embedding, Rajeh and Cherifi divide the
network into sectors by leveraging the clusters obtained by
popular community detection algorithms like Louvain [23]
and Infomap [24].

In this paper, we generalize and combine the above ideas
into a scalable approach. We propose a pipeline consisting
in dividing the network into sectors and then choosing in-
fluential spreaders based on the division of the network into
sectors. Scalability is obtained by imposing the number of
sectors to be independent from the number of spreaders. We
explore three different methodologies to divide the network
into sectors, namely graph partitioning, community structure,
and hyperbolic graph embedding. The first two methods al-
low us to identify sectors in the graph in a time that grows
linearly with the network size. The use of centrality metrics
like adaptive degree centrality that also can be computed in
linear time allows us to produce solutions to the IM problem
in large networks. Hyperbolic embedding requires instead a
time that grows quadratically with the network size, but allows
for a flexible and straightforward way of identifying network
sectors. The method can be used only in sufficiently small
networks.

We systematically validate our approach on a large cor-
pus of real-world networks, demonstrating its effectiveness
in approximating solutions to the IM problem. Furthermore,
we leverage the Lancichinetti-Fortunato- Radicchi (LFR) net-
work model [25] to show that the method is particularly useful
in solving IM problems on modular and heterogeneous net-
works.

II. METHODS

A. Networks

1. Real networks

We take advantage of a corpus of 52 undirected and un-
weighted real-world networks. Sizes of these networks range
from N = 500 to N = 26 498 nodes. The upper bound on
the maximum size of the networks analyzed is due to the
high complexity of the greedy optimization algorithm, which
we use as the baseline for estimating the performance of
the other algorithms. We consider networks from different
domains. Specifically, our corpus of networks includes social,
technological, information, biological, and transportation net-
works. Details about the analyzed networks can be found in
Appendix A.

2. LFR model

To systematically analyze the dependence of the proposed
algorithm’s performance on the modularity and the hetero-
geneity of the network structure, we use the LFR network
model [25], commonly adopted as benchmark for community
detection algorithms [26]. The LFR model allows us to gener-
ate synthetic networks with power-law distributions of degree
and community size. Parameters of the model are the power-
law exponent of the degree distribution τ1, the average degree
〈k〉, the maximum degree kmax, the power-law exponent of the
community size distribution τ2, and the mixing parameter μ,
which is the average fraction of neighbors outside the com-
munity of a node. In our experiments, we vary the values of
the parameters τ1 and μ, while we keep the values of the other
parameters fixed. τ1 and μ are particularly important as they
control fundamental features of the networks. The parameter
τ1 allows us to control for the heterogeneity of the degree dis-
tribution of the network. Low τ1 values yield heterogeneous
networks; high values of τ1 yield networks with homogeneous
degree distributions. The parameter μ controls for the strength
of the planted community structure. Low values of μ indicate
well separated and pronounced communities; the larger μ is,
the less strong the community structure is.

B. Independent cascade model

In this work, we focus our attention on the independent
cascade model (ICM) which is one of the most studied spread-
ing models in the context of influence maximization (IM) [8].
The ICM is a discrete-time contagion model, similar in spirit
to the susceptible-infected-recovered model [27]. In the initial
configuration, all nodes are in the susceptible state, except for
the nodes in the set of spreaders that are in the infected state.
At a given time step, each infected node first attempts to infect
its susceptible neighbors with probability p, and then recov-
ers. Recovered nodes no longer participate in the dynamics.
The dynamics proceeds by repeating the previously described
iteration over the newly infected nodes. The spreading process
stops once there are no infected nodes remaining in the net-
work. The influence of the set of spreaders is quantified as the
size of the outbreak, i.e., the number of nodes that are found
in the recovered state at the end of the dynamics. Clearly, this
number may differ from realization to realization of the model
due to the stochastic nature of the spreading events. The IM
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problem consists in finding the set of spreaders leading to the
largest average value of the outbreak size [8]. The optimiza-
tion is constrained by the number of nodes that can compose
the set of spreaders. The typical setting in practical applica-
tions consists in finding a small set of spreaders in a very large
network.

As a function of the spreading probability p, the ICM
displays a transition from a nonendemic regime, where the
size of the outbreak is small compared to the network size,
to an endemic regime, where the outbreak involves a large
portion of the nodes in the network. The IM problem is par-
ticularly challenging and interesting around the point where
such a change of regime occurs. We define it as the pseud-
ocritical value p∗ of the ordinary bond-percolation model on
the network. Specifically, p∗ represents the threshold between
the nonendemic and endemic regimes for the ICM started
from one randomly chosen seed; this fact follows from the
exact mapping of critical SIR-like spreading to bond per-
colation on networks [28]. We stress that each network is
characterized by a different p∗ value; the numerical estima-
tion of a network’s p∗ is performed using the Newman-Ziff
algorithm [29,30].

C. The divide-and-conquer algorithm

The input of our algorithm is an unweighted and undirected
network G = (V, E ), with set of nodes V and set of edges E .
We denote the size of the network as N = |V |. The algorithm
requires also to choose the number k of desired influential
spreaders, and the number S of sectors used to divide the
network. The divide-and-conquer (DC) algorithm consists of
two main components (see Fig. 1). First, we divide the net-
work into S sectors, or vertex subsets, V1,V2, . . . ,VS . We have
V = ⋃S

i=1 Vi and Vi ∩ Vj = ∅ for all i �= j. Second, we form
the set of k influential spreaders by adding one node at a
time to the set. Starting from an empty set, at each of the k
iterations, we first select a random sector with probability pro-
portional to its size, and pick the most influential node in the
sector that is not already included in the set of spreaders. One
can use any suitable methodology to divide the network and
any suitable centrality metric to select influential spreaders
from the sectors. Clearly, for S = 1 no actual division of the
network into sectors is performed. In this case, the selection of
influential spreaders is made relying on the centrality metric
scores only, thus according to the standard procedure used
in the literature [6]. For S = N , seed nodes are randomly
selected.

We note that the above procedure is conceptually identical
to the one introduced by Chen et al. [20] and Rajeh and Cherifi
[22]. However, there are a few important practical differences.
First, Chen et al. consider high-dimensional node2vec em-
beddings only [21]. node2vec requires a nontrivial calibration
of several hyperparameters that is known to be essential for
task performance, but adds significant computational burden
to the procedure [31]. Also, the high-dimensionality of the
node2vec-embedding space makes the identification proce-
dure of the sectors nontrivial. Finally, Chen et al. impose
S = k, with one seed selected per sector. This fact implies that
increasing the seed set from k to k + 1 requires redefining the
sectors afresh, an operation that requires a time that grows

FIG. 1. The divide-and-conquer approach to influence maxi-
mization. The network is first divided into sectors of influence, here
represented by different colors. Each influential spreader is chosen
by first selecting a random sector with probability proportional to
its size, and then selecting a node within the sector, that is not yet
part of the set of spreaders, according to some criterion, typically the
value of a centrality score. The operation is iterated until a desired
number of spreaders is selected. The size of each node in the figure is
proportional to its degree, here used to proxy nodes’ influence. Seven
influential spreaders, depicted as bold circles, are selected from the
four available sectors.

at least linearly with the network size N . Since in IM prob-
lems one typically uses a number of spreaders proportional
to the size of the system [6], the resulting complexity of the
algorithm is at least quadratic. On the other hand, most com-
munity detection algorithms, such as those used by Rajeh and
Cherifi, do not allow one to control for the size and number
of discovered communities. This has a nontrivial impact on
the performance of the selected seeds, as demonstrated in
Sec. III C of this work.

1. Dividing the network

We consider three possible methods of dividing a network
into sectors: (i) graph partitioning, (ii) graph hyperbolic em-
bedding, and (iii) community structure. Below, we briefly
summarize each of these methods.

Graph partitioning consists in splitting a graph into an
arbitrarily chosen number of sectors of roughly equal size,
such that the total number of edges lying between the corre-
sponding subgraphs is minimized [32,33]. To perform graph
partitioning, we take advantage of METIS [33], i.e., the al-
gorithm that implements the multilevel partitioning technique
introduced in Refs. [34] and [35]. The computational time of
METIS grows as S N [33].

Graph hyperbolic embedding is another representation that
allows to divide a network into sectors. Here, sectors are given
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by groups of close-by nodes in vector space. The geomet-
ric representation in hyperbolic space offers full control on
the size and number of sectors that can be formed. Such a
division can be performed efficiently relying on the angular
coordinates of the nodes only. This fact greatly simplifies
the identification of sectors compared to higher-dimensional
embeddings such as those considered by Chen et al. [20].
We take advantage of the algorithm named Mercator to
map nodes into the hyperbolic disk [36]. Mercator does not
have hyperparameters, so no calibration is needed. On the
weak side, Mercator performs the embedding of a network
with N nodes in a time proportional to N2, clearly limit-
ing the application of the method to small or medium-sized
networks.

Community structure also can be leveraged to divide the
network into sectors by assuming that communities represent
sectors. This idea is clearly inspired by the IM algorithms of
Refs. [3,11–13]. Roughly speaking, the community structure
of a network is a partition of the graph into groups of nodes
having higher probability of being connected to each other
than to members of other groups [26]. Plenty of algorithms
are available on the market to find community structure in
networks. Here, we take advantage of the Louvain algorithm
[23]. Louvain is known for its speed (i.e., computational
complexity grows linearly with the number of nodes in the
network). It has major limitations [26], but our procedure does
not demand high accuracy in the detection of communities
and we do not expect results to be dramatically different
if one used another community detection algorithm. For in-
stance, we consider two other popular community detection
methods: Infomap [24] and label propagation [37]. Results
reported in Appendix B indicate that the performance is only
mildly affected by the specific community detection algo-
rithm used, with Louvain slightly outperforming the other
two methods. Note that Rajeh and Cherifi also explore this
idea in [22] using Louvain and Infomap [23,24]. Compared
to graph partitioning and graph embedding, an apparent issue
in using community structure to define sectors of influence
is that community detection algorithms do not generally of-
fer the possibility to control for the size and the number of
communities. Community detection methods that allow one
to tune the size and/or number of communities to be found
exist in the literature [14]. However, we do not consider these
methods in the present analysis. We expect these methods to
generate network sectors similar to those obtained via graph
partitioning.

2. Conquering the network

After the network is divided into sectors, we select sectors
at random proportionally to their size. Qualitatively similar
results are obtained if sectors are selected proportionally to
their total degree (see Appendix C). The most influential
node in the selected sector is determined on the basis of
topological centrality metrics. This procedure is similar to
the one used by Chen et al. [9], but different from the one
considered in Refs. [3,10–13]. We limit our attention only to
metrics that can be computed in a time that grows almost
linearly with the network size. We rely on the following
metrics.

Adaptive degree centrality is a simple but powerful metric
for approximating nodes’ influence in IM problems [9]. The
metric is designed for the sequential construction of a set of
spreaders; in such a procedure, the adaptive degree centrality
of a node is given by the total number of connections that
a node has towards other nodes that are not included in the
current set of spreaders. Erkol et al. show that adaptive degree
is the most effective heuristic for IM through a systematic
comparison of 18 centrality metrics [6]. Unless otherwise
specified, all our implementations of the DC algorithm rely
on adaptive degree centrality.

Collective influence is a natural generalization of adaptive
degree centrality [5]. When computed for node i, the metric
is a function of the degrees of the nodes that are at shortest-
path distance � from node i. � is a free integer parameter. For
� = 0, the metric reduces to adaptive degree centrality. We
report results obtained for � = 2, which is a standard setting
in IM problems [6].

Eigenvector centrality measures a nodes importance while
considering the relative importance of its neighbors. It assigns
relative scores to all nodes in the network such that an edge to
a more central node contributes more to a node’s score than
an edge to a less central node [38].

D. Notation

For the sake of compactness, we adopt the following nota-
tion for the various methods used to approximate solutions
of the IM on networks. The strategy used to proxy the in-
fluence of individual nodes is denoted by lower-case letters.
Specifically, we use g to denote greedy optimization, and r
to indicate random selection. For the metrics of centrality we
use a to indicate adaptive degree centrality, c for collective
influence, and e for eigenvector degree centrality. If the above
metrics of centrality are used within our proposed DC scheme,
then we use a notation where the lower-case letter of the
centrality metric is preceded by an upper-case letter indicating
the specific method used to define sectors. We use P to denote
graph partitioning, E for hyperbolic graph embedding, and
C for community structure. For example, the method m that
leverages hyperbolic graph embedding to boost the perfor-
mance of adaptive degree centrality is denoted as m = Ea; the
method m that uses community structure in combination with
eigenvector centrality is denoted as m = Ce.

E. Metrics of performance

We measure the performance of each method using a
metric similar to the one defined in Ref. [6]. Indicate with
X (k)

m = {x(1)
m , x(2)

m , . . . , x(k)
m } the set of the k seeds identified by

the method. We estimate the average value of the outbreak
size generated by the set X (k)

m by performing 500 simulations
of the ICM. Indicate this quantity as O(k)

m . We then compute
the sum

Am =
11∑

k=1

O(rk )
m , (1)

where rk = 	[0.01 + (k − 1)0.004] N
 and 	·
 is the floor
function. This metric approximates the overall performance of
the method m in building sets of influential spreaders of sizes
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FIG. 2. Influence maximization on real-world networks. (a) For
each real network, we evaluate the critical spreading probability
p∗. Set of spreaders are identified either using greedy optimization
or random selection. We then evaluate the performance metric of
Eqs. (2) using 500 ICM realizations for each value of the spreading
probability p. We plot the difference Rg − Rr as a function of the
relative spreading rate, i.e., the ratio p/p∗. Results stem from the 52
real networks considered in our analysis. The orange line in the box
plot represents the median value. The boxes show the first and third
quartiles of the data, and the whiskers extend from the box to include
the 1.5 interquartile range. The blue points are the data points not
included within the error bars. (b) Same as in panel (a), but we plot
Ag − Ar, as defined in Eq. (1), as a function of the ratio p/p∗.

ranging from 1% to 5% of the network size. The increment
0.004 only serves to divide this range in 10 bins of equal size.
We finally compute the ratio

Rm = Am

Ag
. (2)

According to the above metric, the performance of the method
is measured relatively to the baseline provided by greedy op-
timization, i.e., Ag. The normalization serves to make values
of the metric comparable across networks of different size.

III. RESULTS

A. Spreading probability

The value of the spreading probability p has a consider-
able impact on the outcome of the spreading process, and
consequently on the properties of the associated IM problem.
Trivially, for p = 0 or p = 1, any strategy for choosing the
set of spreaders is equivalent in terms of performance. The
problem becomes non trivial in the vicinity of the pseudo-
critical point p∗, where uncertainty in the outcome of the
spreading process is maximal if seeds are chosen at random,
but appropriately setting the initial condition of the spreading
should strongly determine the actual size of the outbreak. In
this section, we emphasize the importance of studying the
spreading process near the critical threshold p∗. We show
results for the 52 networks in our corpus in Fig. 2. We plot
Rg − Rr as a function of the relative spreading probability,
i.e., p/p∗. Note that each network has its own p∗ value. The
curve Rg − Rr assumes high values for p � p∗ and drops
quickly for p � p∗. The discrepancy between the random and
greedy selection strategies is also well characterized by the
difference Ag − Ar, which peaks around p � p∗. Assuming
that a generic algorithm for IM displays a performance that

is bounded above by the greedy algorithm and bounded below
by random selection, we deduce that p � p∗ is the regime of
the dynamics where different algorithms to approximate the
IM problem should be compared. We use the setup p = p∗ in
all the experiments conducted in this paper.

B. Number of sectors

The proposed DC approach involves first dividing the
nodes into S subsets, and then determining the most central
nodes within the various sectors. The choice of the param-
eter S influences the performance and the efficiency of the
approach.

We note that the conquer component of the algorithm has
computational complexity that is independent of S. For exam-
ple, computing adaptive degree centrality requires a time that
grows as N log N [39]. However, computing other centrality
metrics may be more demanding than that.

The computational complexity of the divide component of
the algorithm depends on the specific method utilized. Finding
communities with Louvain requires a time that grows slightly
superlinearly with the network size N [23]; the number of
communities S is not a freely tunable parameter, thus the
computational time does not have any explicit dependence
on it. Embedding a graph in hyperbolic space with Mercator
requires a time that grows quadratically with the system size
[36]. Once the embedding is given, the S sectors can be found
by first sorting the angular coordinates of the nodes, thus
requiring a time that grows slightly superlinearly with N , and
then obtaining S slices in a time that grows linearly with S.
The computational complexity of METIS grows as S N [33];
it is therefore advisable choosing S growing at most logarith-
mically with the network size N in order to avoid significant
computational burden.

We find that using a value of S between 10 and 20 yields
the optimal relative outbreak size for the real networks in

FIG. 3. Sectors of influence in real-world networks. We display
the average performance of the DC approach based on graph par-
titioning and adaptive degree centrality, i.e., Rg − RPa [Eq. (2)], as
a function of the number of sectors S. S = k indicates that sectors
are varied between 	0.01N
 to 	0.05N
 as we compute the metric of
Eq. (1). Performance values shown in the figure are averaged over the
52 networks in our corpus. The outbreaks sizes were obtained from
500 independent simulations of the ICM.
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FIG. 4. Performance of the divide-and-conquer algorithm on real networks. (a) Each point in the graph is a real-world network. Their
coordinates are given by the estimated ratios RPa and Ra, representing the performance of the divide-and-conquer algorithm leveraging adaptive
degree using ten sectors and the one using only one sector, respectively. The dashed line indicates equal performance of the two methods.
(b) Same as in panel (a), but for RPc and Rc, i.e., influence of nodes is estimated using collective influence (parameter � = 2 in this tests).
(c) Same as in panel (a), but for RPe and Re, i.e., influence of nodes is estimated using eigenvector centrality.

our corpus. Clearly, not all the networks are characterized by
the same optimal S value; however, we see that any value
of S > 1 gives us some advantage over S = 1. In this paper
we set the value of S = 10, unless specified otherwise. We
justify this choice of S by comparing the metric RPa defined in
Eq. (2) for different values of S. We compare the performance
for S = 1, 2, 3, 5, 10, 20 in Fig. 3. In the figure, we include
also results obtained by setting S equal to the number of k
influencers. Please note that this number is not constant, but
varied between 	0.01N
 to 	0.05N
 while estimating Eq. (1).
We see that S = 10 is the best choice for our approach.

C. Influence maximization in real and synthetic networks

We consider critical ICM dynamics, and monitor how the
size of the outbreak changes as a function of the size of the
seed set. We use different variants of the DC algorithm based
on graph partitioning, where the influence of individual nodes
is estimated based on adaptive degree centrality, collective

influence and eigenvector centrality, respectively. We consider
S = 10 and S = 1 sectors. For S = 1, there is effectively no
divide component in the DC algorithm, thus making it equiv-
alent to the traditional approach to the IM problem considered
in the literature [6]. In Fig. 4 we compare directly the metrics
of performance of Eq. (2) obtained with S = 10 and S = 1
over the entire corpus of real networks. The ratios for S = 1
are indicated by Ra, Rc. and Re, for adaptive degree, col-
lective influence, and eigenvector centrality, respectively; for
S = 10, the ratios are instead indicated as RPa, RPc, and RPe.
The scatter plots show that following the divide and conquer
strategy one obtains higher scores than selecting influencers
from the network as a whole. This holds true regardless of the
centrality metric used to proxy the influence of the individual
nodes.

Finally, we study how the performance of the DC al-
gorithm depends on the type of method implemented to
divide the network into sectors. We find that RPa � RCa for
44 out of 52 real networks, meaning that graph partitioning

FIG. 5. Performance of the divide-and-conquer algorithm on real networks. (a) Each point in the graph is a real-world network. Their
coordinates are given by the estimated RPa and RCa values, representing the performance of the divide-and-conquer (DC) algorithm leveraging
graph partition and community structure, respectively. In both cases, after the network is divided into sectors, the influence of individual nodes
is estimated using adaptive degree centrality. The dashed lines indicate equal performance between the two methods. (b) Same as in panel
(a), but comparing RPa and REa, i.e., the performance the DC algorithm based on graph hyperbolic embedding. (c) Same as in (a) and (b), but
comparing RCa and REa.
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FIG. 6. Performance of the divide-and-conquer algorithm on synthetic networks. (a) We generate synthetic networks using the LFR model
[25]. We consider networks with N = 1000 nodes, community size power-law exponent τ2 = 1, average degree 〈k〉 = 10, and maximum
degree kmax = 70. We plot the ratio RPa/Ra as a function of the mixing parameter μ. Different curves correspond to different values of the
degree exponent τ1. (b) We consider the same networks as in panel (a), but we plot RPa/Rc as a function of μ.

is better suited than community structure to define sectors
of influence in a real network [Fig. 5(a)]. The same re-
sult holds for the comparison RPa vs REa [Fig. 5(b)]. Graph
embedding and community structure yield instead similar
performance [Fig. 5(c)].

We generate LFR networks with N = 1000 nodes [25]. We
vary the mixing parameter μ from 0.05 to 0.40 to control
for the strength of the planted community structure and the
degree exponent τ1 from 1.7 to 4.0 to tune the heterogeneity
of the degree distribution. We set the community size power-
law exponent τ2 = 1.0, the average degree 〈k〉 = 10, and the
maximum degree kmax = 70.

For each network, we identify the best set of seed nodes
using three different strategies. Two of these strategies do not
involve the division of the network in any sectors; we simply
identify the top spreaders via adaptive degree centrality and
collective influence with � = 2 in the entire network. The third
strategy takes advantage of the DC algorithm with S = 10
sectors defined using graph partitioning; top influencers are
identified based on adaptive degree centrality on the various
sectors. In Fig. 6, we display the ratios RPa/Ra and RPa/Rc

as functions of the mixing parameter μ of the model. Results
are obtained by averaging the ratios over 50 realizations of
the network model and of the procedure for the identification
of the spreaders. We report results for different values of the
degree exponent τ1. As in the case of real networks, dividing
the network into sectors allows us to obtain better solutions
to the IM problem than those obtained without any division.
The gain in performance increases as the degree heterogeneity
of the nodes and the strength of the modular structure of the
network increase.

The DC approach performs better than a purely centrality-
based one on modular networks as these networks allow for a
meaningful division into sectors. Given the modular structure
of the graph, choosing spreaders from different sectors is
required for successful spreading, as the low density of inter-
community edges makes spreading across modules difficult.
On the other hand, a purely centrality-based selection protocol
likely leads to selecting many influential spreaders within the

same set of modules, thereby leading to suboptimal redun-
dancy. Community detection algorithms help in finding these
sectors. However, for many real networks, they often find
communities with highly heterogeneous size distributions,
i.e., some communities are considerably large in comparison
to the network. Choosing influencers from large communities
leads to the same problems as of traditional approaches that do
not rely on the division of the graph into sectors of influence.
Graph partitioning and graph hyperbolic embedding are able
to circumvent this issue but graph partitioning is able to find
more meaningful clusters for IM, as seen in Fig. 5.

Furthermore, the advantage of using a DC strategy instead
of a purely centrality-based one is more apparent in hetero-
geneous networks than in homogeneous networks. This is the
consequence of the fact that large-degree nodes tend to be in
large communities; thus, a purely centrality-based selection
protocol still selects redundant spreaders from a limited set of
clusters, rather than distributing them in different parts of the
graph. The DC approach clearly overcomes such a limitation.
This fact is confirmed in the results of Fig. 9, where we
quantify the number of influential spreaders selected in each
planted community by the two different protocols.

IV. DISCUSSION

We proposed a two-step strategy to search for effective
influencers in networks. By dividing the graph into sectors and
finding influencers independently in each sector, via widely
adopted centrality scores, we showed that it is possible to
increase the relative outbreak size with respect to algorithms
sorting nodes based on their centrality in the whole network.
The improvement is larger, the more modular the graph is and
the more heterogeneous its degree distribution is. The gain
produced by our distributed approach does not come at the ex-
pense of the time complexity of the procedure, as the division
of the network into (a constant number of) sectors can be done
in linear time, so the total complexity is dominated by the cal-
culation of the centrality scores. Our numerical experiments
show that graph partitioning techniques are highly effective
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TABLE I. List of the real networks analyzed in the study. From left to right we report the name of the network, its type, the number of
nodes in the giant component, the number of edges in the giant component, the percolation threshold, references to studies where the network
is presented and analyzed, and the URL where the network can be found.

Network Type N E p∗ Ref. URL

US Air Transportation transportation 500 2980 0.026 [40] [41]
URV email social 1133 5451 0.056 [42] [43]
Political blogs information 1222 16714 0.015 [44] [41]
Air traffic transportation 1226 2408 0.163 [45] [46]
Petster, hamster social 1788 12476 0.025 [45] [46]
UC Irvine social 1893 13835 0.023 [47] [46]
Yeast, protein biological 2224 6609 0.071 [48] [41]
Adolescent health social 2539 10455 0.117 [49,50] [46]
USFCA social 2672 65244 0.011 [51–53] [41]
Japanese information 2698 7995 0.030 [54] [55]
Open flights transportation 2905 15645 0.020 [45,56] [46]
Pepperdine social 3440 152003 0.007 [51–53] [41]
Wesleyan social 3591 138034 0.009 [51–53] [41]
Mich social 3745 81901 0.011 [51–53] [41]
Bitcoin Alpha social 3775 14120 0.027 [57–59] [59]
Bucknell social 3824 158863 0.008 [51–53] [41]
Howard social 4047 204850 0.006 [51–53] [41]
GR-QC, 1993-2003 social 4158 13422 0.091 [59,60] [59]
Tennis social 4338 81865 0.007 [61] [62]
US Power Grid technological 4941 6594 0.437 [63] [64]
HT09 social 5352 18481 0.025 [65] [66]
Hep-Th, 1995-1999 social 5835 13815 0.108 [67] [64]
Bitcoin OTC social 5875 21489 0.023 [57–59] [59]
Reactome biological 5973 145778 0.011 [45,68] [46]
Jung technological 6120 50290 0.009 [45,69] [46]
Gnutella, Aug. 8, 2002 technological 6299 20776 0.046 [59,60,70] [59]
JDK technological 6434 53658 0.009 [45] [46]
UChicago social 6561 208088 0.008 [51–53] [41]
UC social 6810 155320 0.010 [51–53] [41]
Wikipedia elections social 7066 100736 0.008 [59,71,72] [59]
English information 7377 44205 0.011 [54] [55]
Gnutella, Aug. 9, 2002 technological 8104 26008 0.045 [59,60,70] [59]
French information 8308 23832 0.022 [54] [55]
Hep-Th, 1993–2003 social 8638 24806 0.072 [59,60] [59]
Gnutella, Aug. 6, 2002 technological 8717 31525 0.065 [59,60,70] [59]
Gnutella, Aug. 5, 2002 technological 8842 31837 0.056 [59,60,70] [59]
PGP social 10680 24316 0.064 [73] [43]
Gnutella, Aug. 4, 2002 technological 10876 39994 0.076 [59,60,70] [59]
Hep-Ph, 1993–2003 social 11204 117619 0.005 [59,60] [59]
Spanish 1 information 11558 43050 0.012 [54] [59]
DBLP, citations information 12495 49563 0.032 [45,74] [46]
Spanish 2 information 12643 55019 0.012 [45] [46]
Cond-Mat, 1995–1999 social 13861 44619 0.064 [59,67] [59]
Astrophysics social 14845 119652 0.018 [67] [64]
AstroPhys, 1993–2003 social 21363 91286 0.037 [59,60] [59]
Gnutella, Aug. 25, 2002 technological 22663 54693 0.115 [59,60,70] [59]
Internet technological 22963 48436 0.019 None [64]
Thesaurus information 23132 297094 0.011 [45,75] [46]
Cora information 23166 89157 0.045 [45,76] [46]
AS Caida technological 26475 53381 0.021 [59,77] [59]
Gnutella, Aug. 24, 2002 technological 26498 65359 0.106 [59,60,70] [59]

054306-8



INFLUENCE MAXIMIZATION: DIVIDE AND CONQUER PHYSICAL REVIEW E 107, 054306 (2023)

FIG. 7. Performance of the divide-and-conquer algorithm on real networks with different community detection algorithms. (a) Each point
in the graph is a real-world network. Their coordinates are given by the estimated ratios RCa obtained using either Louvain or label propagation
to detect communities. The dashed line indicates equal performance of the two methods. (b) Same as in panel (a), but for the comparison
between Louvain and Infomap. (c) Same as in panel (a), but for the comparison between Infomap and label propagation.

at identifying the sectors, in comparison to other previously
explored approaches like community detection [20] and graph
embedding [22]. We expect a similar performance to occur if
sectors are identified by community detection methods that
allow to tune the size and/or number of communities to be
detected. We leave such an extension to future research.
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APPENDIX A: REAL NETWORKS

Table I summarizes the information of the 52 networks
considered in the corpus. We report the name of the network,
its type, the number of nodes and edges in the giant compo-
nent, the critical percolation threshold, references to studies
where the network is presented and analyzed, and the URL
for the data.

APPENDIX B: COMMUNITY DETECTION ALGORITHMS

We consider three popular community detection algorithms
in our approach to divide the network into sectors; Louvain
[23], Infomap [24], and label propagation [37]. After the net-
work is divided into sectors, we choose the most influential
nodes from each sector. Note that the number of influencers
picked from each sector is proportional to the size of the
sector. Again, we consider critical ICM dynamics and monitor
how the size of the outbreak changes as a function of the size
of the seed set. We compare the metric RCa of Eq. (2) obtained
by finding communities with the three different community

detection methods. We see comparable performance across
the methods, with Louvain yielding the best performance over
the corpus of 52 real networks (see Fig. 7).

APPENDIX C: DEGREE-BASED SAMPLING

In Fig. 8, we display the comparison between the size-
based and the degree-based sampling of sectors. Here, sectors
are given by communities identified using Louvain. The size-
based sampling strategy is the one used in the entire paper:
sectors are selected at random proportionally to the total
number of nodes they contain. In the degree-based sampling,
the weight of each sector is instead given by the sum of the
nodes’ degrees within the sector. Results of Fig. 8 indicate that
performance is not much affected by the sampling strategy
adopted.

FIG. 8. Performance of the divide-and-conquer algorithm on real
networks with a degree-based sampling strategy. Each point in the
graph is a real-world network. Their coordinates are given by the
estimated ratios RCa obtained using either the size-based or the
degree-based sampling strategy for the sectors, as described in Ap-
pendix B.
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FIG. 9. Selection of influential spreaders in synthetic networks. (a) Each point in the plot represents a planted community in
the LFR model. For each community, we display the number of influential spreaders selected from the community and the size of
the community. Different colors and symbols correspond to sets of influential spreaders selected using adaptive degree centrality (a,
blue) or graph partitioning and adaptive degree centrality (Pa, orange). Results are obtained for N = 1000, μ = 0.05, τ2 = 1, 〈k〉 =
10, kmax = 70, and τ1 = 1.7. The latter yields a heterogeneous degree distribution. We consider 50 instances of the LFR model. In
each network instance, we select the top 50 spreaders. (b) Same in panel (a), but for τ1 = 3.5, which yields a homogeneous degree
distribution.

APPENDIX D: EFFECT OF DEGREE HETEROGENEITY

In Fig. 9, we highlight differences in the choice of the in-
fluential spreaders in networks with strong modular structure,
but variable degree heterogeneity. The DC approach tends to

select influential spreaders from the various planted commu-
nities in a more uniform manner than a purely centrality-based
selection protocol; such a difference is more apparent in
networks with heterogeneous degree distributions than in net-
works with homogeneous degree distributions.
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