CSCI 241H: HOMEWORK 3

Show your work.

1. You are given the following about the sizes of sets A and B: |A| = k; |B| = l, and |A - B| = m. What is the size of $P(A \cap B)$? Note that P(S) refers to the power set of set S.

To do that you have to argue about the size of $A \cap B$. Since this set is all x such that $x \in A \land x \in B$, its size is l - m. You should argue this a bit more formally by arguing that A - B and $A \cap B$ are disjoint, and together they make up A. The size of the power set then is 2^{k-m}

2. Is it true that, if $B \subseteq A$, then $B \cap C \subseteq A \cap C$ for all sets C? Prove.

We have that any $x \in B$ is also in A. Thus anything in $B \cap C$ is in B and in C, and thus in A and in C. The claim follows.

- 3. Show the following.
 - (a) $(A-B) C \subseteq A C$
 - (b) $(A C) \cap (C B) = \emptyset$
 - (c) $(A \cup B) \subseteq (A \cup B \cup C)$

(a) Anything in (A - B) - C is in A, but not in B, and not in C. So, these are all x such that $x \in A \land x \notin B \land x \notin C$. Using rules of inference, these imply $x \in A \land x \notin C$. The proves the claim.

(b)Anything that satisfies this satisfies:

 $x\in A\wedge x\not\in C\wedge x\in C\wedge x\not\in B.$

This implies $x \in C \land x \notin C$, which is false.

(c) Any x that satisfies the LHS satisfies $x \in A \lor x \in B$. But that implies, by rules of inference, $x \in A \lor x \in B \lor x \in C$. Thus the claim follows.

4. Show that there are as many numbers that can be written as decimal fractions (i.e., of the form *a.b* where *a* is an integer and *b* is a positive integer), as there are nonnegative integers and vice versa.

I will first show equivalence to integers. Since we showed equivalence of the cardinality of integers to positive integers, the claim follows. Any integer a is a decimal fraction a.0. So this direction is easy. Now consider any decimal a.b, where a and b are integers. This is very similar to rational numbers: write a and b in base 9, write the decimal point as the digit 9. Then, any decimal fraction will map to a distinct integer thus their number cannot be more than integers.