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Abstract. This article describes the challenges posed by optical music recognition — a topic in com-
puter science that aims to convert scanned pages of music into an on-line format. First, the problem
is described; then a generalised framework for software is presented that emphasises key stages that
must be solved: staff line identification, musical object location, musical feature classification, and
musical semantics. Next, significant research projects in the area are reviewed, showing how each
fits the generalised framework. The article concludes by discussing perhaps the most open question
in the field: how to compare the accuracy and success of rival systems, highlighting certain steps that
help ease the task.
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1. Introduction

Optical Music Recognition (OMR) — a computer system that can “read” printed
music — has much promise: a clarinetist could scan a tune and have it trans-
posed automatically; a soloist could have the computer play an accompaniment for
rehearsal; a music editor could make corrections to an old edition using a music
notation program; or a publisher could convert a piece to Braille with very little
work. OMR has been the focus of international research for over three decades,
and while numerous achievements have been made, there are still many challenges
to be faced before it reaches its full potential.

OMR addresses the problemmofisical data acquisitiarthe key impediment to
many computer music applications. It is not, however, the only data entry method
for music. The most common method for music data entry in current use combines
synthesiser keyboard entry and computer keyboard entry. The musical keyboard is
typically used to enter the notes by playing each voice in isolation, either in time
with a metronome or using the computer keyboard to enter rhythmic information.
The computer keyboard and mouse are then used to correct any mistakes and to
add other notation such as lyrics, slurs, and dynamics. Music data entry in this
form demands a level of skill from the keyboard player, and adding the remaining
notation is time-consuming.
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Figure 1. Forms of music representation.

Even if current commercial software could be refined to record information
such as dynamics from the synthesiser keyboard (and the performer was able to
play these accurately), the computer keyboard stage is still required, since there
are many more features to printed music than the way it is finally played — for
instance, clefs, key signatures, time signatures, titles, and lyrics. Also, deciding on
line breaks, page breaks, even the spacing and grouping of notes within a bar, is a
skilled task, and is generally seen as a craft rather than some process that can be
defined by a set of rules and automated (Ross, 1970; Read, 1974; Heussenstamm,
1987).

OMR greatly simplifies the task of musical data acquisition; however we are not
arguing that OMR should replace musical keyboard entry. In the particular circum-
stance where the music is already available in printed form, OMR can substantially
accelerate the process of musical data acquisition. OMR, therefore, is an attractive
supplement. Not only does the technique reduce the chance of human error made
in the transcription, but it can also capture much of the “extra” information that
the former method requires the user to laboriously add after the notes have been
played.

The most likely scenario is one where OMR is used to process the majority
of symbols on the page, followed by an editing stage using a standard music
editor, where the musical and computer keyboards are used to correct mistakes and
omissions. This has the added benefit of greatly reducing the musical keyboard
skills required. Of course, OMR is not perfect, and the editing can be a signifi-
cant part of the time taken for OMR-based data entry; however, OMR systems
are steadily improving, and the number of music-based projects utilising OMR
steadily increasing (Carter, 1992a). Given the vast body of printed music, OMR
could radically reform computer applications in music.

To help clarify the limits in musical data acquisition by computer, let us consider
the larger context of music representation. Figure 1 shows the relationship between
written and played music. Written music is converted to performed musiates
pretation and performed music is converted to written musictianscription
Both are non-trivial operations. A performer may study a written work for months
before finally presenting their interpretation. The performer will draw upon a range
of information, such as knowledge about the composer, and the technical limits
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of the instrument, as well as considering the mood and feeling of the work. To
transcribe an imagined performance into a written form, a composer reverses this
process, deciding what notation would indicate the desired effect. A similar process
is undertaken when a recording that has never before existed in written form — such
as a jazz improvisation, or a folk tune — is transcribed.

Only limited success has been achieved by computer techniques that imitate
these human processes. A computer application that requires the translation from
written music to an audio equivalent wice versawill inevitably suffer from a
loss of information. Such a situation occurs in synthesiser keyboard data entry, and
explains the strong reliance on post editing. Conversely, having a computer play
exactly what is written in a score can lead to a mechanical sounding rendition.
Better results are achievable if the computer music application stays on one side
of the diagram in Figure 1: a MIDI keyboard can be very expressive in sequencing
work; and an OMR system is ideal for editing the written page.

The structure of this paper is as follows. First we analyse the graphical prop-
erties of music notation that make processing printed music challenging. This
includes individual musical features, the complex two-dimensional spatial relation-
ships that exist between them, the superimposing of staff lines with many important
musical objects, and the fact that music is sometimes typeset in an ambiguous
manner. Next we give an historical account of OMR research, outline a general
framework that decomposes the problem of OMR into key stages, and summarise
recent trends in the field. The paper concludes by discussing the difficulty of
comparing rival OMR systems, highlighting certain steps that help ease the task.

2. Properties of Music

In principle OMR is an extension of Optical Character Recognition (OCR);
however, the problems to be faced are substantially different. Examples are
provided below that demonstrate the complexities involved. First we consider the
problems posed bipndividual musical features, then we broaden our view and look
at the relationships that exisetweemusical features.

2.1. INDIVIDUAL MUSICAL FEATURES

The graphical properties of musical objects are significantly different to those of
printed text. This point is illustrated in Figure 2. Text utilises the vertical dimension
of the page in a simple way, spacing lines of text in an orderly fashion. Each line
itself conforms to a base-line stretching horizontally across the page. Music extends
the use of the vertical dimension. Within a line of music, $haxis is also used

to convey pitch; the same shape, therefore, can be translated to different vertical
positions. The translation example in Figure 2 shows three crotchet notes that are
graphically identical, but drawn at different positions indicating different pitches.
The issue of translation is additionally complicated by chords, since individual note
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Figure 2. Properties of music not found in printed text.

heads are no longer constrained to be at the end of stems. Examples of this selective
translation are also shown in the figure. In principle there are an infinite number of
variations in the placement of note heads in a chord, although in practice not all
are used. Even so, the number of permutations is so high it is not possible to use a
finite set of templates to match these shapes.

Other requirements of music lead to the same musical event having more than
one graphical representation. In some circumstances, the difference is a simple
alteration such as stretching. This can occur horizontally, as in the beamed note
example in Figure 2, caused mainly by the vertical alignment of notes between
staves that are played at the same time. Shapes may also be stretched vertically,
a good example being a beamed note where the note stems have been either
lengthened or shortened to connect with the beam. More complex alterations
include rotation, which is affected by where the note is placed on a staff, or whether
the staff is carrying two voices at that point; and shearing, a consequence of using
vertical displacement to indicate pitch.

Another important difference between text and music is that the graphical
appearance of most glyphs in text is quite different, while in music many shapes are
graphically similar, and the minor differences convey crucial information. In Figure
2 the example for similarity shows a progression of notes where each successive
shape is slightly different to the last, yet each change doubles the duration of
the note. A similar situation also occurs with hierarchical symbols in music. By
hierarchical we mean optional symbols such as dynamic markings that can occur
in addition to the main musical feature, to convey extra information. In Figure 2,
the hierarchical example shows the same basic crotchet note altered to become a
staccato note, a stressed note, and an accented note, by the addition of an extra
component below the note head. This additionally serves to illustrate the frequent
use, in music, of multiple components. Also included in Figure 2 are more varied
examples of shapes that use multiple components. This contrasts with Western
text, where multiple components are relatively rare, and typically consist of a main
shape with a supporting smaller mark. Most common is the use of a dot, as in ‘',
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Figure 3. A musical feature can include many variations of representation.
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Figure 4. Music relies on many complex two-dimensional spatial relationships.

40, 2", and 1, with some Roman alphabet based languages augmented by
diacritical marks, such as ‘é’, ‘@’, and ‘¢’. Such exceptions are normally handled
by OCR systems using ad hoc methods, whereas OMR must tackle this problem
head on.

To compound these difficulties for an OMR system, the transformations do not
occur in isolation. One musical shape may vary all these properties simultaneously.
Figure 3 shows one example where the construction of the note includes stretching,

shearing, rotation, selective translation, and hierarchical symbols.

2.2. THE LAYOUT OF MUSICAL FEATURES

The differences between music notation and text go further than this variance in
the atomic characters. Text is predominantly one-dimensional in layout, whereas
music makes full use of the two-dimensional space. For example, a clef at the
start of a line of music affects subsequent notes on that staff until another clef is
encountered; and the syllables to lyrics written beneath a staff are associated with
particular notes. These points are illustrated in Figure 4.

Complex two-dimensional relationships are characteristic of Document Image
Analysis problems, an active area of research (Baird et al., 1992; Bunke et al.,
1997). Figure 5 shows some examples of document types that have been processed
successfully by computer. To recognise such documents the general strategy is to
first segment the image, then to form the larger objects that are present in the image,
from the segmented components. This is accomplished by using some computer
encoded representation of knowledge about the notation that a person who is skilled
in the notation takes for granted once learnt. Document Image Analysis forms a
rich source of techniques for OMR.
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Figure 5. Examples of computer processed documents (a) flowchart (b) technical drawing (c)
circuit diagram.

2.2.1. Ambiguity

A consequence of music relying on two-dimensional relationships is the issue of
order. When considering a single voice of music, there is generally a unique and
understood order in which the music must be read, otherwise the music would be
ambiguous. However, it is sometimesittenin an ambiguous manner. In such situ-
ations, the breach of convention is normally a sacrifice intended to simplify layout,
and an experienced musician can still determine the meaning of the music and
correctly pick the order — typically because the alternative interpretations would be
nonsense.

An example of ambiguity is shown in Figure 6. After study, it becomes apparent
that the notation shows both the left and right hands starting on the second staff,
alternatively playing notes in an ascending arpeggio, with the notation crossing
over to the first staff part way through. However, because there are no rests
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Figure 6. An example of music notation that is written ambiguously to improve layout; the
bar is played as an arpeggio using alternate left and right hands, despite being drawn on staves
which normally indicate separate left and right hands.
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Figure 7. A seemingly simple piece of music relies on two-dimensional layouts and relation-
ships that are complex and intricate for a computer to process.

prior to the inscribed notes in the top staff another, and initially less convoluted,
interpretation is that the notes to both staves should start at the same time.

Just because a correct order exists, this does not mean it will be easy for
a computer to determine. For example, in Figure 7, consider which of the two
musical shapes should be processed first: the beamed notes or the accidental?
Logically the accidental and second note form a subgroup, but the recognition
system will more naturally link the two notes as a group, since they are physically
linked, and then treat the accidental in isolation.

2.3. SUPERIMPOSED MUSICAL FEATURES

A unique aspect of music that does not occur in the Document Image Analysis
examples shown in Figure 5, is tiseperimposingf shapes. In music notation,
notes are intentionally superimposed on staves to convey pitch, and slurs, ties
and crescendo/diminuendo “hairpins” sometimes cross over bar lines, making it
difficult for computer algorithms to distinguish musical features. Similar prob-
lems of occlusion occur in other fields, such as computer automated cell counting
in Biology (Russ, 1992) where two cells on the microscope slide may overlap,
partially obscuring each other. Researchers report that superimposition is a severe
problem in image processing, and one that proves difficult to compensate for. A
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great deal of the complexity in OMR systems is due to superimposition, especially
symbols printed on the staff.

2.4. MuUSIC NOTATION INCLUDES TEXT

So far, the discussion has concentrated on the unigue musical shapes found on the
staff. Music, though, includes many other shapes off the staff, such as bar numbers,
dynamics, fingering information, lyrics, and other text and text-like characters.
Thus, OMR is really aupersebf OCR.

To fully process the text in music, it is insufficient to convert each letter to
its ASCII form, and then group words and lines together. The position of the
text on the page is important, and must be used to associate its meaning with
the correct part of the music. To complicate things further, it is conventional for
dynamic markings to be written in Italian and abbreviatédn{f, p, and so on),
and foreign languages are common, even if the music is intended for English
speaking musicians. This prevents the use of conventional OCR lexicons, but there
is potential to use specialised word lists.

3. History

The first published OMR work was carried out at Massachusetts Institute of
Technology in the mid 1960s by Pruslin (1966; Kassler, 1972). Pruslin’s system
recognised a subset of CMN, primarily musical notes. It lacked features such as
clefs, time signatures, and rests, but permitted complex stem-sharing chords. Prerau
(1970, 1971; Kassler, 1972; Prerau, 1975) originally intended to extend Pruslin’s
work, but unfortunately he discovered that Pruslin’s staff-removal (used to tackle
the issue of superimposing) distorted most musical features other than note clusters
and beams. He therefore had to develop an alternative approach.

Prerau observed that, unlike text characters, a musical feature could usually be
identified by the dimensions of its bounding box. Because the same musical feature
could appear larger or smaller in a different piece of music, the dimensions of the
bounding boxes were normalised with respect to the height of the staff. A survey
of different styles of music was undertaken and a database built. The heuristic
classification algorithm developed used the database to quickly reduce the number
of possible musical features an unknown shape might be: often the database would
return a single match, and thus the object was classified. In situations where the
bounding boxes for musical features in the database were not unique, additional
checks were designed to distinguish the shapes.

In contrast to Pruslin’s work, Prerau’s system recognised clefs, rests, certain
time signatures, and accidentals. However, it could not handle chords. Many
systems following Prerau’s work have made significant use of his observation about
musical features having distinctive bounding boxes, leading to efficient musical
feature classification algorithms.
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Figure 8. The Wabot-2 (reproduced from the Bulletin of Science and Engineering Research
Laboratory, Waseda University (Matsushima et al., 1985)).

Early work was limited by technology, and merely acquiring image data was a
significant part of these projects. Prerau, for example, used a flying spot scanner to
achieve a scan resolution of approximately 225 dots per inch (dpi), whereas today
300 dpi, 400 dpi, and 600 dpi scanners are common and more reliable. It was not
until the early 1980s that the next significant development occurred. In a major
undertaking by Waseda University (Japan), a robotic organist (Figure 8) was built
(Matsushima et al., 1985; Roads, 1986). Demonstrated at the 1985 International
Exposition, the robot would play the organ using its mechanical hands and feet.
The robot could play an unknown piece of sheet music placed in front of its elec-
tronic eye (a video camera), or accompany someone singing a tune it already knew.
Visitors to the exposition were invited to converse with the robot, and select a piece
to sing. The robot would then keep in time with the singer, even if they varied their
speed, and would automatically transpose key if the person accidentally changed
the key they were singing in.

The real-time processing necessary was achieved by using dedicated hardware:
17 16-bit computers and 50 8-bit computers with fibre optic data-links. The project
took 3% years, and involved four professors and some 50 students. Had commercial
equipment and services not been donated, it is estimated that the project would have
cost US$2,000,000 (Roads, 1986).

The OMR component of the Wabot-2 was the first system to recognise a
comprehensive set of CMN, including chords. The real-time processing require-
ment led to a ‘brute force’ approach for many OMR problems. A key component
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of the system was a frame-buffer that was used to store a normalised version of the
page. Significant use was made of template matching, rendered practical by being
realised in hardware, which processed the image stored in the frame-buffer.

More recently the cost of hardware suitable for OMR has come within the
budget of many research centres. A reasonable configuration would consist of
a flatbed scanner with 200-400 dpi resolution, connected to a workstation with
appropriate memory and disk sp&c€he fact that no hardware item is peculiar to
OMR has been beneficial to the growth of the subject. Since 1985 there have been
over 20 research projects.

The increased interest has substantially helped further understanding of the
problems in accomplishing OMR, and the first commercial packages that recognise
the core of CMN are beginning to emerge. Also, some OMR research projects have
looked into other formats such as medieval music (McGee et al., 1991; Carter,
1992b), and handwritten formats (Roach et al., 1988; Bulis et al., 1992; Wolman
et al., 1992; Yadid et al., 1992; Anstice, 1996). Work with both formats is, under-
standably, harder since the clarity and regularity of the graphics is considerably
reduced. For example, in handwritten music a note head is more likely to be phys-
ically separated from its note stem, and will more typically consist of a short stroke
rather than the neat oval found in engraved scores. Results for these formats are
promising, but work on these topics lags behind the success of printed CMN in
much the same way that handwritten OCR research follows in the wake of printed
OCR.

4. An Overview of OMR

Optical music recognition is a complex problem, rendered manageable through
decomposition. Figure 9 shows how OMR can be simplified into four smaller tasks:
staff line identificationmusical object locatiormusical feature classificatiomnd
musical semanticdviusical feature classification is in turn decomposed prim-

itive detectiorandprimitive assemblyand optionalmage enhancemei# possible

after staff line identification and musical object location.

The framework is not the only decomposition possible, although there is good
reason to base work on this model. All of the existing OMR work fits the model
(Bainbridge et al., 1997b), although this fact is often superficially obscured by
the use of different terminology, and choices in system structuring that combine
or overlap particular stages in the model. In the future this framework may not
prove to be the best solution for OMR, since developments in programming
paradigms may prompt a different structuring; however, it is still useful since the
model unifies the different strategies that exist today, allowing us to compare and
contrast different OMR systems. Using the model, we can identify the strengths
or weaknesses of a given OMR system, and discuss the merits of competing
algorithms.
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Figure 9. A general framework for OMR.

Below, the four principal stages of the model are described in turn. This leads
on to a discussion of recent trends, and some concluding remarks. For a fuller and
more historic review of OMR work see Blostein and Baird (1992), and Selfridge-
Field (1994).

4.1. SIAFF LINE IDENTIFICATION

Before an OMR system can start recognising the shapes contained in an image, it
must establish the size of the music notation being used. Staff lines are a reliable
feature contained within a page, from which the staff height can be deduced, and
consequently the size of the music notation. All reported OMR systems detect staff
lines as the initial stage.

Since staff lines in a scanned image are not guaranteed to be level (or even
straight!) detecting staff lines is a trickier task than might first be imagined. To
deal with these complications, staff line detection algorithms need to make some
assumptions about the image. Two common assumptions are that staff lines cover
a large proportion of the image, and that (excluding noise) their thickness will be
one of the smallest found.

The most widely used method for detecting staff lines is basedooizontal
projections(Blostein et al., 1992). A horizontal projection maps a two-dimensional
bitmap into a one-dimensional histogram by recording the number of black pixels
in each row of the bitmap in the corresponding entry in the histogram. Under such a
projection, staff lines appear as distinct peaks in the histogram that can be detected
easily. Numerous variations exist, but the basic technique remains the same. Figure
10 shows a representative excerpt of music that will be used to illustrate the various
stages of the general OMR framework. Its horizontal projection is shown in Figure
11.
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Figure 10. A representative excerpt of music, taken from Mussorgsky’s “Pictures at an
exhibition,” published by Schott of Vienna, Austria (Page 2, Line 4).

Figure 11. The horizontal projection of the example excerpt when scanned carefully.

The music in Figure 10 was scanned carefully so the staff lines were as level
as possible. It would be naive to assume all music is scanned so carefully. The
horizontal projection of a more typical scan of the example excerpt (staff lines
at +0.4) is shown in Figure 12. Notice how the distinct peaks in a projection
deteriorate.

Instead of calculating the projection for the whole page, existing systems
usually apply the basic algorithm to smaller regions, selected on the left-hand
side and right-hand side of the image. This will locate short sections of staff line
that are less affected by the angle at which the page was scanned. The segments
can then be logically connected one-for-one, where the average gradient of these
lines determines the angle of skew. Staff identification is achieved by grouping the
individually detected staff lines into sets of five.

An alternative strategy for identifying staff lines is to use vertical scan lines
(Carter, 1989; Glass, 1989; Kato et al., 1990; Reed, 1995). There is more scope for
variation here. In broad terms, these algorithms use the vertical scan lines to cut
through the image, gathering data on black (or white) cross-sections. The data is
then searched for a dominant feature, which corresponds to the staff line thickness
(or the distance between staff lines). In addition, consistency checks, such as the
identified staff lines occur at regular gaps, are often included to confirm the selected
staff lines.
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Figure 12. The horizontal projection of the example excerpt from a more typical scan.
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Figure 13. The example excerpt with staff lines removed.

4.2. OBJECT LOCATION

Once the staff lines have been identified, the individual musical objects must be
located. This can be accomplished by eitiggroring or removingthe staff lines.

Because it is known where the staff lines are, the computer can search between
the staff lines for musical objects, effectively ignoring the staff lines. When using
this approach, the key task is deciding when one object stops, and the next one
starts. Ignoring staff lines in conjunction with musical feature classification simpli-
fies this decision. A search for objects between the staff lines is started, and when
an object is encountered, the musical feature classification stage is invoked. The
result of the match determines the extent of the symbol encountered, and directs
the search for further patterns. A drawback to the approach is that as the set of
music notation processed becomes more complex, so too does the control of the
matching algorithm.

A more popular method is to remove the staff lines, since this is not dependent
on the complexity of the music notation. The factoalgorithm for this task was
first described by Clarke et al. (1988). In this algorithm, a staff line is removed
piecemeal. The algorithm follows along the line, replacing it with white pixels
unless there is evidence of activity on either side of the line. The check for the
existence of a musical object generally searches a region no more than two pixels
away from the top or bottom of that part of the staff line. Figure 13 shows a typical
result of applying the algorithm.
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Figure 14. Locating musical objects (a) the original image (b) isolated shapes broken up by
staff removal (c) broken shapes reconstructed.

Despite care being taken to keep objects whole, the algorithm does cause some
fragmentation, especially to objects that blend tangentially with staff lines, such as
a bass clef or a minim note head. Examples of this can be seen in Figure 14b,
where the bass clef is fragmented in two and the second flat is broken at the
top.

A simplistic solution to this problem is to join two shapes if they are situated
close together, and both have an edge of their bounding box that is flush with
the same staff line. The algorithm is not ideal because in certain situations it will
incorrectly join objects that should remain separate, and at other times, objects that
should be joined are left separate. The result of applying this imperfect algorithm
to Figure 14b is shown in Figure 14c. In this small example the algorithm correctly
joins up the bass clef curl without introducing any erroneous conglomerate
shapes.

By assuming that fragmentation only occurs when staff lines are removed, this
simple algorithm makes no allowance for objects that become broken due to other
causes, such as scanning a work that includes faint pen-work and blemishes in
the original. Thus the algorithm described is not only imperfect, but insufficient.
Dealing with fragmented objects is an important problem that a realistic OMR
system must solve and is the focus of recent research (Cotiasnon et al., 1994; Ng,
1995; Ng et al., 1995, 1996; Bainbridge, 1997).

As well as fragmented objects, a scanned piece may also include two or more
musical objects that are joined. A distinction is made here between two classes of
joined objects: objects that legitimately become joined, such as slurs and hairpin
crescendos crossing bar lines; and objects that should not have been touching, such
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as an accidental or the end of a slur being drawn too close to a note head. To aid
clarity, the first class of joined objects will be callsdperimposedwhilst the term
touchingwill refer to the latter scenario.

Strictly speaking, touching objects should never arise. Texts on the topic of
music notation (Ross, 1970; Read, 1974; Heussenstamm, 1987) stress the impor-
tance of a clear, distinct layout when positioning objects, and having objects that
touch reflects poor craft-work. However, reality is less than ideal, and touching
objects frequently occur in printed music. Dealing with touching objects, therefore,
is an important problem that a realistic OMR system must solve.

Once the musical features have been isolated (and some attempt has been made
to separate touching objects and to correct any fragmentation) it is a simple step
to locate individual objects. The image is processed left to right, top to bottom,
systematically considering every pixel. If a pixel is found to be black, then it is
used as a seed for a flood fill algorithm (Foley et al., 1990) that also removes the
shape being filled, as the algorithm proceeds. By keeping a list of all the flood-filled
shapes, individual musical shapes are correctly located.

4.3. MUSICAL FEATURE CLASSIFICATION

With the musical objects located, one might believe the problem of OMR has
been reduced to that of OCR. Unfortunately, as Figure 2 illustrated, this is not
the case. The shapes in music are inherently more complex than those in text.
Rather than attempting to classify such intricate shapes as a whole, a trend in
successful OMR systems is to work at a sub-symbol level. First, the simpler
geometricprimitive shapes that make up symbols (such as note heads, stems,
beams and accidentals) are detected using pattern recognition technigues such as
template matching (Witten et al., 1994), the Hough transform (Boyle et al., 1988),
and projections (Pavlidis, 1982); then the primitives are assembled into musical
features, guided by musical knowledge. Such a decomposition is often found at the
heart of Document Image Analysis systems (Baird et al., 1992).

Notice how this strategy naturally deals with many of the “complications”
that music has compared with text. For example, a musical feature with multiple,
disjoint components (such as the key signature for A) now needs no special treat-
ment, since it is merely an object made up of three primitive shapes (sharps in this
case) where the primitive shapes are close but do not actually touch; and objects
that are similar (such as a crotchet and a quaver note), are readily distinguished
by the number of individual primitives detected in that region (in this case both
have a stem and a filled-in note head, but only the quaver has a tail attached to the
stem).

Once primitives have been found the challenge is to construct musical features
from them. Techniques from the area of Document Image Analysis that have been
successfully adapted and applied to OMR to solve the musical feature classification
stage, are: Definite Clause Grammar (Collasnon et al., 1994, 1995; Bainbridge,
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Figure 15. The example excerpt of music with classified musical features.

1997), Graph Grammar (Fahmy et al., 1991, 1992; Reed, 1995), Musical Knowl-
edge with Constraints (Kato et al., 1990), and a Decision Tree Classifier (Baumann
et al.,, 1992). All achieve musical feature classification by decomposing symbols
into primitive shapes.

The process of musical feature classification is illustrated in Figure 15, where
a labelled bounding box has been drawn around each classified musical feature.
At this point, an OMR system has determined what all the shapes are graphically.
Consequently a certain level of music recognition has been accomplished. From
this point, it is possible to generate a “clean” version of the page, where the prim-
itive shapes (for example note heads, and stems) are replaced by perfectly formed
geometrical shapes (for example ellipses, and lines), and if these primitive objects
are correctly grouped and made available in a standard drawing editor, then the
musical features can be manipulated to correct any imperfections. This, in essence,
describes the editorial enhancement application cited at the start of the article.

However, at this stage the music has not been completely recognised. For
example, only diatonic transposition is possible since accidentals are not associ-
ated with notes, and even the clef that governs a note has not been established.
Audio playback is not possible for the same reason. Although the OMR system
has graphically recognised the music, it does not yet musically “understand” the
piece.

4.4, MUSICAL SEMANTICS

The final stage in an OMR system is to extract the musical semantics from the
graphically recognised shapes, and store it in a musical data structure. Essentially,
this involves interpreting the spatial relationships between the detected primitives
found in the image. For example, a treble clef affects the register of notes on its staff
— a note head drawn on the bottom line of the staff is played as the note E, and so
on. More subtle interplay occurs when the same graphical shape can mean different
things in different situations. For instance, to determine if an object between two
notes is a slur or a tie, the pitch of the two notes must be considered; and a dot
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Staff System 1:

Staff 1:

{4Db 4F 4Ab 5Db}(0.5),{4Eb 4Ab 5C SEb}(0.5),
{4F 4Ab 5Db 5F}(0.5),{4Ab 5Ab}(0.5),

{4Gb 4Bb 5Eb 5Gb}(0.5),{4F 4Ab 5Db 5F}(0.5),
{4Eb 4Ab 5C 5Eb}(0.5), .....

Staff 2:

{2F 3F}(0.5),{2Eb 3Eb}(0.5),{3Db 2Db}(1.0),
{2Eb 3Eb}(0.5),{2F 3F}(0.5),

{24b 34b}(1.0),{2Bb 3Bb}(1.0),{2Ab 34b}(1.0) |

Figure 16. Musical semantics of the example excerpt.

_1__
e

L 15

Figure 17. The example excerpt reconstructed in a musical editor.

abovea note head changes its performance character principally by reducing its
duration whereas a dt the right ofa note head increases the note’s duration.

How this stage is accomplished is often omitted in the literature, since the oper-
ations are specific to a particular output format. In broad terms, this phase of an
OMR system is characterised by (possibly) multiple passes over a graph-like data
structure, creating links, deleting links, or modifying the attributes stored at nodes
due to the effect of one musical feature — say a key signature — on other musical
features, such as notes.

The musical semantics of the example excerpt is shown in Figure 16 using an
internal text format. Unfortunately a standard format that represents an interpreted
page of music is yet to be established. For now, the best that can be achieved is a
flexible musical data-structure that is easily traversed to generate specific musical
file formats. Figure 17 shows the example excerpt reconstructed from the Tilia file
format using the Lime music editor (Haken et al., 1993).

Recent developments for a standard musical file format are promising. A
consortium of interested parties (music software firms, academic researchers, and
music publishers) formed a working group to address the issue, resulting in a
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specification for a format known as NIFENotation Information File Format).
Also, an ANSI committee has produced SMD(Standard Music Description
Language) which is derived from the I1ISO standard HyTime (Hypermedia/Time-
based Structuring Language). Only time will tell if these standards will be adopted
by the computer music community.

4.5. THE END POINT OFOMR

At the start of this article, applications for OMR such as accompaniment, editing
and transposition were cited. These examples illustrate that the level of musical
detail required from an OMR system is dependent on its intended use.

For basic audio playback, it is sufficient to recognise only the pitches and dura-
tions of musical features. This is all that is required for many simple applications
and is relatively easy to achieve. Items such as the title and fingering information
are superfluous, and depending on how crude the playback can be, dynamic mark-
ings may also be ignored. Alternatively, an OMR system for editorial enhancement
must recognise all the graphical shapes on the page. In this situation, typography
is the primary goal, hence it is not strictly necessary for the OMR system to under-
stand the musical significance of the graphical shapes, only what the primitive
shapes are, and where they are located.

These two examples represent extreme situations. Other applications require a
mixture of graphical recognition and musical understanding. The ultimate goal of
OMR work is a system capable of graphically recognisamgl musically under-
standing all the information present in a page of music, and consequently requires
both the musical feature classification and the musical semantics stages to be
implemented.

5. Recent Trends

In this section we discuss how recent systems fit into the framework described in
Section 4. Although some methods only implement a subset of CMN, the range
of symbols recognised is increasing and is how reasonably comprehensive, so the
framework does not seem to impose undue limitations on what can be recognised.

Work by Carter (1989; Carter et al., 1990, 1992; Carter, 1992a, 1993, 1994a,
1994b) is based upon a transformed Line Adjacency Graph (LAG) (Pavlidis, 1982).
A transformed LAG of a binary image is formed by first generating a vertical
run-length encoding of the image (Figure 18a), then comparing the run-length
encodings of adjacent columns. Runs of black that are of similar length and posi-
tion in adjacent columns are continually amalgamated to form a single node in
the graph, until no suitable segment exists (Figure 18b). To detect staff lines and
primitive shapes, the graph is traversed, searching for particular configurations of
nodes. The system is tolerant of skew up to 10 degrees.
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Figure 18. Generating a transformed line adjacency graph (a) the segments formed by vertical
run-length encoding (b) the segments formed by amalgamating similar vertical run-length
encodings that are adjacent. (Reproduced from Carter’s Ph.D. thesis (Carter, 1989)).

Developed by Fujinaga, an interactive OMR system aimed at the first three
stages of the general framework has steadily evolved at McGill University since
1988 (Alphonce et al. 1988; Fujinaga, 1988; Fujinaga et al., 1989a, b, ¢, 19914, b,
1992; Fujinaga, 1992, 1997). The system integrates a recogniser, editor, and
learner. The recogniser utilises projection methods (Fujinaga, 1988)kandaxrest
neighbour classification algorithm (Cover et al., 1967) to detect musical features.
The result is viewed using a music notation editor, where any corrections made
by the user are passed on to the learning module. Here, the weights of the feature
vectors used for classification are recomputed, aided by a genetic algorithm, to
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give an improved match next time. Even with the genetic algorithm, this is an
expensive operation, and consequently the system is designed to perform the
learning operation during processor idle-time.

With Fujinaga’s design, the graphical classification of shapes is naturally
extensible. When a musical feature is encountered for the first time it will be mis-
classified. This is corrected by the operator during the interactive phase. As more
examples of the new shape are encountered and corrected, the system will gradually
learn how to distinguish the shape automatically.

Kato and Inokuchi use a computational model from Artificial Intelligence: a
top-down approach that uses musical knowledge with constraints to recognise
piano music (Kato et al., 1990). The system comprises five ordered layers: image,
primitive, symbol, meaning, and goal; where the first four layers correspond to staff
line identification, primitive detection, primitive assembly and musical semantics
in the general framework, and the final layer (the goal) ‘holds’ the system together.
Each layer can generate hypotheses that subsequent layers must either verify or
refute, using a working memory model to handle communication between the
layers. Based on this approach, Baumann and Dengel devised a top-down strategy
that applies a decision tree classifier, and encoded musical rules to recognise piano
music (Baumann et al., 1992).

Coliasnon et al. (1994, 1995; Couasnon, 1997) devised an OMR system based
on a grammar. The primary role of the grammar is to specify the taxonomy of
musical features (primitive assembly), but it also controls the joining and segmenta-
tion of shapes as well as defining a sequential order to process objects on the
staves — effectively specifying how to “read” music. The grammar forms a flexible
component, making it easy to alter what constitutes valid notation.

Fahmy and Blostein (1991, 1992) concentrate on the primitive assembly and
musical semantics stages of an OMR system, using an attributed programmed
graph grammar (Bunke, 1982) as the basis of their work. Traditionally a graph
grammar translates an input graph into an output graph that reflects a higher level
of understanding of the document. The work by Fahmy and Blostein differs slightly
in that the starting point is a collection of isolated nodes that represent the primitive
shapes detected in the image. The graph grammar processes these nodes, forming
links that represent interactions between primitives, consequently generating a
connected graph as output.

The principal aim of the work carried out by Bainbridge (1994a, b, ¢, 1995a, b;
Bainbridge et al., 1996; Bainbridge, 1997; Bainbridge et al., 1997a, 1998) is a
fully extensible OMR system. This is achieved by combining a specially designed
programming language for primitive detection, a user-configurable knowledge-
base for primitive assembly, and an object oriented interface for musical semantics.
In doing so, the design is capable of processing not only an extensible set of shapes
within one notation, but a variety of notations, such as CMN, plainsong notation,
and tablature.
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The specially designed programming language, callrtvBLA,* eliminates
the need for repetitive descriptions, and consequently the code is concise —
comparing C++ to RIMELA, it was found that, on average, 928 lines of C++ code
were needed per primitive type processed, but only 56 linesrofiBLA code.
Grammar rules in the knowledge-base provide a flexible medium in which the
valid taxonomy of musical features can be expressed. Finally, the object oriented
interface provides a mechanism that can be tailored to encode the semantics of a
specific musical notation.

6. Comparing OMR Systems

Perhaps the hardest task in OMR is comparing competing systems. Different
systems place different restrictions on the type of music that can be processed, with
incompatible sets of musical features being the most common difference. Even if
two OMR systems process comparable collections of music notation, the numerous
end-points to OMR (audio playback, graphical reconstruction, and others that lie
in-between) weaken many comparisons. And should two systems have compatible
end-points, further complications arise due to the multitude of file formats available
for the final representation.

To make comparable measurements of OMR performance we need a corpus of
scanned music. Attempts to compile one, however, are plagued by copyright issues.
The corpus built by the principal author (Bainbridge, 1997) categorises images
using typographical criteria, since this was found to be of more relevance than
musical styles such as folk music and jazz. Categories include: orchestrated score,
miniature score, accompaniment, monophonic, percussion, and computer typeset,
where an image can belong to more than one category. In the future it is hoped that
the corpus can be released on CD-ROM.

Another challenge is to determine how the accuracy of an OMR system is to
be calculated. There are different types of errors, most of which result in either
omission, commission, or substitution of symbols. Which is more serious? Some
published results quote percentages based on the number of correctly processed
shapes out of all possible shapes; others quote percentages based on the number of
shapes in the image the system was capable of recognising. And what constitutes
a shape? Do the three sharps in the A major key signature count as one object
or three? Reed demonstrates the problem with an incisive example in which he
presents, from the same set of data, two different calculations that yield accuracy
levels of 11% and 95% respectively (Reed, 1995).

We believe the difficulty results from trying to summarise the accuracy of an
OMR system as one number. Given the decomposition of OMR into smaller more
manageable pieces, it makes sense to quote accuracies rates in terms of these key
stages: staff line identification, primitive detection, primitive assembly, and musical
semantics.
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For the first three items, accuracy calculations are straightforward — although
care still needs to be taken how these values are calculated. For the final item,
musical semantics, we suggest counting edit operations using a musical editor. This
idea was first suggested by Carter (Bainbridge et al., 1997b), but as Carter himself
points out, this would commit the measurement to one particular software package,
warts and all.

Here we refine the idea to editing operations using a hypothetical music editor.
No rigorous definition exists for the operations of the hypothetical editor, rather,
if we can justify a straightforward editing operation which requires only a few
keyboard presses and/or clicks of the mouse, then we assign a cost of one to the
operation. More complicated operations must be built up from these atomic steps.
Some examples of simple operations are:

— adding a note,

— ‘“cutting” a group of musical features,

— “pasting” a group of musical features,

— altering the pitch of a note, and

— changing the key signature on a staff which then automatically updates any
affected notes.

For example, when there is a series of triplets in a piece of music, a common
habit in CMN is to drop the ornamental ‘3’ after the first few occurrences.
Unless the OMR system employs some form of global analysis of the detected
timing information, these omissions result in mistakes that carry through to the
reconstructed score. In the music editing package Finale, the conversion of three
guavers beamed together into a triplet is convoluted, requiring many operations.
By comparison, in the hypothetical editor we could imagine grouping the notes in
guestion using the mouse, and then selecting a “make triplet” option from the user
interface. Such a correction requires only a few keyboard and mouse presses and
therefore carries the operational cost of one.

This example highlights the difference between the functionality provided
by existing music notation software, and the functionality required by an OMR
package. Existing editors have not been specifically designed for OMR applica-
tions, which is something that will need to change in the future. Grande Software
boast the first commercial system with integrated editor and OMR software
(Selfridge-Field, 1994), but their description of the product talks about the OMR
package being “interfaced” to the notation program rather than being developed in
parallel. What the hypothetical editor allows us to assume is a working environment
where the OMR system and the editor are fully integrated. If such an integrated
tool existed, the next release of the editor can always be updated to incorporate
new functionality as dictated by repetitive OMR processing errors.

For completeness, we now summarise the reported accuracy rates of prom-
inent OMR systems. Generally, authors express the number of correctly processed
shapes as a percentage of the shapes the OMR sytteatd have processed:
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the Wabot-2 project (Matsushima et al., 1985) reports an accuracy rate of “nearly
100%" for ten simple scores of organ music; Kato and Inokuchi (1990) report
accuracy rates of 83-95% (an average of 89%) for four test scores of varying
complexity; Modayur et al. (1995) report an overall accuracy rate of 96% for 74
images (however these images are small — the total surface area of the 74 images is
approximately equivalent to two A4 pages); Reed (1995) reports accuracy rates
in the range 78-100% (an average of 95%) for nine images of printed CMN;
and Bainbridge (1997) reports an overall accuracy rate that exceeds 96% (staff
detection 100%, primitive detection 96.8%, primitive assembly 97.5%, and musical
semantics 98.6%) for eleven test images.

7. Conclusion

In this article we have highlighted the challenge posed by optical music recognition
and described significant research projects in this area. The article also shows a
generalised framework (Figure 9) for OMR — which existing work fits into — that
emphasises the key stages in the process, although there are diverse methods in the
literature for implementing each stage.

Perhaps the most open question in OMR is how to compare the success and
accuracy of rival OMR systems. Here we recommend, as important steps in this
process, the need for a corpus of musical images and a more detailed breakdown
of an OMR system'’s accuracy rates, with errors measured by the number of editing
operations required in an abstract music editor.

Notes

1 An A4 page scanned at 300 dpi occupies around 1 Mbyte uncompressed.

For information about NIFF, e-mail James Taubef@atuber@jtauber.com
For further details, contact the member body of ISO in your own country.
PRIMELA is an acronym for PRIMitive Expression LAnguage.

Either computer keyboard or musical keyboard.

a b wN
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