CSCI 241H:

HOMEWORK 5

Show your work.

1. If I tell you that the running time of my program is at least $O(f(x))$, why is this statement meaningful?
This statement is meaningful because it has a truth value: it's always true. However, you might have observed that it has no information value since it says nothing about the actual complexity of the problem, as any function is at least $O(f(x))$. (why?) You will get full points for noticing either case.
2. Let $f(x)$ be $O(g(x))$ and $g(x)$ be $O(h(x))$. Show that $k(x)=3 f(x)+$ $5 g(x)+8 h(x)$ is $O(h(x))$.

So there are $k_{1}, k_{2}, c_{1}, c_{2}$ such that for $x>k_{1} f(x) \leq c_{1} g(x)$ and for $x>k_{2} g(x) \leq c_{2} h(x)$. Let $k=\max \left(k_{1}, k_{2}\right)$. Then, for $x>k$ $f(x) \leq c_{1} c_{2} h(x)$, which implies $k(x) \leq\left(3 c_{1} c_{2}+5 c_{2}+8\right) h(x)$. That's all we need, we can set $c=3 c_{1} c_{2}+5 c_{2}+8$ and use k as our witnesses.
3. Consider the series $f(k)=\sum_{i=1}^{k} 2 k-1$. Show that $f(k)=k^{2}$. Don't look at any resources please.

Let's say $A=1+3+\ldots 2 k-1$. This has k terms, if we add 1 to each term we get $A+k=2+4+6+\ldots 2 k=2(1+2+\ldots k)=k(k+1)=k^{2}+k$. Thus $A=k^{2}$.
4. Let $0<x<1$. Show that the infinite summation $x+x^{3}+x^{5}+x^{7}+\ldots$. evaluates to $x /\left(1-x^{2}\right)$.
Let $A=x+x^{3}+x^{5}+x^{7}+\ldots$ Then $A x^{2}=x^{3}+x^{5}+x^{7}+\ldots$ Subtracting the second from the first, we get $A\left(1-x^{2}\right)=x$, so $A=x /\left(1-x^{2}\right)$.

