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Abstract
Given an expression that denotes a probability distribution, often
we want a corresponding density function, to use in probabilistic
inference. Fortunately, the task of finding a density has been auto-
mated. It turns out that we can derive a compositional procedure for
finding a density, by equational reasoning about integrals, starting
with the mathematical specification of what a density is. Moreover,
the density found can be run as an estimation algorithm, as well as
simplified as an exact formula to improve the estimate.

Categories and Subject Descriptors G.3 [Probability and Statis-
tics]: distribution functions; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs—
specification techniques; D.1.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

Keywords probability density functions, probability measures,
continuations, program calculation, equational reasoning

1. Introduction
A popular way to handle uncertainty in AI, statistics, and science
is to compute with probability distributions. Typically, we define
a distribution then answer questions about it such as “what is its
expected value?” and “what does its histogram look like?”. Over a
century, practitioners of this approach have identified many patterns
in how to define distributions (that is, modeling) and how to answer
questions about them (called inference). These patterns constitute
the beginning of a combinator library (Hughes 1995).

Unfortunately, models and inference procedures do not com-
pose in tandem: as illustrated in Sections 3.1 and 8.2, often we re-
joice that a large distribution we’re interested in can be expressed
naturally by composing smaller distributions, but then despair that
many questions we want to pose about the overall distribution can-
not be answered using answers to corresponding questions about
the constituent distributions. In other words, the natural composi-
tional structure of models and of inference procedures are not the
same. This mismatch is disappointing because it makes it harder
for us to automate the labor-intensive process of turning a distri-
bution that models the world into a program that answers relevant
questions about it. This difficulty is the bane of declarative pro-
gramming. It’s like trying to build a SAT solver that generates as-
signments satisfying a compound expression e1 ∧ e2 by combining
assignments satisfying the subexpressions e1 and e2.

StdRandom : Real

x ∈ R

Lit x : Real

e : a

Var v : a···
e′ : b

Let v e e′ : b

e : Real

Neg e : Real

e : Real

Exp e : Real

e : Real

Log e : Real

e : Bool

Not e : Bool

e1 : Real e2 : Real

Add e1 e2 : Real

e1 : Real e2 : Real

Less e1 e2 : Bool

e : Bool e1 : a e2 : a

If e e1 e2 : a

Figure 1. The type system of our language of distributions

Still, there’s hope to answer more inference questions while
following the natural compositional structure of models, if only we
could figure out how to generalize the questions as if strengthening
an induction hypothesis or adding an accumulator argument. This
paper tells one such success story. We answer the questions

1. “What is the expected value of this distribution?”

2. “What is a density function of this distribution?”

by generalizing them to compositional interpreters. Our interpreters
are compilers in the sense that their output can be simplified using
a computer algebra system or executed as a randomized algorithm.
We derive these compilers by equational reasoning from a semantic
specification. Our derivation appeals to λ -calculus equations along-
side integral-calculus equations.

2. A Language of Generative Stories
To be concrete, we define a small language of distributions:

Terms e ::= StdRandom
∣∣ Lit x

∣∣ Var v
∣∣ Let v e e∣∣ Neg e

∣∣ Exp e
∣∣ Log e

∣∣ Not e∣∣ Add e e
∣∣ Less e e

∣∣ If e e e
Variables v
Real numbers x

Figure 1 shows our type system. To keep things simple, we include
only two types in this language, Real and Bool. As usual, the
typing judgment e : a means that the expression e has the type a.
In Let v e e′, the bound variable v takes scope over e′ and not e.

Each expression says how to generate a random outcome. For
example, the atomic expression StdRandom says to choose a ran-
dom real number uniformly between 0 and 1. That’s why its type is
Real. To take another example, the compound expression

Add StdRandom StdRandom

says to choose two random real numbers independently, each uni-
formly between 0 and 1, then sum them. The sum is again a real
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number, so this expression’s type is also Real. These descriptions
of how to generate a random outcome are called generative stories
by applied statisticians, and also called generators in QuickCheck
(Claessen and Hughes 2000). The intuitive meaning of a generative
story is a distribution over its outcomes, such as over reals. Be-
cause generative stories are intuitive to tell, and because they make
it easy to detect dependencies among random choices (Pearl 1988),
it’s popular to express probability distributions by composing gen-
erative stories—such as using Add. The syntax of our language thus
embodies the “natural compositional structure of models” referred
to in the introduction above.

We define a Haskell data type Expr to encode the expressions
of our language. Actually, using the GADT (generalized algebraic
data type) extension, let’s define two Haskell types Expr Real and
Expr Bool at the same time, to distinguish our types Real and Bool.

data Expr a where
StdRandom :: Expr Real
Lit :: Rational→ Expr Real
Var :: Var a→ Expr a
Let :: Var a→ Expr a→ Expr b→ Expr b
Neg,Exp,

Log :: Expr Real→ Expr Real
Not :: Expr Bool→ Expr Bool
Add :: Expr Real→ Expr Real→ Expr Real
Less :: Expr Real→ Expr Real→ Expr Bool
If :: Expr Bool→ Expr a→ Expr a→ Expr a

(Although we can easily construct an infinite Expr value by writing
a recursive Haskell program, we avoid it because it would not
correspond to any expression of our language.) We also define the
types Var Real and Var Bool for variable names.

data Var a where
Real :: String→ Var Real
Bool :: String→ Var Bool

But for brevity, we elide the constructors Real and Bool applied to
literal strings in examples.

To interpret expressions in our language as generative stories,
we write a function sample, which takes an expression and an
environment as input and returns an IO action. To express that the
type of the expression matches the outcome of the action, let’s take
the convenient shortcut of defining Real as a type synonym for
Double, so that the Haskell type IO Real makes sense. The code
for sample is straightforward:

type Real = Double
sample :: Expr a→ Env→ IO a
sample StdRandom = getStdRandom random
sample (Lit x) = return (fromRational x)
sample (Var v) ρ = return (lookupEnv ρ v)
sample (Let v e e′) ρ = do x← sample e ρ

sample e′ (extendEnv v x ρ)
sample (Neg e) ρ = liftM negate (sample e ρ)
sample (Exp e) ρ = liftM exp (sample e ρ)
sample (Log e) ρ = liftM log (sample e ρ)
sample (Not e) ρ = liftM not (sample e ρ)
sample (Add e1 e2) ρ = liftM2 (+) (sample e1 ρ)

(sample e2 ρ)
sample (Less e1 e2) ρ = liftM2 (<) (sample e1 ρ)

(sample e2 ρ)
sample (If e e1 e2) ρ = do b← sample e ρ

sample (if b then e1 else e2) ρ

As is typical of an interpreter, this sample function uses a type
Env of environments (mapping variable names to values), along

0 1 2

0
50

10
0

Outcome

Fr
eq

ue
nc

y

0 1 2

0
50

10
0

Outcome

Fr
eq

ue
nc

y

Add StdRandom StdRandom Let "x" StdRandom
(Add (Var "x") (Var "x"))

Figure 2. Histograms of two distributions over real numbers. Each
histogram is produced by generating 1000 samples (as shown at the
end of Section 2) and putting them into 20 equally spaced bins.

with the functions lookupEnv and extendEnv for querying and ex-
tending environments. For concision, here we opt to represent en-
vironments as functions. All this code is standard:

type Env = ∀a.Var a→ a
lookupEnv :: Env→ Var a→ a
lookupEnv ρ = ρ

emptyEnv :: Env
emptyEnv v = error "Unbound"
extendEnv :: Var a→ a→ Env→ Env
extendEnv (Real v) x (Real v′) | v≡ v′ = x
extendEnv (Bool v) x (Bool v′) | v≡ v′ = x
extendEnv ρ v′ = ρ v′

We can now run our programs to get random outcomes:

> sample (Add StdRandom StdRandom) emptyEnv
0.8422448686660571
> sample (Add StdRandom StdRandom) emptyEnv
1.25881932199967
> sample (Let "x" StdRandom (Add (Var "x") (Var "x")))

emptyEnv
0.23258391029872305
> sample (Let "x" StdRandom (Add (Var "x") (Var "x")))

emptyEnv
1.1712041724765878

Your outcomes may vary, of course.
For more of a bird’s-eye view of the distributions, we can take

many independent samples then make a histogram out of each
distribution. Two such histograms are shown in Figure 2. As those
histograms indicate, the generative story of

Add StdRandom StdRandom

is different from the generative story of

Let "x" StdRandom (Add (Var "x") (Var "x"))

even though both expressions have the type Real. The latter ex-
pression means to choose just one random real number uniformly
between 0 and 1, then double it. In general, Let means to choose
an outcome once then use it any number of times. Thus, this is a
call-by-value language whose side effect is random choice.

Although this language is small, our development below is
wholly compatible with adding more types (such as Integer, prod-
ucts, and sums), arithmetic operations (such as division and sine),
and distributions (such as normal, gamma, and Poisson). Besides,
this language already lets us express many distributions, such as the
exponential distribution, which ranges over the positive reals:

exponential :: Expr Real
exponential = Neg (Log StdRandom)
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3. Composing Expectation Functionals
Although the sample interpreter is easy to write and intuitive to
use, we shouldn’t think that the IO action it returns is exactly
the meaning of an expression. By “meaning” here, we mean what
inference should preserve. We often want to reduce e to some other
expression e′ to speed up inference. The problem with treating
sample e as the meaning of e is that such reduction would usually
change the meaning of e, because sample e′ makes different and
fewer random choices than sample e.

For example, the expression Let "x"StdRandom (Lit 3) always
produces the outcome 3, so we should be allowed to reduce it
to just Lit 3, and an inference procedure shouldn’t be obliged
to consume any random seed before generating the 3. In other
words, inference shouldn’t be obliged to distinguish Lit 3 from
Let "x" StdRandom (Lit 3), so we should assign these expressions
the same meaning. They draw outcomes from the same distribution.

A less trivial example is that the definition of sample above
specifies that, in an expression of the form Add e1 e2 or Less e1 e2,
the random choices in e1 must be made before the random choices
in e2, even though the order doesn’t matter. Since addition is com-
mutative, we should assign Add StdRandom (Neg StdRandom)
and Add (Neg StdRandom) StdRandom the same meaning. They
draw outcomes from the same distribution, even though sampling
them starting from the same random seed gives different outcomes.

Thus, the meaning equivalence relation produced by the sample
semantics is too fine-grained. To coarsen the equivalence properly,
measure theory informs us to consider the expected values of dis-
tributions. Given an expression of type Real, its expected value, or
mean, is basically what the average of many samples approaches as
the number of samples approaches infinity. For example, if we run

> sample (Add StdRandom StdRandom) emptyEnv

many times and average the results, the average will approach
1 as we take more samples. In the examples above, the expres-
sions Let "x" StdRandom (Lit 3) and Lit 3 both have the expected
value 3, and the expressions Add e1 e2 and Add e2 e1 always have
the same expected value.

3.1 The Expectation Interpreter
If the only question we ever ask about a distribution is “what is
its expected value?”, then it would be adequate for the meaning of
each expression to equal its expected value. Unfortunately, there
are other questions we ask whose answers differ on expressions
with the same expected value. For example, given an expression of
type Real, we might ask “what is the probability for its outcome to
be less than 1/2?”—perhaps to decide how to bet on it. The two
distributions sampled in Figure 2 both have expected value 1, but
the probability of being less than 1/2 is 1/8 for the first distribution
and 1/4 in the second distribution. Put differently, even though the
two distributions have the same expected value, plugging them into
the same context

If (Less . . . (Lit (1/2))) (Lit 1) (Lit 0)

gives two distributions with different expected values (1/8 6= 1/4).
Even if we know the expected value of an expression e, we don’t
necessarily know the expected value of the larger expression

If (Less e (Lit (1/2))) (Lit 1) (Lit 0)

containing e.
Another way to phrase this complaint is to say that the expected-

value interpretation is not compositional. That is, if we were to
define a Haskell function

mean :: Expr Real→ Env→ Real

then it wouldn’t be straightforward the way sample is. For example,
as the counterexamples in Figure 2 show, there’s no way to define

mean (If (Less e (Lit (1/2))) (Lit 1) (Lit 0)) ρ = · · ·
in terms of mean e. In particular, it’s incorrect to define

mean (If (Less e (Lit (1/2))) (Lit 1) (Lit 0)) ρ

= if mean e<1/2 then 1 else 0

because it would give the result 0 on the distributions in Figure 2,
not 1/8 and 1/4 as it should! People building a compiler for
distributions, including the present authors, want compositionality
in order to achieve separate compilation.

To make mean compositional, we add an argument to it to
represent the context (Hughes 1995; Hinze 2000) that an expression
is plugged into before its expected value is observed. The new
function expect has the type signature

expect :: Expr a→ Env→ (a→ Real)→ Real

where the third argument may or may not be the identity function.
In other words, the question that expect e ρ c asks is “what is the
expected value of the distribution e in the environment ρ after its
outcomes are transformed by the function c?”. This value is also
called the expectation of c with respect to the distribution. (To keep
our derivation mathematically rigorous, we maintain the invariant
that c is always measurable and non-negative (Pollard 2001, §2.4),
but don’t worry if you are not familiar with these side conditions.)

This generalization of mean is compositional: we can define
expect on an expression in terms of expect on its subexpressions.
Here is the definition:

expect StdRandom c =
∫ 1

0 λx.c x
expect (Lit x) c = c (fromRational x)
expect (Var v) ρ c = c (lookupEnv ρ v)
expect (Let v e e′) ρ c = expect e ρ (λx.

expect e′ (extendEnv v x ρ) c)
expect (Neg e) ρ c = expect e ρ (λx.c (negate x))
expect (Exp e) ρ c = expect e ρ (λx.c (exp x))
expect (Log e) ρ c = expect e ρ (λx.c (log x))
expect (Not e) ρ c = expect e ρ (λx.c (not x))
expect (Add e1 e2) ρ c = expect e1 ρ (λx.

expect e2 ρ (λy.c (x+ y)))
expect (Less e1 e2) ρ c = expect e1 ρ (λx.

expect e2 ρ (λy.c (x< y)))
expect (If e e1 e2) ρ c = expect e ρ (λb.

expect (if b then e1 else e2) ρ c)

3.2 Integrals Denoted by Random Choices
To understand this definition, let’s start at the top.

The expected value of StdRandom is 1/2, but that’s not the
only question that expect StdRandom needs to answer. Given
any function c from reals to reals (and any environment ρ),
expect StdRandom ρ c is supposed to be the expected value of
choosing a random number uniformly between 0 and 1 then ap-
plying c to it. That expected value is the integral of c from 0
to 1, which in conventional mathematical notation is written as∫ 1

0 c(x)dx. (More precisely, we mean the Lebesgue integral of c
with respect to the Lebesgue measure from 0 to 1.) In this paper,
we blend Haskell and mathematical notation by writing this inte-
gral as

∫ 1
0 λx.c x, as if there’s a function∫ ·

· · :: Real→ Real→ (Real→ Real)→ Real

already defined. If we want to actually implement such a function, it
could perform numerical integration. Or it could perform symbolic
integration, or just print formulas containing

∫
, if we redefine the
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Figure 3. The expectation of 3 different functions with respect to
the same distribution StdRandom, defined in terms of integration
from 0 to 1 (the shaded areas)

Real type and overload the Num class to produce text or syntax
trees. (We also notate multiplication by ×, so c x always means
applying c to x, as in Haskell, and not multiplying c by x.)

So for example, the expected value of squaring a uniform ran-
dom number between 0 and 1 is

expect StdRandom emptyEnv (λx.x× x)
=
∫ 1

0 λx.x× x
= 1/3

which is less than 1/2 because squaring a number between 0 and 1
makes it smaller. And the probability that a uniform random num-
ber between 0 and 1 is less than 1/2 is

expect StdRandom emptyEnv (λx. if x<1/2 then 1 else 0)
=
∫ 1

0 λx. if x<1/2 then 1 else 0
= 1/2

Figure 3 depicts these integrals.
The rest of the definition of expect is in continuation-passing

style (Fischer 1993; Reynolds 1972; Strachey and Wadsworth
1974). The continuation c is the function whose expectation we
want. The Lit and Var cases are deterministic (that is, they don’t
make any random choices), so the expectation of c with respect to
those distributions simply applies c to one value. The unary oper-
ators (Neg, Exp, Log, Not) each compose the continuation with a
mathematical function.

The remaining cases of expect involve multiple subexpressions
and produce nested integrals if these subexpressions each yield
integrals. For example, it follows from the definition that

expect (Add StdRandom (Neg StdRandom)) emptyEnv c
= expect StdRandom emptyEnv (λx.

expect StdRandom emptyEnv (λy.c (x+negate y)))
=
∫ 1

0 λx.
∫ 1

0 λy.c (x− y)

The nesting order on the last line doesn’t matter, as Tonelli’s theo-
rem (Pollard 2001, §4.4) assures it’s equal to

∫ 1
0 λy.

∫ 1
0 λx.c (x−y).

In general, Tonelli’s theorem lets us exchange nested integrals as
long as the integrand (here λx y.c (x− y)) is measurable and non-
negative. Thus we could just as well define equivalently

expect (Add e1 e2) ρ c = expect e2 ρ (λy.
expect e1 ρ (λx.c (x+ y)))

expect (Less e1 e2) ρ c = expect e2 ρ (λy.
expect e1 ρ (λx.c (x< y)))

Besides compositionality, another benefit of generalizing expect
is that it subsumes every question we can ask about a distribution.
After all, a distribution is completely determined by the probability
it assigns to each set of outcomes, and the probability of a set is
the expectation of the set’s characteristic function—the function

that maps outcomes in the set to 1 and outcomes not in the set
to 0. For example, if e is a closed expression of type Real, then the
probability that the outcome of e is less than 1/2 is

expect e emptyEnv (λx. if x<1/2 then 1 else 0)

Not only can we express the expected value of the distribution e as

mean e ρ = expect e ρ id

but we can also express all the other moments of e, such as the
variance (the expected squared difference from the mean):

variance :: Expr Real→ Env→ Real
variance e ρ = expect e ρ (λx.(x−mean e ρ)2)

To take another example, the ideal height of each histogram bar in
Figure 2 is

expect e emptyEnv (λx. if lo< x 6 hi then 1000 else 0)

where lo and hi are the bounds of the bin and 1000 is the total
number of samples. (We abbreviate lo< x ∧ x 6 hi to lo< x 6 hi.)

Mathematically speaking, every distribution corresponds to a
functional, which is a function—sort of a generalized integrator—
that takes as argument another function, namely the integrand c.
This correspondence is expressed by expect, and it’s injective.
(In fact, it’s bijective between measures and “increasing linear
functionals with the Monotone Convergence property” (Pollard
2001, page 27).) Therefore, if expect e ρ and expect e′ ρ are equal
(in other words, if expect e ρ c and expect e′ ρ c are equal for all c),
then e and e′ are equivalent and we can feel free to reduce e to e′.

In short, we define the meaning of the expression e in the envi-
ronment ρ to be the functional expect e ρ . Returning to Figure 2, it
follows from this definition that the meaning of

Add StdRandom StdRandom

in the empty environment is

expect (Add StdRandom StdRandom) emptyEnv
= λc.

∫ 1
0 λx.

∫ 1
0 λy.c (x+ y)

and the meaning of

Let "x" StdRandom (Add (Var "x") (Var "x"))

in the empty environment is

expect (Let "x" StdRandom (Add (Var "x") (Var "x")))
emptyEnv

= λc.
∫ 1

0 λx.c (x+ x)

The two expressions are not equivalent, because the two functionals
are not equal: applied to the function λx. if x< 1/2 then 1 else 0,
the first functional returns 1/8 whereas the second functional re-
turns 1/4. In this way, expect defines the semantics of our distribu-
tion language. Therefore, it naturally enters our specification of a
probability density calculator, which we present next.

4. Specifying Probability Densities
Some distributions enjoy the existence of a density function. If
the distribution is over the type a, then the density function maps
from a to reals. Density functions are very useful in probabilis-
tic inference: they underpin many concepts and techniques, in-
cluding maximum-likelihood estimation, conditioning, and Monte
Carlo sampling (MacKay 1998; Tierney 1998). We illustrate these
applications in Section 7 below.

Intuitively, a density function is the outline of a histogram as
the bin size approaches zero. For example, the two distributions in
Figure 2 have the respective density functions shown in Figure 4.
The shapes in the two figures are similar, but the histograms are
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Figure 4. Density functions of the two distributions in Figure 2

randomly generated as this paper is typeset, whereas each density
is a fixed mathematical function.

The precise definition of when a given function qualifies as a
density for a given distribution depends on a base or dominating
measure. When the distribution is over reals, the base measure
is typically the Lebesgue measure over reals, in which case the
definition amounts to the following.

Definition 1. A function d ::Real→ Real is a density (with respect
to the Lebesgue measure) for an expression e :: Expr Real in an
environment ρ :: Env if and only if

expect e ρ c =
∫

∞

−∞ λ t.d t× c t

for all continuations c :: Real→ Real.

And when the distribution is over booleans, the base measure is
typically the counting measure over booleans, in which case the
definition amounts to the following.

Definition 2. A function d ::Bool→ Real is a density (with respect
to the counting measure) for an expression e :: Expr Bool in an
environment ρ :: Env if and only if

expect e ρ c = sum [d t× c t | t← [True,False]]

for all continuations c :: Bool→ Real.

One way to gain intuition for these definitions is to let c be the
characteristic function of a set. For example, in Definition 2, if

c = λ t. if t then 1 else 0

then expect e ρ c is the probability of True according to e in ρ , and
the equation requires d True to equal it. In Definition 1, if

c = λ t. if lo< t 6 hi then 1 else 0

where lo and hi are the bounds of a histogram bin, then expect e ρ c
is the probability of that bin according to e in ρ , and the equation
requires

∫ hi
lo d to equal the ideal proportion of that histogram bar.

These definitions use e and ρ just to represent the functional
expect e ρ . Given e and ρ , because densities are useful, our goal is
to find some function d that satisfies the specification above.

4.1 Examples of Densities and Their Non-existence
To illustrate these definitions, let’s check that the functions in Fig-
ure 4 are indeed densities of their respective distributions. First let’s
consider the function on the right of Figure 4, which is supposed to
be a density for

e = Let "x" StdRandom (Add (Var "x") (Var "x"))

in emptyEnv. We start with the functional

m = expect e emptyEnv = λc.
∫ 1

0 λx.c (x+ x)

and reason equationally by univariate calculus. We extend the do-
main of integration from the interval (0,1) to the entire real line:

m = λc.
∫

∞

−∞ λx.(if 0< x<1 then 1 else 0)× c (x+ x)

Then we change the integration variable from x to t = x+ x:

m = λc.
∫

∞

−∞ λ t.(1/2)× (if 0< t/2<1 then 1 else 0)× c t

(The factor 1/2 is the (absolute value of the) derivative of x = t/2
with respect to t.) Matching this equation against Definition 1
shows that

λ t.(1/2)× (if 0< t/2<1 then 1 else 0)
= λ t. if 0< t<2 then 1/2 else 0

is a density as desired. By the way, because changing the value of
the integrand at a few points does not affect the integral, functions
such as

λ t. if t ≡ 1 ∨ t ≡ 3 then 42 else if 0< t 6 2 then 1/2 else 0

are densities just as well.
Turning to the function on the left of Figure 4, we want to check

that it is a density for

e = Add StdRandom StdRandom

in emptyEnv. Again we start with the functional

m = expect e emptyEnv = λc.
∫ 1

0 λx.
∫ 1

0 λy.c (x+ y)

and do calculus. We extend the inner domain of integration from
the interval (0,1) to the entire real line:

m = λc.
∫ 1

0 λx.
∫

∞

−∞ λy.(if 0< y<1 then 1 else 0)× c (x+ y)

Then we change the inner integration variable from y to t = x+ y:

m = λc.
∫ 1

0 λx.
∫

∞

−∞ λ t.(if 0< t− x<1 then 1 else 0)× c t

(No factor is required because the (partial) derivative of y = t− x
with respect to t is 1.) Tonelli’s theorem lets us exchange the nested
integrals:

m = λc.
∫

∞

−∞ λ t.
∫ 1

0 λx.(if 0< t− x<1 then 1 else 0)× c t

Finally, because the inner integration variable x does not appear in
the factor c t, we can pull c t out (in other words, we can use the
linearity of

∫ 1
0 ·):

m = λc.
∫

∞

−∞ λ t.(
∫ 1

0 λx. if 0< t− x<1 then 1 else 0)× c t

Matching this last equation against Definition 1 shows that

λ t.
∫ 1

0 λx. if 0< t− x<1 then 1 else 0

is a density. This formula can be further simplified to the desired
closed form in the lower-left corner of Figure 4, either by hand or
using a computer algebra system.

So far we have seen two examples of distributions and their
densities. But not all distributions have a density. For example,
when e = Lit 3, we have

m = expect e ρ = λc.c 3

so a density function d would have to satisfy

c 3 =
∫

∞

−∞ λ t.d t× c t

for all c ::Real→ Real. But if c = λ t. if t≡ 3 then 1 else 0, then the
left-hand-side is 1 whereas the right-hand-side is∫

∞

−∞ λ t. if t ≡ 3 then d t else 0

which is 0 no matter what d :: Real→ Real is. So there’s no such d.
It may surprise the reader that we say Lit 3 has no density, be-

cause sometimes Lit 3 is said to have a density, easily expressed
in terms of the Dirac delta function. However, the Dirac delta is
not a function in the ordinary sense but a generalized function,
which only makes sense under integration. For example, the Dirac
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delta doesn’t map any number to anything, but rather integrates
an ordinary function c to yield c(0). Whereas an ordinary den-
sity function has the type a→ Real, a generalized function has the
type (a→ Real)→ Real, same as produced by expect. So, gener-
alized functions are essentially distributions, which is indeed what
many people call them. In this paper we seek ordinary density func-
tions, which are much more useful. For example, generalized func-
tions cannot be multiplied together, which precludes their use in
Monte Carlo sampling techniques such as importance sampling (il-
lustrated in Section 7) and Metropolis-Hastings sampling (MacKay
1998; Tierney 1998).

4.2 Relation to Prior Density Calculators
Because density functions are useful, we want a program that au-
tomatically computes density functions from distribution expres-
sions. Such a program can “compute functions” in two different
senses of the phrase. Pfeffer’s (2009, §5.2) density calculator is a
random algorithm that produces a number. By running the algo-
rithm many times and averaging the results, we can approximate
the density of a distribution at a given point. In contrast, Bhat et al.’s
(2012, 2013) density calculator deterministically produces an exact
mathematical formula (which may contain integrals). As they sug-
gest, we can then feed the formula to a computer algebra system or
inference procedure to be analyzed or executed.

In the rest of this paper, we use equational reasoning to derive
a compositional density calculator for the first time. Even though
Definitions 1 and 2 seem to require conjuring a function out of thin
air, the semantic specification above turns out to pave the way for
the equational derivation below. The resulting calculator produces
a density function that can be treated either as an exact formula (not
necessarily closed form) or as an approximation algorithm, depend-
ing on whether

∫
is treated as symbolic or numerical integration. It

thus unites the density calculators of Pfeffer (2009) and Bhat et al.
(2012, 2013). In particular, the variety of program constructs that
those techniques and ours can handle appear to be the same.

5. Calculating Probability Densities
To recap, our goal in the rest of this paper to derive a program that,
given e and ρ , finds a function d that satisfies Definitions 1 and 2.

We just saw that not every distribution has a density. Moreover,
not every density can be represented using the operations on Real
available to us. And even if a density can be represented, discov-
ering it may require mathematical reasoning too advanced to be
automated compositionally. For all these reasons, we have to relax
our goal: let’s write a program

density :: Expr a→ [Env→ a→ Real ]

that maps each distribution expression e to a list of successes
(Wadler 1985). For every element δ of the list, and for every
environment ρ that binds all the free variables in e, we require that
the function δ ρ be a density for e in ρ . That is, depending on if e
has type Expr Real or Expr Bool, we want one of the two equations

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t
expect e ρ c = sum [δ ρ t× c t | t← [True,False]]

to hold for all δ , ρ , and c.
The list returned by density might be empty, but we’ll do our

best to keep it non-empty. For example, as shown in Section 4, we
regret that density (Lit 3) must be the empty list, but

density (Let "x" StdRandom (Add (Var "x") (Var "x")))

and

density (Add StdRandom StdRandom)

can be the non-empty lists

[λρ t. if 0< t<2 then 1/2 else 0]
[λρ t.

∫ 1
0 λx. if 0< t− x<1 then 1 else 0]

respectively. Our density calculator ends up missing the first den-
sity (see Section 8.1), but it does find the second as soon as we
introduce nondeterminism by concatenating lists (see Section 5.5).

The fact that not every distribution has a density holds another
lesson for us. It turns out that density is not compositional. In
other words, density on an expression cannot be defined in terms
of density on its subexpressions, for the following reason. On
one hand, Lit 3 and Lit 4 have no density, so density must map
them both to the empty list. On the other hand, the larger ex-
pressions Add (Lit 3) StdRandom and Add (Lit 4) StdRandom
have densities but different ones, so we want density to map them
to different non-empty lists. Thus, density e does not determine
density (Add e StdRandom). Instead, it will be in terms of expect e
that we define density (Add e StdRandom). That is, although
density is not compositional, the interpreter λe.(density e,expect e)
is compositional (but see Section 8.2).

We define density e by structural induction on e.

5.1 Real Base Cases
An important base case is when e = StdRandom: we define

density StdRandom= [λρ t. if 0< t ∧ t<1 then 1 else 0 ]

expressing the characteristic function of the unit interval. This
clause satisfies Definition 1 because

expect StdRandom ρ c
= -- definition of expect∫ 1

0 λ t.c t
= -- extending the domain of integration∫

∞

−∞ λ t.(if 0< t ∧ t<1 then 1 else 0)× c t

For the other base cases of type Real, we must fail, as discussed
in Section 4.1.

density (Lit ) = [ ]
density (Var (Real )) = [ ]

5.2 Boolean Cases
In a countable type such as Bool (in contrast to Real), every distri-
bution has a density. In other words, there always exists a function d
that satisfies Definition 2. We can derive it as follows:

expect e ρ c
= -- η-expansion

expect e ρ (λx.c x)
= -- case analysis on x

expect e ρ (λx.sum [ (if t ≡ x then 1 else 0)× c t
| t← [True,False]])

= -- Tonelli’s theorem, or just linearity of m
sum [ expect e ρ (λx. if t ≡ x then 1 else 0)× c t

| t← [True,False]]

In the right-hand-side above, expect e ρ (λx. if t≡ x then 1 else 0) is
just the probability of the boolean value t. Matching the right-hand-
side against Definition 2 shows that the function prob e ρ defined by

prob :: Expr Bool→ Env→ Bool→ Real
prob e ρ t = expect e ρ (λx. if t ≡ x then 1 else 0)

is a density for e in ρ . Accordingly, we define

density (Var (Bool v)) = [prob (Var (Bool v))]
density (Not e) = [prob (Not e) ]
density (Less e1 e2) = [prob (Less e1 e2) ]
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Figure 5. A density of Neg StdRandom (top) results from trans-
forming a density of StdRandom (bottom)

5.3 Unary Cases
Things get more interesting in the other recursive cases. Take the
case density (Neg e) for example. Suppose that the recursive call
density e returns the successful result δ , so the induction hypothesis
is that the equation

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t

holds for all ρ and c. We seek some δ ′ such that the equation

expect (Neg e) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

holds for all ρ and c. Starting with the left-hand-side, we calculate

expect (Neg e) ρ c
= -- definition of expect

expect e ρ (λx.c (−x))
= -- induction hypothesis, substituting λx.c (−x) for c∫

∞

−∞ λx.δ ρ x× c (−x)
= -- changing the integration variable from x to t =−x∫

∞

−∞ λ t.δ ρ (−t)× c t

Therefore, to match the goal, we define

density (Neg e) = [λρ t.δ ρ (−t) | δ ← density e ]

This clause says that the density of Neg e at t is the density of e
at −t. This makes sense because the histogram of Neg e is the hor-
izontal mirror image of the histogram of e. For example, Figure 5
depicts how the density of Neg StdRandom at t is the density of
StdRandom at −t: when a sample from Neg StdRandom occurs
between−0.5 and−0.4 (shaded above), it’s because a sample from
StdRandom occurred between 0.4 and 0.5 (shaded below).

A slightly more advanced case is density (Exp e). Again, we
assume the induction hypothesis

expect e ρ c =
∫

∞

−∞ λ t.δ ρ t× c t

and seek some δ ′ satisfying

expect (Exp e) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

Starting with the left-hand-side, we calculate

expect (Exp e) ρ c
= -- definition of expect

expect e ρ (λx.c (exp x))
= -- induction hypothesis, substituting λx.c (exp x) for c∫

∞

−∞ λx.δ ρ x× c (exp x)
= -- changing the integration variable from x to t = exp x∫

∞

0 λ t.(δ ρ (log t)/t)× c t
= -- extending the domain of integration∫

∞

−∞ λ t.(if 0< t then δ ρ (log t)/t else 0)× c t

−1 0 1 2 3
x = log t

t = exp x

Figure 6. A density of Exp StdRandom (top) results from trans-
forming a density of StdRandom (bottom)

Compared to the Neg case above, this calculation illustrates two
complications:

1. The second-to-last step introduces the factor 1/t, which is the
(absolute value of the) derivative of x = log t with respect to t.
This factor makes sense because the histogram of Exp e is a
distorted image of the histogram of e. For example, Figure 6
depicts how the density of Exp StdRandom at t is the density
of StdRandom at log t, multiplied by 1/t because the interval
(e0.4,e0.5) (shaded above) is wider than the interval (0.4,0.5)
(shaded below) (Freedman et al. 2007, Chapter 3). After all,
when a sample from Exp StdRandom occurs between e0.4

and e0.5, it’s because a sample from StdRandom occurred
between 0.4 and 0.5, so the two shaded areas in Figure 6 should
be equal.

2. The last step introduces a conditional to account for the fact that
the result of exponentiation is never negative.

In the end, to match the goal, we define

density (Exp e) = [λρ t. if 0< t then δ ρ (log t)/t else 0
| δ ← density e ]

The case density (Log e) can be handled similarly, so we omit
the derivation:

density (Log e) = [λρ t.δ ρ (exp t)× exp t | δ ← density e ]

We can add other unary operators as well, such as reciprocal.
(Alternatively, we can express reciprocal in terms of Exp, Neg, and
Log, like with a slide rule.)

All these unary operators have in common that their densities
invert their usual interpretation as functions: the density of Exp e
at t uses the density of e at log t; the density of Neg e at t uses the
density of e at −t; and so on. This pattern underlies the intuition
that density calculation is backward sampling.

5.4 Conditional
For the case density (If e e1 e2), suppose that the recursive calls
density e1 and density e2 return the successful results δ1 and δ2.
(It turns out that we don’t need a density for the subexpression e.)
We seek some δ ′ such that the equation

expect (If e e1 e2) ρ c =
∫

λ t.δ ′ ρ t× c t

holds for all ρ and c. Here the linear functional
∫
· is either

∫
∞

−∞ ·
(if e1 and e2 have type Expr Real) or λc.sum (map c [True,False])
(if e1 and e2 have type Expr Bool). Starting with the left-hand-side,
we calculate
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expect (If e e1 e2) ρ c
= -- definition of expect

expect e ρ (λb.expect (if b then e1 else e2) ρ c)
= -- induction hypotheses

expect e ρ (λb.
∫

λ t.(if b then δ1 else δ2) ρ t× c t)
= -- Tonelli’s theorem, exchanging the integrals

-- expect e ρ (λb. . . .) and
∫

λ t. . . .× c t∫
λ t.expect e ρ (λb.(if b then δ1 else δ2) ρ t)× c t

Therefore, to match the goal, we define

density (If e e1 e2) = [λρ t.expect e ρ (λb.
(if b then δ1 else δ2) ρ t)

| δ1← density e1,δ2← density e2 ]

Using the fact that λb. . . . above is just a function from Bool to
Real (essentially the Real pair (δ1 ρ t,δ2 ρ t)), we can rewrite this
definition more intuitively:

density (If e e1 e2) = [λρ t.prob e ρ True ×δ1 ρ t
+ prob e ρ False×δ2 ρ t
| δ1← density e1,δ2← density e2 ]

For example, if e is Less StdRandom (Lit (1/2)), then

prob e ρ True = prob e ρ False = 1/2

and to sample from If e e1 e2 is to flip a fair coin to decide whether
to sample from e1 or from e2. Accordingly, the density of If e e1 e2
is just the average of the densities of e1 and e2.

5.5 Binary Operators
Recall from Section 5.3 that the density of a unary operator f (x)
inverts f as a function of its operand x. The density of a binary
operator f (x,y) can invert f as a function of either x or y, treating
the other operand as fixed. This choice brings a new twist to our
derivation, namely that our density calculator can be nondetermin-
istic: it can try multiple strategies for finding a density. If multiple
strategies succeed, the resulting density functions are equivalent, in
that they disagree only on a zero-probability set of outcomes. (But
their subsequent performance may differ, so we keep them all.)

Take Add e1 e2 for example. The distribution denoted by
Add e1 e2 is the convolution of the distributions denoted by e1
and e2. What we seek is some δ ′ such that the equation

expect (Add e1 e2) ρ c =
∫

∞

−∞ λ t.δ ′ ρ t× c t

holds for all ρ and c.
Again starting with the left-hand-side, we calculate

expect (Add e1 e2) ρ c
= -- definition of expect

expect e1 ρ (λx.expect e2 ρ (λy.c (x+ y)))

If the recursive call density e2 returns the successful result δ2, then
the induction hypothesis lets us continue calculating as follows:

= -- induction hypothesis
expect e1 ρ (λx.

∫
∞

−∞ λy.δ2 ρ y× c (x+ y))
= -- changing the integration variable from y to t = x+ y

expect e1 ρ (λx.
∫

∞

−∞ λ t.δ2 ρ (t− x)× c t)
= -- Tonelli’s theorem∫

∞

−∞ λ t.expect e1 ρ (λx.δ2 ρ (t− x))× c t

Therefore, having solved for y in t = x+ y, we can define

density (Add e1 e2) = [λρ t.expect e1 ρ (λx.δ2 ρ (t− x))
| δ2← density e2 ]

For example, when e1 is Lit 3 and e2 is StdRandom, this definition
amounts to solving for y in t = 3+ y. The density calculator finds
y = t−3 and thus returns

[λρ t. if 0< t−3<1 then 1 else 0]

expressing the characteristic function of the interval (3,4). We can
also handle the example on the left of Figure 4 now: when e1 and e2
are both StdRandom, the density calculator returns

[λρ t.
∫ 1

0 λx. if 0< t− x<1 then 1 else 0]

because expect e1 ρ produces the integral and δ2 ρ (t−x) produces
the conditional.

By analogous reasoning, we can also solve for x and define

density (Add e1 e2) = [λρ t.expect e2 ρ (λy.δ1 ρ (t− y))
| δ1← density e1 ]

Although solving for y and for x can produce overlapping lists (like
when e1 and e2 are both StdRandom), the two lists do not subsume
each other. For example, because Lit 3 has no density, only the first
definition handles Add (Lit 3) StdRandom and only the second
definition handles Add StdRandom (Lit 3). In the end, we define

density (Add e1 e2) = [λρ t.expect e1 ρ (λx.δ2 ρ (t− x))
| δ2← density e2 ]

++[λρ t.expect e2 ρ (λy.δ1 ρ (t− y))
| δ1← density e1 ]

We can add other binary operators, such as multiplication, to our
language and handle them similarly. (Alternatively, we can express
multiplication in terms of Exp, Add, and Log, like with a slide rule.)

5.6 Variable Binding and Sharing
As with Add, an expression Let v e e′ may have a density even
if one of its subexpressions e and e′ doesn’t. We call v the bound
variable, e the right-hand-side (Landin 1964; Peyton Jones 2003),
and e′ the body of the Let. There are two strategies for handling Let.

First, if the body e′ has a density δ ′, then a density of the Let is
the expectation of δ ′ with respect to the right-hand-side e. That is,
if the recursive call density e′ returns the successful result δ ′, then
we calculate

expect (Let v e e′) ρ c
= -- definition of expect

expect e ρ (λx.expect e′ (extendEnv v x ρ) c)
= -- induction hypothesis

expect e ρ (λx.
∫

λ t.δ ′ (extendEnv v x ρ) t× c t)
= -- Tonelli’s theorem∫

λ t.(expect e ρ (λx.δ ′ (extendEnv v x ρ) t))× c t

Therefore, we can define

density (Let v e e′)
= [λρ t.expect e ρ (λx.δ ′ (extendEnv v x ρ) t)

| δ ′← density e′ ]

This strategy handles Let expressions that use the bound vari-
able as a parameter. The right-hand-side can be deterministic, as in

Let "x" (Lit 3)
(Add (Add (Var "x") (Var "x")) StdRandom)

or random, as in

Let "x" StdRandom
(Add (Add (Var "x") (Var "x")) StdRandom)

These examples show that Var "x" can be used multiple times. That
is, the outcome of the right-hand-side can be shared. We need Let
in the language to introduce such sharing. However, this strategy
fails on Let expressions whose bodies are deterministic, such as

Let "x" (Neg StdRandom)
(Exp (Var "x"))
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These Let expressions have densities only because their right-hand-
sides are random. Hence we introduce another strategy for handling
Let: check if the body of the Let uses the bound variable at most
once. If so, we can inline the right-hand-side into the body. That
is, we can replace Let v e e′ by the result of substituting e for v
in e′, which we write as e′{v 7→ e}. (This substitution operation
sometimes needs to rename variables in e′ to avoid capture.) This
replacement preserves the meaning of the Let expression even if
the body is random. For example, we can handle the expression

e1 = Let "x" (Neg StdRandom)
(Add StdRandom (Exp (Var "x")))

by turning it into the equivalent expression

e2 = Add StdRandom (Exp (Neg StdRandom))

To see this equivalence, apply the definition of expect to e1 and e2:

expect e1 ρ c =
∫ 1

0 λx.
∫ 1

0 λ t.c (t+ exp (−x))
expect e2 ρ c =

∫ 1
0 λ t.

∫ 1
0 λx.c (t+ exp (−x))

Then use Tonelli’s theorem to move inward the outer integral
∫ 1

0 λx
in expect e1 ρ c, which corresponds to the random choice made in
Neg StdRandom. If we think of random choice as a side effect,
then Tonelli’s theorem lets us delay evaluating the right-hand-side
Neg StdRandom until the body Add StdRandom (Exp (Var "x"))
actually uses the bound variable "x".

In general, Tonelli’s theorem tells us that delayed evaluation
preserves the expectation semantics of the expression Let v e e′
when the body e′ uses the bound variable v exactly once. Moreover,
in the case where e′ never uses v, delayed evaluation also preserves
the expectation semantics, but for a different reason. If e′ never
uses v, then expect e′ (extendEnv v x ρ) c = expect e′ ρ c, so

expect (Let v e e′) ρ c
= -- definition of expect

expect e ρ (λx.expect e′ (extendEnv v x ρ) c)
= -- e′ never uses v

expect e ρ (λx.expect e′ ρ c)
= -- pull expect e′ ρ c out of the integral expect e ρ (λx. . . .)

expect e ρ (λx.1)× expect e′ ρ c

Finally, a simple induction on e shows that expect e ρ (λx.1)
always equals 1 in our language. In other words, the distributions
denoted in our language are all probability distributions.

Backed by this reasoning, we put the two strategies together to
define

density (Let v e e′)
= [λρ t.expect e ρ (λx.δ ′ (extendEnv v x ρ) t)

| δ ′← density e′ ] -- first strategy
++[δ ′ | usage e′ v 6 AtMostOnce

, δ ′← density (e′{v 7→ e})] -- second strategy

The condition usage e′ v 6 AtMostOnce above tests conservatively
whether the expression e′ uses the variable v at most once—in other
words, whether v is not shared in e′. This test serves the purpose
of Bhat et al.’s (2012) active variables and independence test. We
relegate its implementation to Appendix A.

6. Approximating Probability Densities
We are done deriving our density calculator! It produces output
rife with integrals. The definition of density itself does not contain
integrals, but expect StdRandom contains an integral, and density
invokes expect in the boolean, If, Add, and Let cases. For example,
Section 5.5 shows one success of our density calculator:

density (Add StdRandom StdRandom)
= [λρ t.expect StdRandom ρ (λx.δ2 ρ (t− x))
| δ2← density StdRandom] ++ · · ·

= [λρ t.
∫ 1

0 λx. if 0< t− x<1 then 1 else 0]++ · · ·
One way to use density is to feed its output to a symbolic inte-

grator, as Bhat et al. (2012) suggest. If we’re lucky, we might get
a closed form that can be run as an exact deterministic algorithm.
For example, Maxima, Maple, and Mathematica can each simplify
the successful result above to the closed form in the lower-left cor-
ner of Figure 4. To produce output that those systems can parse, we
would redefine the Real type and overload the Num class, which is
not difficult to do.

Even without computer algebra or without eliminating all inte-
grals, we can execute the density found as a randomized algorithm
whose expected output is the density at the given point. All it takes
is interpreting each call from density to expect as sampling ran-
domly from a distribution. This interpretation is a form of numer-
ical integration, carried out by Pfeffer’s (2009, §5.2) approximate
algorithm for density estimation. For example, we can interpret the
successful result above, as is, as the following randomized (and
embarrassingly parallel) algorithm:

Given ρ and t, choose a random real number x uniformly
between 0 and 1, then compute if 0< t−x<1 then 1 else 0.

When time is about to run out, we average the results from repeated
independent runs of this algorithm.

7. Applications of Our Density Calculator
Returning to our motivation, let us briefly demonstrate two ways to
use density functions in probabilistic inference.

7.1 Computing and Comparing Likelihoods
Imagine that we are adjudicating between two competing scientific
hypotheses, which we model by two generative stories e1 and e2.
Using their density functions, we can update our belief in light of
empirical evidence.

Concretely, suppose we conduct many independent trials of the
following experiment:

1. We use a known device to draw a quantity from the exponential
distribution (defined at the end of Section 2). We cannot ob-
serve this quantity directly, but it can cause effects that we can
observe. So we give it a name x.

2. We use an unknown device to transform x to another quantity,
which we do observe. The goal of the experiment is to find out
what the unknown device does. Suppose we know that either
the unknown device produces x as is, or it produces ex−1.

We can model our two hypotheses about the unknown device by
two generative stories whose outcomes are possible observations:

e1,e2 :: Expr Real
e1 = Let "x" exponential (Var "x")
e2 = Let "x" exponential (Add (Exp (Var "x")) (Lit (−1)))

Initially, say that we judge the two hypotheses to be equally
probable. Then we start the experiment and the observations roll in:

obs :: [Real ]
obs = [3.07,0.74,2.23]

What do we believe now?
Our calculator finds the following densities for e1 and e2:

d1,d2 :: Real→ Real
d1 t = (if 0< exp (−t) ∧ exp (−t)<1 then 1 else 0)

× exp (−t)
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Figure 7. Likelihoods for two competing hypotheses. The crosses
on the horizontal axis mark the observed outcomes.

d2 t = if 0< t− (−1) then d1 (log (t− (−1)))/(t− (−1))
else 0

Figure 7 plots these densities. They are called likelihoods because
they are densities of distributions over observations.

The likelihood d1 t measures how likely it would be for us to
observe t in a trial if the hypothesis e1 were true. Moreover, because
the trials are independent, the likelihood of multiple observations
is just the product of their likelihoods. Thus product (map d1 obs)
measures how likely our observations would be if the hypothesis e1
were true, and similarly for e2. To compare the hypotheses against
each other, we calculate the ratio of the likelihoods:

>product (map d1 obs)/product (map d2 obs)
1.2461022752116167

The likelihood ratio is above 1, which means the evidence favors
our first hypothesis—that is, the unknown device produces x as is.
We see this faintly in Figure 7: above where the crosses mark the
observations, the value of d1 tends to be greater than the value of d2.

Whenever we have two or more hypotheses to choose from, the
one with the greatest observation likelihood is called the maximum-
likelihood estimate (MLE). So the MLE between e1 and e2 above
is e1. But we can also choose from an infinite family of hypotheses.
In the experiment above for example, we can hypothesize instead
that we observe a× x in each trial, where a is an unobserved
positive parameter that describes the unknown device. We can
model this infinite family of hypotheses by an expression with a
free variable "a":

e3 :: Expr Real
e3 = Let "x" exponential (mul (Var "a") (Var "x"))
mul :: Expr Real→ Expr Real→ Expr Real
mul a x = Exp (Add (Log a) (Log x)) -- a>0 ∧ x>0

Our calculator finds a density for e3 that simplifies algebraically to

d3 :: Real→ Real→ Real
d3 a = λ t. if t>0 then exp (−t/a)/a else 0

Figure 8 plots three members of this family of densities.
Using a bit of differential calculus, we can find the exact value

of a that maximizes the likelihood product (map (d3 a) obs). That
value is the MLE of the parameter a. Somewhat intuitively, it is the
average of obs, represented by the solid line in Figure 8:

> let aMLE = sum obs/fromIntegral (length obs)
>aMLE
2.013333333333333

7.2 Importance Sampling
We can also use densities for importance sampling (MacKay 1998).
Suppose we have a density function d (called the target), and we
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d
3 1 td3 aMLE t

d3 3 t

Figure 8. Likelihoods for three members of an infinite family d3
of competing hypotheses. The solid line is the MLE likelihood. The
crosses on the horizontal axis mark the observed outcomes.

wish to sample repeatedly from the distribution with density d,
perhaps to estimate the expectation of some function c with respect
to the target distribution. Unfortunately, we don’t know how to
sample from the target distribution; in other words, we don’t know
any generative story with density d. We can pick a generative
story e1 we do know (called the proposal), find a density d1 for e1,
and sample from e1 repeatedly instead. To correct for the difference
between the target and proposal densities, we pair each outcome t
from e1 with the importance weight d t/d1 t.

importance_sample :: (Real→ Real)→ IO (Real,Real)
importance_sample d = do t← sample e1 emptyEnv

return (t,d t/d1 t)

In particular, to estimate the expectation of the function c with
respect to the target distribution, we compute the weighted average
of c t where t is drawn from the proposal distribution.

estimate_expectation :: (Real→ Real)→ (Real→ Real)
→ IO Real

estimate_expectation d c = do
samples← replicateM 10000 (importance_sample d)
return (sum [c t×w | (t,w)← samples]

/sum [ w | (t,w)← samples])

For example, suppose we don’t know how to sample from the
target distribution with density

d :: Real→ Real
d t = exp (−t3)

but we would like to estimate the expectation of sin with respect
to it. We can use the definitions above to estimate the expectation:

> estimate_expectation d sin
0.4508234334172205

8. Properties of Our Density Calculator
As explained at the beginning of Section 5, we want our density
calculator to succeed as often as possible and to be compositional.
Unfortunately, density does not succeed as often as we want. How-
ever, it can be made compositional.

8.1 Incompleteness
As shown in Section 4, the distribution

Let "x" StdRandom (Add (Var "x") (Var "x"))

has a density function. In particular, it would be correct if

density (Let "x" StdRandom (Add (Var "x") (Var "x")))

were to return the non-empty list
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[λρ t. if 0< t<2 then 1/2 else 0]

Nevertheless, our density function returns the empty list, because

usage (Add (Var "x") (Var "x")) "x"= Unknown
density [Add (Var "x") (Var "x")] = [ ]

and our code does not know x+ x = 2× x.
This example shows there is room for our code to improve by

succeeding more often. Transformations that reduce the usage of
variables (for example, rewriting x + x to 2× x) would help, as
would computer-algebra facilities for inverting a function that is
expressed using non-invertible primitives (such as x3+x). Unfortu-
nately, those improvements would make it harder to keep a density
calculator compositional and equationally derived.

Another source of incompleteness is demonstrated by the fol-
lowing example. Suppose e is some distribution expression that
generates both positive and negative reals. For example, e could be
Add exponential (Lit (−42)). We can express taking the absolute
value of the outcome of e:

e′ = Let "x" e (If (Less (Lit 0) (Var "x"))
(Var "x")
(Neg (Var "x")))

If e has a density d, then e′ has a fairly intuitive density d′:

d′ :: Real→ Real
d′ t = if t>0 then d t+d (−t) else 0

But our calculator cannot find d′, because the branches Var "x" and
Neg (Var "x") have no density separately from the Let.

To handle these cases, it turns out that we can generalize our
density calculator so that, when applied to Let "x" e (Var "x") or
Let "x" e (Neg (Var "x")), it not only returns a density function
but also updates the environment, mapping "x" to t or to−t respec-
tively. The condition Less (Lit 0) (Var "x") can then be evaluated
in the updated environment. In other words, it helps to generalize
the environment to the heap of a lazy evaluator (Launchbury 1993),
and to delay evaluating the condition.

8.2 Compositionality
As promised above Section 5.1, our definition of density e neces-
sarily uses not only the density of the subexpressions of e, but also
expect. But to handle Let, we strayed even further from perfect
compositionality: our definition depends on substitution and usage,
two more functions defined by structural induction on expressions.
Can we still express density as a special case of a compositional and
more general function, just as mean is a special case of the compo-
sitional and more general function expect? The answer turns out to
be yes—we just need to rearrange the code already derived above.
This is good news for people building a compiler from distributions
to densities, including the present authors, because compositional-
ity enables separate compilation.

If we had only used expect and usage to define density, it would
have been straightforward to generalize density to a compositional
function: just specify the omnibus interpretation generalDensity by

data GeneralDensity a = GD {
gdExpect :: Env→ (a→ Real)→ Real,
gdUsage ::∀b.Var b→ Usage,
gdDensity :: [Env→ a→ Real ]}

generalDensity :: Expr a→ GeneralDensity a
generalDensity e = GD {gdExpect = expect e,

gdUsage = usage e,
gdDensity = density e}

and fuse it with our clauses defining expect, usage, and density,
so as to define generalDensity e purely by structural induction

on e. For example, the new clause defining generalDensity on Add
expressions would read

generalDensity (Add e1 e2) = GD {
gdExpect = λρ c.gdExpect gd1 ρ (λx.

gdExpect gd2 ρ (λy.c (x+ y))),
gdUsage = λv.gdUsage gd1 v⊕gdUsage gd2 v,
gdDensity = [λρ t.gdExpect gd1 ρ (λx.δ2 ρ (t− x))

| δ2← gdDensity gd2 ]
++[λρ t.gdExpect gd2 ρ (λy.δ1 ρ (t− y))
| δ1← gdDensity gd1 ]}

where gd1 = generalDensity e1
gd2 = generalDensity e2

collecting the definition of expect (Add e1 e2) in Section 3.1, the
definition of usage (Add e1 e2) in Appendix A, and the definition
of density (Add e1 e2) in Section 5.5. This is the tupling transfor-
mation (Pettorossi 1984; Bird 1980) applied to our dependent in-
terpretations (Gibbons and Wu 2014, §4.2).

Our use of density (e′{v 7→ e}) to define density (Let v e e′) in
Section 5.6 complicates our quest for compositionality, because the
recursive argument e′{v 7→ e} is not necessarily a subexpression of
Let v e e′. Instead of substituting e for v, we need the semantic ana-
logue: some map, which we call SEnv for “static environment”, that
associates the variable v to the expect and density interpretations
of e. We group these interpretations into a record type General.
And instead of storing values in Env and renaming variables to
avoid capture, we need the semantic analogue: storing values in
lists, which we call DEnv for “dynamic environment”, and allocat-
ing a fresh position in the lists for each variable. The type General a
below contrasts with the type GeneralDensity a above.

data SEnv = SEnv {
freshReal, freshBool :: Int,
lookupSEnv ::∀a.Var a→ General a}

data General a = General {
gExpect :: DEnv→ (a→ Real)→ Real,
gDensity :: [DEnv→ a→ Real ]}

data DEnv = DEnv {
lookupReal :: [Real ],
lookupBool :: [Bool ]}

We call our omnibus interpretation general. It maps each distribu-
tion expression to its usage alongside a function from static envi-
ronments to expect and density interpretations. The definition of
general is mostly rearranging the code in Sections 3.1 and 5, so we
relegate it to Appendix B.

general :: Expr a→ (∀b.Var b→ Usage,
SEnv→ General a)

At the top-level scope where the processing of a closed distri-
bution expression commences, the static environment maps every
variable name to an error and begins allocation at list position 0,
matching the initially empty dynamic environment.

emptySEnv :: SEnv
emptySEnv = SEnv {freshReal = 0, freshBool = 0,

lookupSEnv = λv.error "Unbound"}
emptyDEnv :: DEnv
emptyDEnv = DEnv {lookupReal = [ ], lookupBool = [ ]}
We can finally define our density calculator as a special case of

the compositional function general:

runDensity :: Expr a→ [a→ Real ]
runDensity e = [δ emptyDEnv

| δ ← gDensity (snd (general e) emptySEnv)]
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9. Conclusion
We have turned a specification of density functions in terms of
expectation functionals into a syntax-directed implementation that
supports separate compilation. Our equational derivation draws
from algebra, integral calculus, and λ -calculus. It suggests that
program calculation and transformation are powerful ways to turn
expressive probabilistic models into effective inference procedures.
We are investigating this hypothesis in ongoing work.
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A. Usage Testing
Section 5.6 uses the function

usage :: Expr a→ Var b→ Usage

to test how many times an expression uses a variable. The return
type Usage offers just three possibilities:

data Usage = Never | AtMostOnce | Unknown
deriving (Eq,Ord)

For example, we want

usage (If (Var "b") (Var "x") (Var "x")) "x"= AtMostOnce
usage (Add (Var "x") (Var "x")) "x"= Unknown

This contrast between If and Add indicates that we need two alge-
braic structures on the type Usage.

First, some Usage values entail others as propositions. For ex-
ample, if v is never used, then v is used at most once. This en-
tailment relation just happens to be a total order, so we define the
operator 6 to mean entailment, by deriving Ord above.

Second, when two subexpressions together produce a final out-
come, the counts of how many times they use v add up, and our
knowledge of the counts forms a commutative monoid. For exam-
ple, suppose e′ = Add e′1 e′2, and we know that e′1 never uses v and
e′2 uses v at most once. Then we know that e′ uses v at most once. If
instead we only know that e′1 and e′2 each use v at most once, then
all we know about e′ is it uses v at most twice. That’s not useful
knowledge about e′, so we might as well represent it as Unknown.
We define the operator ⊕ to add up our knowledge in this way:

instance Monoid Usage where
mempty = Never
Never⊕u = u
u ⊕Never = u

⊕ = Unknown

Armed with these two instances, we can define the usage func-
tion. It amounts to an abstract interpretation of expressions:

usage StdRandom = Never
usage (Lit ) = Never
usage (Var v) v′ = if eq v v′ then AtMostOnce

else Never
usage (Let v e e′) v′ = usage e v′⊕ if eq v v′ then Never

else usage e′ v′

usage (Neg e) v = usage e v
usage (Exp e) v = usage e v
usage (Log e) v = usage e v
usage (Not e) v = usage e v
usage (Add e1 e2) v = usage e1 v⊕usage e2 v
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usage (Less e1 e2) v = usage e1 v⊕usage e2 v
usage (If e e1 e2) v = usage e v⊕max (usage e1 v)

(usage e2 v)

The Var and Let cases above use the function eq to test the
equality of two Vars whose types might differ:

eq :: Var a→ Var b→ Bool
eq (Real v) (Real w) = v≡ w
eq (Bool v) (Bool w) = v≡ w
eq = False

To fit Haskell’s type system better, we distinguish variables whose
names are the same String if their types differ. For example,
extendEnv in Section 2 treats Real "x" and Bool "x" as differ-
ent variables that do not shadow each other’s bindings. In other
words, Real and Bool variables in our language reside in separate
namespaces. Hence eq (Real "x") (Bool "x") = False.

B. Compositional Density Calculator

extendSEnv :: Var a→ General a→ SEnv→ SEnv
extendSEnv v x σ = σ {

lookupSEnv = extendSEnv′ v x (lookupSEnv σ)}
extendSEnv′ :: Var a→ General a→ (∀b.Var b→ General b)

→ (∀b.Var b→ General b)
extendSEnv′ (Real v) x (Real v′) | v≡ v′ = x
extendSEnv′ (Bool v) x (Bool v′) | v≡ v′ = x
extendSEnv′ σ v′ = σ v′

extendList :: Int→ a→ [a]→ [a]
extendList i x xs
| i≡ length xs = xs++[x ]
| otherwise = error ("Expected length "++ show i++

", got "++ show (length xs))

generalReal :: (DEnv→ Real)→ General Real
generalReal f = General {

gExpect = λρ c.c (f ρ),
gDensity = [ ]}

generalBool :: (DEnv→ (Bool→ Real)→ Real)→ General Bool
generalBool e = General {

gExpect = e,
gDensity = [λρ t.e ρ (λx. if t ≡ x then 1 else 0)]}

allocate :: Var a→ SEnv→ (SEnv,a→ DEnv→ DEnv)
allocate v@(Real ) σ =

let i = freshReal σ

in (extendSEnv v (generalReal (λρ. lookupReal ρ !! i))
σ {freshReal = i+1},

λx ρ.ρ {lookupReal = extendList i x (lookupReal ρ)})
allocate v@(Bool ) σ =

let i = freshBool σ

in (extendSEnv v (generalBool (λρ c.c (lookupBool ρ !! i)))
σ {freshBool = i+1},

λx ρ.ρ {lookupBool = extendList i x (lookupBool ρ)})

general StdRandom= (λ .Never,
λ .General {
gExpect = λ c.

∫ 1
0 λx.c x,

gDensity = [λ t. if 0< t ∧ t<1 then 1 else 0]})
general (Lit x) = (λ .Never,

λ .generalReal (λ . fromRational x))

general (Var v) = (λv′. if eq v v′ then AtMostOnce else Never,
λσ . lookupSEnv σ v)

general (Let v e e′) = (λv′.u v′⊕ if eq v v′ then Never else u′ v′,
λσ . let (σ ′,ε) = allocate v σ

σ ′′ = extendSEnv v (g σ) σ in General {
gExpect = λρ c.gExpect (g σ) ρ (λx.

gExpect (g′ σ ′) (ε x ρ) c),
gDensity = [λρ t.gExpect (g σ) ρ (λx.δ ′ (ε x ρ) t)

| δ ′← gDensity (g′ σ ′)]
++[δ ′ | u′ v 6 AtMostOnce

, δ ′← gDensity (g′ σ ′′)]})
where (u ,g ) = general e

(u′ ,g′ ) = general e′

general (Neg e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (−x)),
gDensity = [λρ t.δ ρ (−t) | δ ← gDensity (g σ)]})
where (u,g) = general e

general (Exp e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (exp x)),
gDensity = [λρ t. if 0< t then δ ρ (log t)/t else 0

| δ ← gDensity (g σ)]})
where (u,g) = general e

general (Log e) = (u,
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λx.c (log x)),
gDensity = [λρ t.δ ρ (exp t)× exp t | δ ← gDensity (g σ)]})
where (u,g) = general e

general (Not e) = (u,
λσ .generalBool (λρ c.gExpect (g σ) ρ (λx.c (not x))))
where (u,g) = general e

general (Add e1 e2) = (λv.u1 v⊕u2 v,
λσ .General {
gExpect = λρ c.gExpect (g1 σ) ρ (λx.

gExpect (g2 σ) ρ (λy.c (x+ y))),
gDensity = [λρ t.gExpect (g1 σ) ρ (λx.δ2 ρ (t− x))

| δ2← gDensity (g2 σ)]
++[λρ t.gExpect (g2 σ) ρ (λy.δ1 ρ (t− y))
| δ1← gDensity (g1 σ)]})

where (u1,g1) = general e1
(u2,g2) = general e2

general (Less e1 e2) = (λv.u1 v⊕u2 v,
λσ .generalBool (λρ c.gExpect (g1 σ) ρ (λx.

gExpect (g2 σ) ρ (λy.c (x< y)))))
where (u1,g1) = general e1

(u2,g2) = general e2

general (If e e1 e2) = (λv.u v⊕max (u1 v) (u2 v),
λσ .General {
gExpect = λρ c.gExpect (g σ) ρ (λb.

gExpect ((if b then g1 else g2) σ) ρ c),
gDensity = [λρ t.gExpect (g σ) ρ (λb.

(if b then δ1 else δ2) ρ t)
| δ1← gDensity (g1 σ),δ2← gDensity (g2 σ)]})

where (u ,g ) = general e
(u1,g1) = general e1
(u2,g2) = general e2
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