CSCI 241H:

HOMEWORK 6

Show your work.

Prove the following by induction. Show all steps.

1. $\sum_{i=1}^{n} i^{3}=(n(n+1) / 2)^{2}$ for positive integer n.

True for $k=1$. Assume for k : $\sum_{i=1}^{k} i^{3}=(k(k+1) / 2)^{2}$.
Check for $k+1$:
$\sum_{i=1}^{k+1} i^{3}=\sum_{i=1}^{k} i^{3}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=\frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4}=$ $\frac{(k+1)^{2}(k+2)^{2}}{4}$
2. $\sum_{j=0}^{n}\left(-\frac{1}{2}\right)^{j}=\frac{2^{n+1}+(-1)^{n}}{3 \cdot 2^{n}}$ for nonnegative integer n. Hint: You might want to consider two different cases for n.
The trick is to look at even n and odd n separately. I will only show the analysis with even n. Odd is very similar, and of equal difficulty. Since I want n to be even, I will go from k to $k+2$. Thus, I need to check two base cases, say 0 and 1 . Let's assume it holds for even k, it becomes a bit simpler:
$\Sigma_{j=0}^{k}\left(-\frac{1}{2}\right)^{j}=\frac{2^{k+1}+1}{3 \cdot 2^{k}}$
Now to write it for $k+2$ - you could also write for $k+1$, you would still need to consider two cases.
$\Sigma_{j=0}^{k+2}\left(-\frac{1}{2}\right)^{j}=\frac{2^{k+1}+1}{3 \cdot 2^{k}}-1 / 2^{k+1}+1 / 2^{k+2}=\frac{4 \cdot\left(2^{k+1}+1\right)}{3 \cdot 2^{k+2}}-\frac{3}{3 \cdot 2^{k+2}}=\frac{2^{k+3}+4-3}{3 \cdot 2^{k+2}}$
This completes the proof.
3. $3^{n}<n$! if n is an integer greater than 6 .
$k=6$ checks.
Write for k : $3^{k}<k$!.
Check for $k+1: 3^{k+1}=3 \cdot 3^{k}<3 \cdot k!<(k+1) \cdot k!=(k+1)$!
4. $4^{n+1}+5^{2 n-1}$ is divisible by 21 if n is a positive integer.

Checks for $k=1$
Assume for k : $4^{k+1}+5^{2 k-1}=21 p$ for some positive integer p.
Write for $k+1: 4^{k+2}+5^{2 k+1}=4 \cdot 4^{k+1}+25 \cdot 5^{2 k-1}=4\left(4^{k+1}+5^{2 k-1}\right)+$ $21 \cdot\left(5^{2 k-1}\right.$
The first term is divisible by 21 by the I.H., the second because it's 21 times an integer, the proof follows.

