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Abstract

Delimited control operators abound, but their relationships are ill-
understood, and it remains unclear which (if any) to consider canon-
ical. Although all delimited control operators ever proposed can be
implemented using undelimited continuations and mutable state,
Gasbichler and Sperber [28] showed that an implementation that
does not rely on undelimited continuations can be much more ef-
ficient. Unfortunately, they only implemented Felleisen’s control
and prompt [18, 19, 21, 22, 49] and (from there) Danvy and Filin-
ski’s shift and reset [11–13], not other proposed operators with
which an expression may capture its context beyond an arbitrary
number of dynamically enclosing delimiters.

We show that shift and reset can macro-express control and
prompt, as well as the other operators, without capturing undelim-
ited continuations or keeping mutable state. This translation is pre-
viously unknown in the literature. As a consequence, research on
implementing shift and reset, such as Gasbichler and Sperber’s,
transfers to the other operators. Moreover, we treat all these opera-
tors by extending a standard CPS transform (defying some skepti-
cism in the literature whether such a treatment exists), so they can
be incorporated into CPS-based language implementations.

1 Introduction

The continuation is the rest of the computation, represented by the
context of the current expression being evaluated. For example, in
the program

(cons ’a (cons ’b (cons ’c ’())))

the continuation of (cons ’c ’()) is to cons the symbol b, then
the symbol a, onto the intermediate result. This continuation is
represented by the context (cons ’a (cons ’b _)), where _ is a
hole waiting to be plugged in.

Continuations can exist in a program at two levels. First, code may
be written in continuation-passing style (CPS), in which contin-
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uations are managed explicitly as values at all times. Second, the
underlying control flow of a program can be treated in terms of con-
tinuations. Scheme provides call-with-current-continuation
(hereafter call/cc) to access these implicit continuations as first-
class values [35]. Implicit continuations can be made explicit by
a CPS transform on programs; explicit continuations can be made
implicit by a corresponding direct-style transform [7, 14, 15, 46].

A delimited (or composable, or partial) continuation is a prefix of
the rest of the computation, represented by a delimited part of the
context of the current expression being evaluated. For example, in
the program

(cons ’a [(cons ’b (cons ’c ’()))])

the continuation of (cons ’c ’()), as delimited by the square
brackets, is to cons the symbol b onto the intermediate result.
This delimited continuation is represented by the delimited context
[(cons ’b _)].

Delimited continuations, like undelimited ones, can be explicit (in
CPS code) or implicit (in direct-style code). Since Felleisen’s work
[18, 19], many control operators have been proposed to access im-
plicit delimited continuations as first-class values. A typical pro-
posal provides, first, some way to delimit contexts, and second,
some way to capture the current context up to an enclosing delim-
iter. For example, Danvy and Filinski [11–13] proposed two control
operators shift and reset, with the following syntax.

Expressions E ::= · · ·
∣∣ (shift f E)

∣∣ (reset E) (1)

Contexts are captured by shift and delimited by reset. More
specifically, shift captures the current context up to the nearest
dynamically enclosing reset, replaces it abortively with the empty
delimited context [_], and binds f to the captured delimited context
as a functional value. For example, the program

(cons ’a (reset (cons ’b
(shift f (cons 1 (f (f (cons ’c ’()))))))))

evaluates to the list (a 1 b b c), because shift binds f to the
value (lambda (x) (reset (cons ’b x))), which represents
the delimited context [(cons ’b _)] captured by shift. At the
same time, shift also removes that context from evaluation—in
other words, it aborts the current computation up to the delimiting
reset—so the result is not (a b 1 b b c).

Continuations have found a wide variety of applications. Delimited
continuations, in particular, have been used in direct-style repre-
sentations of monads [23–25], partial evaluation [8, 17, 26, 38, 52],
Web interactions [29, 43, 44], mobile code [50], the CPS transform



itself [11–13], and linguistics [3, 47]. However, the proliferation
of delimited control operators remains a source of confusion for
users and work for implementors. Even though all delimited control
operators in the literature can be implemented using call/cc and
mutable state, we would prefer a direct implementation—that is, an
implementation that does not rely on undelimited continuations—in
hope of reaping the efficiency gains recently shown by Gasbichler
and Sperber [28] with their direct implementation. Unfortunately,
Gasbichler and Sperber only implement Felleisen’s control and
prompt [18, 19] and (from there) Danvy and Filinski’s shift and
reset [11–13], not other proposed operators that allow an expres-
sion to capture its context beyond an arbitrary number of dynami-
cally enclosing delimiters [30–32, 45]. Although it is clear that the
latter operators can macro-express1 the former ones in pure Scheme
without call/cc or set!, the converse “seems not to be known”
[30, 31]. Hence it is unclear how an improved implementation of
shift and reset, such as Gasbichler and Sperber’s, can help us
implement other control operators better.

Because the “static” control operators shift and reset correspond
closely to a standard CPS transform [12], to macro-express other,
“dynamic” control operators in terms of shift and reset is to ex-
tend that transform. In the literature, dynamic control operators like
control and prompt are often treated, as if by necessity, using a
non-standard CPS transform in which continuations are represented
as sequences of activation frames [21, 22, 42]. By contrast, we
show in this paper that a standard CPS transform suffices, as one
might expect from Filinski’s representation of monads in terms of
shift and reset [23–25] (see Section 3.1). What distinguishes dy-
namic control operators is that the continuation is recursive. Thus,
in a language supporting recursion like (pure) Scheme, shift and
reset can macro-express the other control operators after all. As a
consequence, any direct implementation of shift and reset, such
as Gasbichler and Sperber’s, gives rise to a direct implementation
of the other operators.2 Moreover, because our translation of all
these operators extends a standard CPS transform, they can be in-
corporated into CPS-based language implementations.

1By “macro-express” we mean Felleisen’s notion of macro ex-
pressibility [20], but we surround each program by a “top-level”
construct to mark its syntactic top level. We also impose an ad-
ditional requirement: given any space consumption bound s, there
must exist another space consumption bound s′, such that every pro-
gram within s translates to a program within s′. This requirement is
intended to rule out

• implementing delimited continuations by capturing undelim-
ited ones; and

• keeping mutable state by modeling memory in a single storage
cell, which shift and reset can simulate (while accumulat-
ing garbage in the simulated store).

Space consumption can be defined along the lines of Clinger [5],
for an abstract machine such as Biernacka et al.’s for shift and
reset [4].

2A reviewer suggests that Gasbichler and Sperber’s technique
can be easily adapted to other control operators. For example, to
implement the (dynamic) shift0 operator below, it seems that one
need only replace the reset flag in every frame with a reset count,
and decrement it after shifting. Given how many delimited control
operators have been (and will be?) proposed—several, like cupto
[30, 31], are related but not identical to the four considered in this
paper—macro-expressibility results like ours are attractive because
they do not require changing the Scheme implementation at all be-
fore new operators can be introduced.

The rest of this paper is structured as follows. Section 2 introduces
the static control operators shift and reset, and their dynamic
counterparts. Section 3 expresses dynamic control in terms of static
control with recursive continuations. Section 4 then concludes and
mentions additional related work.

2 A tale of two resets

Danvy and Filinski’s shift and reset [11–13] can be defined op-
erationally as well as denotationally. Operationally, we can specify
transition rules in the style of Felleisen [18]:3

M[(reset V)] B M[V ] (2)

M[(reset C[(shift f E)])] B M[(reset E ′)]
where E ′ = E{f 7→ (lambda (x) (reset C[x]))} (3)

Here V stands for a value, C stands for an evaluation context that
does not cross a reset boundary, and M stands for an evaluation
context that may cross a reset boundary:

Values V ::= (lambda (x) E)
∣∣ · · · (4)

Contexts C[ ] ::= [ ]
∣∣ C[([ ] E)]

∣∣ C[(V [ ])]
∣∣ · · · (5)

Metacontexts M[ ] ::= C[ ]
∣∣ M[(reset C[ ])] (6)

Denotationally, we can specify a CPS transform to map programs
that use shift and reset to programs that do not. The core of this
transform is shown in Figure 1; its first three lines are what this
paper means by “a standard (call-by-value) CPS transform”.4

As Danvy and others have long observed [10], the syntactic defi-
nitions above of contexts and metacontexts are not rabbits out of
hats. Rather, contexts are defunctionalized representations of the
continuation functions in Figure 1.

Contexts of the form: represent continuations of the form:
[ ] (lambda (v) v)

C[([ ] E)] (lambda (f)
(E ′ (lambda (x) ((f x) C′))))

C[(V [ ])] (lambda (x) ((V ′ x) C′))

Similarly, metacontexts (such as (reset (f (reset (g [ ])))))
are defunctionalized representations of the implicit metacontinua-
tions in Figure 1—that is, of the continuations that can be made
explicit by CPS-transforming the right hand side of Figure 1.

The CPS transform relates not just terms but also types between the
source and target languages. If the source program is a well-typed
term in, say, the simply-typed λ-calculus, then the output of the
transform is also well-typed in the simply-typed λ-calculus: every
source type at the top level or to the right of a function arrow is

3To help the exposition below, these transition rules do not han-
dle the case when a shift term is evaluated with no dynamically
enclosing reset. Danvy and Filinski’s original proposal amounts
here to enclosing the entire program in a top-level reset.

4The right-hand-sides for shift and reset in Figure 1 contain
non-tail calls, as do (18–19) in Section 3.1 below. Thus these equa-
tions do not really constitute a CPS transform, only a continuation-
composing-style transform that extends a standard CPS transform
on the pure λ-calculus. In particular, the output of this transform
is sensitive to the evaluation order of the target language. Danvy
and Filinski [12] regain CPS by CPS-transforming the output of
this transform a second time. We can do so but need not, since by
Section 3.2 our equations’ right-hand-sides will be in CPS again,
with all arguments pure.



x = (lambda (c) (c x))

(lambda (x) E) = (lambda (c) (c (lambda (x) E)))

(E1 E2) = (lambda (c) (E1 (lambda (f) (E2 (lambda (x) ((f x) c))))))

(reset E) = (lambda (c) (c (E (lambda (v) v))))

(shift f E) = (lambda (c) (let ((f (lambda (x) (lambda (c2) (c2 (c x))))))
(E (lambda (v) v))))

Figure 1. A continuation-passing-style transform for shift and reset

mapped to a type of the form (τ → ω1) → ω2, where ω1 and ω2
are answer types [39]. Moreover, the type system of the target lan-
guage can be regarded as a type system for the source language. For
example, the expression

(shift f (if (f ’a) 1 2))

translates to a term of the type (Sym→ Bool)→ Int. In words, the
expression can appear in a context that produces a boolean when
plugged with a symbol, and produce an integer as the final an-
swer. We can take such descriptions as the types of source terms,
as Danvy and Filinski [11] do. They write the typing judgment

·,Bool ` (shift f (if (f ’a) 1 2)) : Sym, Int (7)

to mean that the expression behaves locally like a symbol, but incurs
a control effect that changes the answer type from Bool to Int.

The transition rule (3) for shift mentions reset twice on its right
hand side. On the first line, the reset that delimits the captured
context is preserved after the capture, so the context from a sin-
gle reset outward is protected from manipulation by any number
of dynamically enclosed shift invocations. Informally speaking,
reset makes any piece of code appear pure to the outside, that is,
devoid of control effects. On the second line, the captured context
is surrounded by reset, so f is bound to a pure function.

Neither occurrence of reset on the right hand side of (3) is acci-
dental; they are necessary for the operational semantics to match
the transform in Figure 1. Despite the appeal of this match, many
other delimited control operators have been proposed (historically,
both before and after Danvy and Filinski’s work) that remove one
or both occurrences of reset on the right hand side of (3). Three
such variations on shift are possible, namely control, shift0,
and control0 below.

M[(reset C[(control f E)])] B M[(reset E ′)]
where E ′ = E{f 7→ (lambda (x) C[x])} (8)

M[(reset C[(shift0 f E)])] B M[E ′]
where E ′ = E{f 7→ (lambda (x) (reset C[x]))} (9)

M[(reset C[(control0 f E)])] B M[E ′]
where E ′ = E{f 7→ (lambda (x) C[x])} (10)

Felleisen’s control operator [18, 19, 21, 22, 49], the first delimited
control operator in the literature, captures a delimited context with-
out surrounding it with reset, so f may operate on the contexts in
which it is subsequently invoked. The difference between shift
and control can be observed as follows: the program

(reset (let ((y (shift f (cons ’a (f ’())))))
(shift g y)))

evaluates to (a),5 whereas the program

(reset (let ((y (control f (cons ’a (f ’())))))
(control g y)))

evaluates to ().6 Sitaram’s fcontrol [48] is closely related to
control in nature. These authors refer to reset as prompt, run,
#, or %.

The shift0 operator captures a delimited context like shift does,
but removes the delimiting reset. For example, the program

(reset (cons ’a
(reset (shift f (shift g ’())))))

evaluates to (a),7 whereas the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to ().8 Danvy and Filinski [11] consider this shift0 op-
erator briefly. Also, Hieb and Dybvig’s spawn [32] can be thought
of as a reset that, each time it is invoked to insert a new delimiter,
creates a specific shift0 operator for that new delimiter.

The control0 operator is like control but removes the delimit-

5The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(reset (let ((y x)) (shift g y))))

’())))
(reset (cons ’a

(reset (let ((y ’())) (shift g y)))))
(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))

Here shift f introduces a reset under the lambda, which stops
shift g from capturing cons ’a.

6The reduction sequence begins:
(reset (cons ’a

((lambda (x)
(let ((y x)) (control g y)))

’())))
(reset (cons ’a

(let ((y ’())) (control g y))))
(reset (cons ’a (control g ’())))
(reset ’())

Here control f allows control g to capture cons ’a.
7The reduction sequence begins:
(reset (cons ’a (reset (shift g ’()))))
(reset (cons ’a (reset ’())))
8The reduction sequence is:
(reset (cons ’a (shift0 g ’())))
’()



ing reset. It is essentially Gunter et al.’s cupto [30, 31] stripped
down to one prompt variable, and closely related to Queinnec and
Serpette’s splitter [45].

Described operationally as in (8–10), these variations on shift
seem like minor changes with little sense of purpose. Because
adding reset is easy, control and shift0 can obviously macro-
express shift, and control0 can macro-express them all, without
call/cc or mutable state. The opposite direction—whether shift
can simulate any of its reset-removed cousins, for example—
“seems not to be known” to Gunter et al. [30, 31]. Since no version
of shift is clearly “right”, Gunter et al. choose to take control0
as primitive.

Concomitant with the apparent difficulty of using shift to simu-
late the other control operators is an apparent difficulty of devising
denotational semantics for these operators under a standard CPS
transform. More precisely, unlike with shift, it is unclear how to
translate control, shift0, or control0 away using a transform
that coincides on pure λ-terms with the first three lines of Figure 1,
where contexts are represented as continuation functions. Instead,
semantics for these operators in the literature either rely on com-
plex mutable data structures (in essence defining the operators by
implementing them in Scheme) or represent contexts as sequences
of activation frames,9 termed abstract continuations [21, 22, 42].
Standard continuation semantics is declared “inadequate” [21] and
“insufficient” [22],10 as control is said to “admit no such simple
static interpretation” [13]. Such claims are surprising in hindsight
of Filinski’s representation of monads in terms of shift and reset
[23–25]—surely even including control0 in a language would not
disqualify it from Moggi’s notions of computation [40]?

Danvy and Filinski [11–13] informally classify their shift and
reset operators as lexical and static, and other delimited control
operators such as control as dynamic. They use these words to
draw an analogy to lexical versus dynamic scoping for variables:
roughly speaking, shift and reset, unlike the other operators, can
be defined and implemented without traversing arbitrarily deeply
into data structures at run-time. The next section shows that, as
soon as we allow traversing arbitrarily deeply into data structures
at run-time, dynamic control operators can be treated with the same
transform as static ones. That is, continuation semantics is suffi-
cient after all, as long as the continuation can be recursive.11

Our development below of recursive continuations is guided by re-
cursive types. For example, if α is a type, then the type List α of
singly-linked α-lists can be defined by

List α = 1+α×List α, (11)

where 1 is the unit type and × constructs product types. For brevity,
we take the unfolding of a recursive type to give not just isomorphic
but in fact equivalent types. For example, (11) states an equation
between types, not just an isomorphism. To use terms coined by

9Or an algebra thereof.
10A reviewer states that these declarations are objections to the

non-tail calls in Figure 1 (as continuation semantics for shift and
reset) and (18–19) in Section 3.1 (as continuation semantics for
control and prompt). However, see footnote 4.

11One way to see the connection between dynamic control op-
erators and recursive continuations may be to observe how the fol-
lowing program enters an infinite loop.
(prompt (begin (control f (begin (f 0) (f 0)))

(control f (begin (f 0) (f 0)))))

Crary et al. [6, 27], this paper shows equi-recursive types, but iso-
recursive types can be used too.

3 Recursive continuations

In this central section of the paper, we treat dynamic control oper-
ators by extending the standard CPS transform, and by translating
them into shift and reset. The key to these treatments is to rep-
resent delimited contexts as functions whose types are recursive:
When a delimited context is captured with a dynamic control oper-
ator, then invoked, it may take control over the delimited context at
the invocation site. Hence, the former context must take the latter
context as an argument in our CPS transform. Roughly speaking,
then, the type of contexts must mention itself, that is, be recursive.

Let us first review delimited contexts captured by shift and reset.
The CPS transform in Figure 1 represents a delimited context as a
continuation, that is, a function of type τ → ω. Danvy and Filinski
identify τ with the type of the intermediate result (that is, the hole in
the context) and ω with the type of the answer (that is, the context
once plugged). For comparison with other control operators below,
we define the types

Context τ ω = τ → ω, (12)
Answer ω = ω, (13)

such that

Context τ ω = τ → Answer ω. (14)

To take an example, the delimited context [(< 1 _)] takes the type
Context Int Bool (or equivalently, Int→Bool) when captured with
shift, because plugging the hole _ with an integer gives an answer
that is a boolean. In other words, the function

(lambda (x)
(reset (< 1 x)))

(which represents that context, as captured by shift) maps in-
tegers to booleans. For another example, the delimited con-
text [(let ((y _)) (shift g (< 1 y)))], when captured by
shift, also has the type Context Int Bool. In other words, the
function

(lambda (x)
(reset (let ((y x)) (shift g (< 1 y)))))

(which represents that context, as captured by shift) also maps
integers to booleans. In fact, these two contexts captured by shift
are observationally equivalent, because the shift g above has only
the empty delimited context [_] to capture.

3.1 control

The context [(let ((y _)) (control g (< 1 y)))] captured
with control is not equivalent to [(< 1 _)], because the function

(lambda (x)
(let ((y x)) (control g (< 1 y))))

(which represents the first context, as captured by control) wipes
out its surrounding delimited context when invoked, whereas the
function

(lambda (x)
(< 1 x))



(which represents the second context, as captured by control) does
not. In general, when a delimited context captured by control
is invoked, it may further capture the surrounding delimited con-
text (up to the nearest dynamically enclosing reset) at the point
of invocation. Thus a delimited context captured by control, un-
like one captured by shift, is not a function from an intermedi-
ate result (with which to plug a hole) to a final answer. Rather, a
control-captured context can be thought of as a function from an
intermediate result and any surrounding delimited context to a fi-
nal answer. The surrounding context may be the empty context [_]
(if the captured context is invoked immediately within reset) or
not empty. Accordingly, we let a delimited context captured by
control whose hole is of type τ and answer is of type ω take the
type Context′ τ ω, where

Context′ τ ω = τ →Maybe(Context′ ω ω)→ ω. (15)

In this recursive type definition, Maybe α means either an α-value
or the special token #f, like the discriminated union types Maybe a
in Haskell. We use #f to represent the empty surrounding context.

The function send below plugs an intermediate answer v (of
type ω) into a delimited context mc (of type Maybe(Context′ ω ω))
by calling mc with v and the trivial delimited context #f. If mc is the
special token #f, then we are plugging v into the empty context, so
the final answer is just v.

(define (send v)
(lambda (mc) (if mc ((mc v) #f) v)))

This function is of type Context′ ω ω: it is itself a delimited con-
text, namely the empty one. If our target language lets us compare
values against send (even intensionally using eq?, say), then we
can do so rather than comparing values against #f, and drop our
use of Maybe. That is, we could implement send as

(define (send v)
(lambda (mc)

(if (eq? send mc) v ((mc v) send))))

but do not, for clarity.

When two shift-captured contexts are composed as functions
at the source level, the result corresponds to concatenating con-
tinuations by function composition in the target language. By
contrast, to concatenate control-captured contexts of the recur-
sive type defined in (15), we define a recursive function, of type(
Context′ τ ω×Maybe(Context′ ω ω)

)
→ Context′ τ ω:

(define (compose c mc1)
(if mc1 (lambda (v)

(lambda (mc2)
((c v) (compose mc1 mc2))))

c))

According to (15), the type Context′ τ ω is a function type, and τ

only appears in its domain, not codomain. In other words, a context
captured by control whose hole type is τ has the function type
of a τ-continuation, just like delimited contexts captured by shift,
except for the recursive answer type Answer′ ω defined by

Answer′ ω = Maybe(Context′ ω ω)→ ω

= Maybe(ω → Answer′ ω)→ ω, (16)

such that

Context′ τ ω = τ → Answer′ ω

= Context τ (Answer′ ω). (17)

Thus Context′ can be written in terms of Context! Hence, delim-
ited contexts captured by control can be represented as ordinary,
if recursive, continuations. The equations below extend the first
three lines of Figure 1 to control. It maps every source type τ,
at the top level or to the right of a function arrow, to a type of the
form (τ → Answer′ ω)→ Answer′ ω. To distinguish the reset for
control here from the reset for shift above, we write prompt
instead of reset.

(prompt E) =
(lambda (c) (c ((E send) #f))) (18)

(control f E) =
(lambda (c1)
(lambda (mc1)

(let ((f (lambda (x)
(lambda (c2)

(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

((E send) #f)))) (19)

Because this transform extends a standard call-by-value CPS trans-
form on the pure λ-calculus, it shows how to treat control and
prompt as operations in the continuation monad (with answer type
Answer′ ω). Then, because shift and reset expresses all op-
erations in the continuation monad, we can define control and
prompt in direct style as macros in terms of shift and reset.

(define-syntax prompt
(syntax-rules ()

((_ e) ((reset (send e)) #f))))

(define-syntax control
(syntax-rules ()

((_ f e)
(shift c1
(lambda (mc1)

(let ((f (lambda (x)
(shift c2

(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

((reset (send e)) #f)))))))

These source-level macros correspond directly to the target-level
equations (18–19), except:

• Where the target-level equations abstract over a continua-
tion argument, the source-level macros use shift rather than
lambda.

• Where the equations pass the continuation send to E, the
macros say (reset (send E)), so as to place E in the de-
limited context [(send _)].

This implementation of control and prompt uses neither call/cc
nor mutable state; in particular, it does not capture any continuation
beyond the outermost delimiting prompt.

Another way to view the same definitions in hindsight is to rec-
ognize that a denotational semantics given by Felleisen et al. [21,
Section 4] encodes control and prompt in a monad that maps each
type τ to the type (τ→Answer′ ω)→ω. This monad is not the con-
tinuation monad, because the answer types Answer′ ω and ω are
different; hence, Felleisen et al.’s equations for their denotational
semantics do not give a standard CPS transform. Nevertheless, we



can still use Filinski’s representation of monads in terms of shift
and reset [23–25] to represent control and prompt—essentially
as above, in fact. As an anonymous reviewer hints, this observation
is one way to show our definitions to correctly implement control
and prompt.

Sitaram and Felleisen [49] implement control and prompt in
terms of call/cc in Scheme. That implementation uses both
call/cc and mutable state. Our implementation of control and
prompt using shift and reset can be composed with Filinski’s
implementation of shift and reset using call/cc [23] to yield
a more modular implementation of control and prompt using
call/cc. Sitaram and Felleisen’s implementation maintains a
global, mutable run-stack. The run-stack is comprised of sub-
stacks, one for each dynamically active prompt. Each sub-stack
is a list of invocation points (that is, undelimited continuations cap-
tured by call/cc). These data structures can be correlated with
our implementation: The run-stack is a sequence of “mc” functions
(of type Maybe(Context′ ω ω)), one for each dynamically active
prompt. Each mc function is a sub-stack, the result of concatenat-
ing control-captured contexts using compose.

3.2 shift0

When shift0 captures a delimited context, it does not replace it
with the trivial delimited context as shift does. Instead, it removes
the captured context along with its delimiting reset, exposing the
next-outer delimited context up to the next-nearest dynamically en-
closing reset. With shift0 in the language, reset is not idem-
potent: (reset E) is not equivalent to (reset (reset E)), be-
cause each reset only “defends against” one shift0. For example,
the program

(reset (cons ’a
(reset (shift0 f (shift0 g ’())))))

evaluates to (), but the program

(reset (cons ’a
(reset

(reset (shift0 f (shift0 g ’()))))))

evaluates to (a).

Because shift0 removes the delimiting reset when capturing a
delimited context, the context

[(let ((y _))
(shift0 f (shift0 g (< 1 y))))]

captured with shift0 is not equivalent to the contexts

[(let ((y _)) (shift0 g (< 1 y)))]
[(< 1 _)]

captured with shift0. That is, the function

(lambda (x)
(reset (let ((y x))

(shift0 f (shift0 g (< 1 y))))))

wipes out its surrounding delimited context when invoked, whereas
the functions

(lambda (x)
(reset (let ((y x)) (shift0 g (< 1 y)))))

(lambda (x)
(reset (< 1 x)))

do not.

Appendix C of Danvy and Filinski’s technical report [11] consid-
ers this variation on shift briefly. They model it denotationally by
passing around a list of delimited contexts, which can be thought of
as a sequence of activation frames, except each frame corresponds
to a reset rather than a function call.12 In our formulation, a de-
limited context captured by shift0 whose hole type is τ and whose
answer type is ω has the type Context0 τ ω, where

Context0 τ ω = τ → List(Context0 ω ω)→ ω. (20)

In this recursive type definition, List α means a singly-linked list
of α-values, either a cons cell or the empty list (). A list of type
List(Context0 ω ω) contains delimited contexts from innermost to
outermost, separated by control delimiters.

The function propagate below plugs an intermediate answer v (of
type ω) into a list of contexts lc (of type List(Context0 ω ω)) by
calling the head of lc with v and the tail of lc. If c is empty, then
the final answer is simply v.

(define (propagate v)
(lambda (lc)

(if (null? lc) v
(((car lc) v) (cdr lc)))))

This function is of type Context0 ω ω: it is itself a delimited con-
text, namely the empty one.

Like the type Context′ τ ω in Section 3.1, Context0 τ ω is a func-
tion type in which τ only appears in the domain. Hence a delimited
context captured by shift0 is just like one captured by shift, ex-
cept the answer type Answer0 ω of the continuation is recursive,
defined by

Answer0 ω = List(Context0 ω ω)→ ω

= List(ω → Answer0 ω)→ ω, (21)

such that

Context0 τ ω = τ → Answer0 ω

= Context τ (Answer0 ω). (22)

Thus Context0 can be written in terms of Context. Therefore, just
as with control, delimited contexts captured by shift0 can be
represented as ordinary continuations. Following the Appendix C
mentioned above, the equations below extend the first three lines
of Figure 1 to a CPS transform for shift0. It maps every source
type τ, at the top level or to the right of a function arrow, to a type
of the form (τ → Answer0 ω) → Answer0 ω. To distinguish the
reset for shift0 here from the reset for shift above, we write
reset0 instead of reset.

(reset0 E) =
(lambda (c)

(lambda (lc)
((E propagate) (cons c lc)))) (23)

12Johnson and Duggan [34] add control facilities to the program-
ming language GL that provide power similar to that of shift0
and reset, but they make each function call delimit the context
(like Landin’s SECD machine [9, 10, 37]), so their frames do cor-
respond to function calls.



(shift0 f E) =
(lambda (c1)

(lambda (lc)
(let ((f (lambda (x)

(lambda (c2)
(lambda (lc)

((c1 x) (cons c2 lc)))))))
((E (car lc)) (cdr lc))))) (24)

As in Section 3.1, these equations13 can be turned into a direct im-
plementation of shift0 and reset0 in terms of shift and reset
that neither captures undelimited continuations nor keeps mutable
state.

3.3 control0

The control0 operator removes both occurrences of reset on
the right hand side of (3); it combines the dynamic properties of
control and shift0. It is thus not surprising that we can treat
control0 with recursive continuations and the CPS transform by
combining the ideas from Sections 3.1–2.

A delimited context captured by control0, with hole type τ and
answer type ω, has the type

Context′0 τ ω = τ →Maybe(Context′0 ω ω)→
List(Context′0 ω ω)→ ω, (25)

in which τ only appears in the domain. A delimited context cap-
tured by control0 is thus just like one captured by shift with the
recursive answer type

Answer′0 ω = Maybe(Context′0 ω ω)→
List(Context′0 ω ω)→ ω

= Maybe(ω → Answer′0 ω)→
List(ω → Answer′0 ω)→ ω, (26)

such that

Context′0 τ ω = τ → Answer′0 ω

= Context τ (Answer′0 ω). (27)

Thus Context′0 can be written in terms of Context. Informally
speaking, the Maybe part of the types above keeps track of the
delimited context within the nearest dynamically enclosing reset,
and the List part keeps track of the delimited contexts beyond that
reset.

The trivial delimited context of type Context′0 ω ω is the function
send-propagate below, which combines send and propagate.

(define (send-propagate v)
(lambda (mc)

(if mc ((mc v) #f)
(lambda (lc)

(if (null? lc) v
((((car lc) v) #f)
(cdr lc)))))))

To compose delimited contexts captured by control0, we can sim-
ply use the code for compose above, because—although it is created

13Now in CPS; see footnote 4. Expressions like
((E propagate) (cons c lc))

may appear to contain a non-tail call, but should be regarded as a
curried call with two arguments.

for control—it also has the type(
Context′0 τ ω×Maybe(Context′0 ω ω)

)
→ Context′0 τ ω. (28)

Finally, we can use send-propagate and compose to define an
ordinary CPS transform for control0. Here we write prompt0
instead of reset to mean the reset for control0.

(prompt0 E) =
(lambda (c)

(lambda (mc)
(lambda (lc)

(((E send-propagate) #f)
(cons (compose c mc) lc))))) (29)

(control0 f E) =
(lambda (c1)

(lambda (mc1)
(lambda (lc)

(let ((f (lambda (x)
(lambda (c2)

(lambda (mc2)
(((compose c1 mc1) x)
(compose c2 mc2)))))))

(((E (car lc)) #f) (cdr lc)))))) (30)

This CPS transform maps every source type τ, at the top level
or to the right of a function arrow, to a type of the form (τ →
Answer′0 ω) → Answer′0 ω. Again, these CPS equations can be
turned into an implementation of control0 and prompt0 using
shift and reset that neither captures undelimited continuations
nor keeps mutable state.

4 Conclusion and related work

This paper presents the first CPS transform for dynamic delimited
control operators, including Felleisen’s control and prompt, that
is consistent with a standard CPS transform. We have shown that
Danvy and Filinski’s static operators shift and reset are just as
expressive as dynamic ones. For a delimited control operator to be
dynamic is for it to require recursive continuations.

Now that we know how to implement dynamic operators in terms
of shift and reset without capturing undelimited continuations or
keeping mutable state, direct implementations of shift and reset
like Gasbichler and Sperber’s [28] give rise to direct implementa-
tions of dynamic operators. Moreover, because our CPS transform
extends a standard one, it can be incorporated into CPS-based lan-
guage implementations.

Besides explicating dynamic control operators, recursive continu-
ations are also useful in practical programming. For example, the
iterative interaction pattern between a coroutine and its environment
is reflected in a recursive continuation, specifically its recursive an-
swer type [25, Section 4.2], which can be depicted graphically as a
flowchart. Two special cases of such interactions are:

• the interaction between a Web server and user agents [16, 29,
43, 44]; and

• the interaction between a cursor iterating over a collection and
its client [36], as epitomized in the classic same-fringe prob-
lem.

Another potential application of recursive continuations lies in
Balat et al.’s type-directed partial evaluator for the λ-calculus with
products and sums [2], which computes normal forms for λ-terms



under βη-equivalence. To normalize terms that use sums, Balat
et al.’s algorithm uses Gunter et al.’s cupto operator [30, 31], rather
than shift as in previous work by Balat and Danvy [1]. As Balat
et al.’s algorithm evaluates a term, it keeps a list of possible scope
locations at which future case expressions may be inserted, in the
form of prompts for cupto. (By contrast, Balat and Danvy’s earlier
algorithm using shift only considers one scope location at which
to insert a case expression.) If cupto is replaced by shift with
a recursive continuation, then that list of prompts would be pleas-
ingly identified with the stack of control points that Gunter et al.
use to implement cupto in the first place. A direct implementation
of cupto or shift would also make the algorithm more efficient.
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