CSCI 241H:

HOMEWORK 3

Show your work.

1. You are given the following about the sizes of sets A and $B:|A|=$ $k ;|B|=l$, and $|A-B|=m$. What is the size of $P(A \cap B)$? Note that $P(S)$ refers to the power set of set S.
To do that you have to argue about the size of $A \cap B$. Since this set is all x such that $x \in A \wedge x \in B$, its size is $l-m$. You should argue this a bit more formally by arguing that $A-B$ and $A \cap B$ are disjoint, and together they make up A. The size of the power set then is 2^{k-m}
2. Is it true that, if $B \subseteq A$, then $B \cap C \subseteq A \cap C$ for all sets C ? Prove.

We have that any $x \in B$ is also in A. Thus anything in $B \cap C$ is in B and in C, and thus in A and in C. The claim follows.
3. Show the following.
(a) $(A-B)-C \subseteq A-C$
(b) $(A-C) \cap(C-B)=\emptyset$
(c) $(A \cup B) \subseteq(A \cup B \cup C)$
(a) Anything in $(A-B)-C$ is in A, but not in B, and not in C. So, these are all x such that $x \in A \wedge x \notin B \wedge x \notin C$. Using rules of inference, these imply $x \in A \wedge x \notin C$. Ths proves the claim.
(b)Anything that satisfies this satisfies:
$x \in A \wedge x \notin C \wedge x \in C \wedge x \notin B$.
This implies $x \in C \wedge x \notin C$, which is false.
(c) Any x that satisfies the LHS satisfies $x \in A \vee x \in B$. But that implies, by rules of inference, $x \in A \vee x \in B \vee x \in C$. Thus the claim follows.
4. Show that there are as many numbers that can be written as decimal fractions (i.e., of the form $a . b$ where a is an integer and b is a positive integer), as there are nonnegative integers and vice versa.
I will first show equivalence to integers. Since we showed equivalence of the cardinality of integers to positive integers, the claim follows. Any integer a is a decimal fraction $a .0$. So this direction is easy. Now
consider any decimal $a . b$, where a and b are integers. This is very similar to rational numbers: write a and b in base 9 , write the decimal point as the digit 9 . Then, any decimal fraction will map to a distinct integer thus their number cannot be more than integers.

