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ABSTRACT

We present our ongoing work in optical music recognition in which
we seek to transform printed music notation images into sym-
bolic representations, suitable for playback, analysis, and render-
ing. While music notation contains a small core of symbols and
primitives composed in a rule-bound way, there are a great many
common exceptions to these rules, as well as a heavy tail of rarer
symbols. Since our goal is to create symbolic representations with
accuracy near that of published music scores, we doubt the feasi-
bility of fully-automatic recognition, opting instead for a human-
guided approach. We define a simple communication channel be-
tween the user and recognition engine, in which the user imposes
pixel-level or model-level constraints.
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1 INTRODUCTION

Optical Music Recognition (OMR) seeks to convert music score im-
ages into symbolic representations. Such symbolic music formats
provide a hierarchical structured description of the music, including
notions of part, measure, voice, and note, as well as detailed descrip-
tions of the individual symbols. Success with OMR would pave the
way for large symbolic libraries containing all the world’s public
domain music, that could be instantly accessed, searched, trans-
formed, and reformatted. Such libraries would provide a greatly
improved experience for musicians through digital music stands; it
would serve as the backbone for developing academic fields, such
as computational musicology; finally, it would enable emerging
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applications fusing music and computation such as data-driven com-
position systems, musical accompaniment systems, and automatic
music transcription.

OMR research dates back to the 1960s with mostly-disconnected
approaches to many aspects of the problem [1, 9, 12-15, 19] in-
cluding several overviews [3, 16], and well-established commercial
systems [20, 21]. In spite of these efforts there is still much to ac-
complish before the sought-after large-scale symbolic libraries will
be in reach. The reason is simply that OMR is hard, constituting, in
our view, one of the grand challenges of document recognition.

Part of OMR’s difficulty lies in the high degree of necessary
recognition accuracy. The future’s digital music stands will require
accuracy at least as good as the familiar published hard-copy scores
they will displace, otherwise this new technology will not be em-
braced. Music performance and scholarship require faithful and
precise data, thus OMR researchers must frame the ultimate goals
with the musical community’s standards in mind.

In addition to the high bar regarding quality, OMR poses sig-
nificant technical challenges. One such difficulty arises from the
heavy tail of standard music symbols: while a small core of sym-
bols account for most of printed ink, these are complemented by
a long list of familiar symbols absent from many or most pages.
While each of these symbols may be recognized by fairly standard
means, they are rare enough that their inclusion often results in
more false positives than correct detections. This exemplifies of one
of OMR’s most vexing challenges: we cannot simply ignore unusual
symbols, though their inclusion often leads to worse recognition
performance.

Analogous to this rare-symbol problem are cases in which core
symbols are used in unusual ways — nearly all of music notation’s
“rules” are broken occasionally. For example, note heads usually lie
on one side of the stem, though densely-voiced chords usually result
in “wrong side” note heads; beamed groups usually have closed
note heads though tremolos and certain “double-duty” usages leads
to open note heads in a beamed group; beamed groups are usually
associated with a single staff, but can span both staves of a grand
staff when necessary. As with the heavy tail of symbols, these
special cases can all be modeled and recognized, though the result
is often worse performance than a more restrictive approach would
produce. Again we see the same essential paradox for OMR system
construction. While we doubt the value of an OMR approach that
does not account for these unusual-but-not-rare special cases, their
inclusion often results in degraded performance overall.

Given the demand for high accuracy and the technical chal-
lenges mentioned, we are skeptical that any fully automatic OMR
approach will ever deal effectively with the wide range of situa-
tions encountered in real-life recognition scenarios. Other OMR
reserchers have reached similar conclusions [17] suggesting interac-
tive OMR as a more realistic solution to the problem. We formulate
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the challenge as one of human-in-the-loop computing, developing a
mixed-initiative system [5, 10, 11] that fuses both human and ma-
chine abilities. To some extent a human-guided approach seems
unavoidable; without the human “seal of approval,” the value of the
resulting music data will always be held in question, thus almost
requiring an approach where the human plays some role. Since we
must involve the human somewhat, it seems appropriate to make
the most of this contribution.

In what follows we present our view of human-in-the-loop OMR.
Our essential idea, presented in Section 3, is to allow the user two
axes of control over the recognition engine. In one axis the user
chooses the model that can be used for a given recognition task,
specifying both the exceptions to the rules discussed above, as
well as the relevant variety of symbols to be used. In the other,
the user labels misrecognized pixels with the correct primitive or
symbol type, allowing the system to re-recognize subject to these
user-imposed constraints. This approach results in a simple inter-
face in which the user can provide a wealth of useful knowledge
without needing to understand the inner-workings and representa-
tions of the system. Thus we effectively address the communication
issue between human and recognition system. Our work has com-
monalities with various other human-in-the-loop efforts such as
[4, 22], though most notably with other approaches that employ
constrained recognition as driven by a user [2, 6, 18].

Section 4 compares the output of our system with that of the
commercial system, SmartScore, which we believe to be among the
best commercial systems. The overall results show the systems to
be comparable, requiring similar effort for a given level of accuracy.
However, given the greater raw recognition accuracy of SmartScore
over our current system (at present), the results demonstrate the
value of our proposed human-in-the-loop contribution.

2 AUTOMATIC RECOGNITION

Due to the page limit, we leave out the details of our recognition
model here, which has been elaborated in our previous work [7, 8].

Automatic recognition begins by first identifying the staves, and
then grouping these staves together into systems, while estimating
the common bar lines for each system. This preliminary phase
provides the structure for nearly all subsequent recognition in
which we treat the system measure as the basic unit of analysis.

For each system measure we perform independent searches for
the various musical symbols contained in the measure. In doing so
our goal is not to perform perfect recognition, but rather to prime
the system for human-guided recognition. We hope to identify
approximations of most of the symbols in the measure as well as to
correctly segment the measure into distinct non-overlapping sym-
bols. While the subsequent human-guided recognition of Section 3
can begin from scratch, the process is much more efficient when
primed with partially correct results.

3 HUMAN-GUIDED RECOGNITION

The automatic recognition of Section 2 is done off-line, thus placing
no demands on the user’s time. For a given level of accuracy, we
believe user time is the appropriate metric for OMR system per-
formance, as this metric determines throughput of a user-guided
system. Thus our goal is to create a system that allows the user to
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work as quickly as possible, while facilitating the user’s ability to
detect and correct errors.

After the automatic off-line recognition, the user is presented
with the results for correction, displayed with transparent color
drawn directly over the original image. This allows for straight-
forward comparison with the recognized results, in which both
unwanted and missing recognized “ink” are easy to perceive. This
approach contrasts sharply with the design choice of several com-
mercial systems that display original and recognized images side-
by-side. Finding discrepancies between these paired images poses
a difficult and tiring cognitive challenge.

During the human-guided process, the user explores the page,
measure-by-measure, looking for errors. Each pitch-bearing sym-
bol can be played, either in isolation or in the entire measure, thus
allowing one to hear, as well as see, the results. The user toggles
between the symbols in a measure by first selecting one of the
possible categories: beam, chord, key-clef-signature, isolated sym-
bol, slur, etc., then toggling through the symbols belonging to the
category. The system highlights the currently-selected symbol, as
well as displaying the associated candidate. During this process a
completely incorrect symbol can simply be deleted. More often, the
user will choose a symbol that is partially correct, proceeding to
address the errors, as follows.

In correcting recognition errors, our system allows two axes of
control. The first of these is composed of a collection of “switches”
specifying the recognition grammar to be used. Whenever the
switch settings are changed, the graph representing the relevant
grammar is recomputed. The user then re-recognizes the current
symbol according to the new switch settings. Many recognition
problems can be corrected only using this axis of control, while
switch settings are often appropriate for entire regions of the page.

The other axis of control allows the user to label individual image
pixels with the symbol (e.g. sharp, treble clef, quarter rest, slur,
augmentation dot, etc.) or primitive (e.g. open note head, ledger
line, stem, double beam, stem, etc.) that covers the pixel. The user
can re-recognize as many times as is needed, simultaneously adding
pixel labels and changing the switch settings until the desired result
is achieved.

We include a real-time movie! showing the real-time use of the
system on a page from our test set. One can get an informal sense
of the process and its efficiency from this video, though Section 4
takes a more empirical approach to evaluating our system.

4 EVALUATION

We compare our system with the commercial OMR system, SmartScore,
in terms of both efficiency and accuracy. While we have not for-
mally compared the various commercial systems, our subjective im-
pression is that SmartScore is, at least, one of the best. SmartScore’s
raw symbol recognition ability is impressive, handling a wide range
of symbol variations with high accuracy. While we cannot directly
measure intermediate results, SmartScore’s raw recognition ac-
curacy appears to be significantly better than ours (at present).
However, SmartScore takes less care with the correction of sym-
bols, which holds the system back in an important way. That is,

Uhttps://drive.google.com/file/d/0Bym222tgqpjOeTItSXpQVWJIZjQ/view
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this system appears to be conceived primarily in terms of auto-
matic recognition, with an afterthought that allows the user to
correct individual errors. In contrast, our system was conceived as
a human-in-the-loop system.

For both systems we concentrate on what happens after auto-
matic recognition, focusing exclusively on the human effort neces-
sary to correct the results. We record the user time, mouse clicks,
and key strokes, necessary to produce the resulting symbolic data,
summarizing both the user effort and resulting accuracy for both
systems. We focus on user time since the need for high accuracy
means that user time will, most likely, be the bottleneck in large-
scale deployment of OMR systems. In assessing accuracy, we view
the result of each system as a collection of notes, with pitch, onset
time, and duration for each note — these are easily computed from
the MIDI data output by SmartScore, and are easy to compute from
our system as well.

In SmartScore, proofreading and correction are the only aspects
of the user effort we measure, since there is no user-guided recog-
nition — the user simply adds, deletes, or changes the recognized
symbols to fix pitch, timing or voice problems. In our system, the
user corrects errors by imposing pixel-level and model-level, while
the system re-recognizes subject to these constraints. While beyond
the scope of the current paper, we applied an analogous approach
to the correction of errors in rhythmic interpretation, recognizing
rhythm subject to individual note constraints and model choices
made by the user.

Our image data consist of 15 pages from 3 different piano pieces:
6 of the pages are from Frédéric Chopin’s Fantasie Impromptu
(CF. Peters 1879 edition), 5 pages are the first movement of W.A.
Mozart’s Piano Sonata No.13 in B flat major (Breitkopf and Hértel
1878 edition), and 4 pages are the Rigaudon of Maurice Ravel’s Le
Tombeau de Couperin (Durand and Cie. 1918 edition)?. Overall,
these appear to be medium-difficulty piano scores. In many ways
piano music poses the greatest challenge for OMR, though we
believe it is also the single most important area due to the wide
repertoire for piano, as well as the existence of piano transcriptions
for so much non-piano music.

Our evaluation of accuracy only considers the resulting pitch
and rhythm. Clearly there is much more to OMR besides these
two aspects; however, evaluating the accuracy of other symbols,
such as dynamics, text, articulations, etc. require access to the
internal representations of the OMR system. As we don’t have
that for SmartScore, we measure instead the results on the note-
level results, obtained through the MIDI output. One problem with
note-level evaluation is that single symbol recognition errors may
produce many note errors: consider the effect of missing a clef
change or note duration in a long measure. We have endeavored to
make sure that the human correction accounts for these kinds of
mistakes.

We view each note as a triple, (o, d, p), where o denotes the note
onset time in quarters, d is the duration of the note, and p represents
MIDI numbering of the pitch. A pair of notes produced by each
of the two systems “match” if and only if all the attributes are
equal. We excluded trills and grace notes in our experiments as

2 All the image data and symbolic output from both systems can be accessed from this
website: https://sites.google.com/site/interactiveomr17/
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Events FP  FN Time (min)
User S 504 5.5 6.8 12.8
Chopin User A 507 85 75 7.2
User B 507 7.2 6.3 8.4
User S 457 5.2 6.0 8.7
Mozart User A 459 6.1 4.8 6.1
User B 458 11.8 10.8 4.0
User S 457 3.5 5.0 7.3
Ravel User A 458 80 8.2 8.2
User B 459 7.2 7.0 8.6

Table 1: The average user performance of accuracy and ef-
ficiency for 3 different pieces. Events: average number of
identified note events per page. FP: average number of false
positives per page. FN: average number of false negatives
per page. Time: average time consumed per page.

the rhythmic interpretation of these are largely arbitrary. With
both systems, the human-directed portion concentrates on the
notational aspects relating to pitch and rhythm output, ignoring,
for instance, text, articulations, and dynamics. While this excludes
some important facets of the notation from our evaluation, the
overwhelming majority of symbols relate to pitch and rhythm, so
we believe the evaluation is still meaningful.

Our “ground truth” is created by examining the symmetric differ-
ence between the two systems’ note lists for a given page, resolving,
by hand, each difference in favor of the correct interpretation. Of
course it is possible that both systems make the same mistake, which
would become part of the ground truth we use for evaluation. Thus
we are really measuring the difference in note errors between the
two systems, rather than an actual count of errors. From listen-
ing to the resulting “ground truth” we expect this discrepancy is
insignificant.

We tested SmartScore with a single user while our system was
tested with two different users. All the users were familiar with the
system they were using and musically proficient enough to read
the notation from original scores. In what follows we will call the
SmartScore user S and the users of our system A and B.

We measure the accuracy of both systems using the error rate
metric r = (Ng, + Ny, )/Ng where N¢, and Np, are the total
number of false positives and false negatives for one piece, and Ng
is the total number of note events for that piece. As shown in Fig. 1,
the results produced by the two systems were similar in terms of
accuracy, both producing results in the 2-4% range after human
correction.

Fig. 2 illustrates the efficiency of the two systems, measured in
terms of keystrokes and mouse clicks (left) and clock time (right). In
the Mozart and Chopin pieces there was comparable effort required
between the two systems when measured in terms of user actions,
though less clock time for our system. For the Ravel the clock time
was about equal for the two systems, while our system used more
keystrokes and mouse clicks. Overall the two systems’ performance
appears comparable. Table 1 presents the numeric results that
summarize the experiments in terms of accuracy and effort.


https://sites.google.com/site/interactiveomr17/

DLfM ’17, October 28,2017, Shanghai,China

H UserS
I User A
0.051 I UserB

0.04 -

0.03F

Error Rate

0.02

0.01r

Chopin Mozart

Figure 1: The error rate of recognized events after human
proofreading and correction.

450

Avg. clock time per page (min)

Avg. number of user actions per page

0
Chopin Mozart Ravel Chopin Mozart Ravel

Figure 2: Left: average key strokes (bottom bar) and mouse
clicks (top bar) used for each page in three different pieces.
Right: average time consumed for each page in three differ-
ent pieces.

In general, we conclude that our system demonstrates perfor-
mance that is competitive with SmartScore, in terms of both accu-
racy and efficiency. The data suggest that SmartScore was slightly
more accurate while our system was slightly faster — users make
different tradeoffs between these two objectives. In addition, it is
worth noting that the data produced by our system also preserves
more information about the precise construction and location of
image symbols. While beyond the scope of our evaluation, such
information can be integral to renotation approaches that leverage
specific layout information from the original when creating newly
formatted music notation.

5 CONCLUSION

Our work with OMR demonstrates the value of human-guided
systems in this domain. Even though the competing commercial
system shows better raw recognition ability than ours, we were
able to achieve comparable performance by casting the problem as
one of human-in-the-loop computation. In doing so, we present
a communication channel that allows the system to integrate the
human input into the core recognition process. In contrast, the
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commercial system views this input as postprocess, thus missing
an effective way to improve the system. This is the main “take
away” message of the current effort. The challenges of OMR are
familiar from a wide variety of different recognition problems,
especially where the data are ambiguous, thus requiring human
knowledge and experience to inform recognition. Thus we believe
in the applicability of human-guided systems in a wide range of
recognition problems far beyond the current focus on OMR.
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